The present invention relates generally to light fixture housings. More particularly, the present invention relates to light fixture housings and methods of making light fixture housings by combining the manufacturing benefits of sheet metal housing fabrication with that of extruded aluminum housing fabrication to create a “hybrid” light fixture housing comprising a sheet metal housing composite base coupled with one or more predetermined aluminum extrusion profile members.
Manufacturing methods for mass production of lighting fixtures are known in the art. Two common manufacturing methods used in the industry to produce the housings for light fixtures include the sheet metal (“roll formed” and/or “press fabricated”) technique and “extruded aluminum” technique. When it comes to mass production of large volumes of a predetermined number of standard sizes and shapes of light fixtures, either of these methods are suitable and the decision as to which one to use is based on a number of financial and logistical factors understood by those in the art. However, when it comes to manufacturing various volumes of light fixtures that will be produced for a given order with various differing ceiling interfaces and fixtures widths, both of these standard methods have their drawbacks.
To put the typical dilemma in context, when a large order of recessed lights is placed for an area having a lot of different lights and ceiling interfaces, such as an airport, the problem of how to meet the requirements of a large number of ceiling interfaces for varying fixture widths is presented. For example, if the project involves fifteen different ceiling interfaces, then for an installation involving four different fixture widths and a single fixture length, sixty different housings are required (15×4×1=60). However, typical installations can involve five different lengths or more raising the permutations of required housings to at least 300 (60×5=300). Moreover, if “rows” of fixtures are required for different areas (2's, 3's, 4's), the number of housings could be pushed to 900 or more.
As will be appreciated, faced with large volumes of varying fixture housings, the two common manufacturing methods present technological and cost-prohibitive problems. For example, with sheet metal housings, even with an unlimited tooling budget, a roll former could not satisfy the number of housing variations required. Likewise, with press fabricated housings the ability to meet all of the required variations would not only be problematic but also conceivably result in countless, and prohibitive, numbers of parts to meet the required housing configurations. These problems essentially foreclose the ability to rely on sheet metal production methods to complete these types of custom projects in a cost efficient manner.
Similarly, with extruded aluminum housing profiles, a number of practical and logistical problems are presented. First, extruded aluminum is relatively expensive. The expense is exasperated given the size of the extrusion profiles which would be required to satisfy the variety of housings called for by the project. Inventory also presents a problem because the production volume for even a relatively large project would not be high enough to “beat down” the cost of the aluminum extrusion with large extrusion runs as it would be in typical mass production settings. In other words, to be able to satisfy all the needs, “raw lengths” of about sixty different aluminum extrusion profiles would need to be ready to satisfy production orders. Even if practicable in a given situation, additional secondary operations such as holes, slots, etc. would require costly machining operations (as compared to sheet metal operations). These drawbacks essentially foreclose the ability to use extruded aluminum methods to complete typical custom projects in a cost efficient manner.
The foregoing underscores some of the problems with conventional fixture housing construction methods, especially in batch job situations. Furthermore, the foregoing highlights the long-felt, yet unresolved need in the art for a construction method that can be commercially practicable in small scale productions with varying fixture configuration requirements. In addition, the foregoing highlights the inventor's recognition and need in the art for a construction method that overcomes the disadvantages and challenges of sheet metal fixture manufacturing methods and extruded aluminum fixture manufacturing techniques.
Various embodiments of the present invention overcome various of the aforementioned and other disadvantages associated with prior art light fixture housing fabrication methods, and in particular, non-mass production scenarios involving a multitude of housing requirements. The present invention is based, in part, on the discovery that a sheet metal housing substrate could be manufactured by conventional methods and then have affixed thereto any number of a plurality of differing aluminum extruded profiles for assembly into a “hybrid” light fixture housing, proving particularly useful in satisfying a need for a large number of predetermined configurations. The present invention is also based, in part, on the discovery that the novel methods and configurations disclosed herein result in a kit that is adaptable and able to allow for assembly even in cases where the substrate and/or profiles are out of specification. The present invention is also based, in part, on the realization by the present inventor that advantageous aspects of standard sheet metal manufacturing processes can be combined with the advantageous aspect of standard aluminum extrusion manufacturing processes to result in a “hybrid” housing that combines the strengths of the various manufacturing methods to provide a superior, cost-effective end product.
According to one aspect of various embodiments of the present invention there is provided a sheet metal housing substrate having attached thereto aluminum extrusion members to complete a light fixture housing of a predetermined configuration. In accordance with this aspect of the invention, various embodiments of the invention comprise a metal housing substrate having upwardly extending sidewalls and aluminum extrusion side members bent into a flexible u-shaped or like “clip” form for frictionally receiving and retaining within the interior channel a corresponding sidewall of said metal housing substrate. The side member and sidewall are preferably mechanically attached via a rivet or the like to safeguard against slippage in the friction fit.
According to another aspect of various embodiments of the present invention there is provided a sheet metal housing substrate and a plurality of aluminum extrusion members extruded in the “splayed open” position. As will be appreciated, when assembled to the sheet metal housing substrate sidewalls, the splayed portion of the extrusion would be bent on to a sheet metal housing sidewall and then preferably further secured with fasteners or the like.
According to yet another aspect of various preferred embodiments of the present invention there is provided a two-piece extrusion and housing assembly kit. According to this aspect of the invention, there would be an extrusion profile creating the ceiling trim and a second extrusion piece (referred to hereinafter as the “backing bar”) which would engage the trim piece and the sheet metal housing by a suitable manner and then preferably further secured with fasteners or the like.
The “two-piece extrusion” method is a presently preferred method because it does not present potential “tongue ratio” problems that, as one of ordinary skill in the art should appreciate, may develop when facing certain geometric requirements with the extrusion profile raising the cost and reaching ratios (e.g., 4:1) which may be difficult to maintain during production. The “two piece extrusion” method is also presently preferred because it does not present the potential problems of attempting real-time bending (especially with long housings) that may affect quality, speed, or production that may be faced with the “splayed extrusion” method. Although preferred over these other methods, the present invention should be understood to encompass these and other methods of assembling hybrid housing in addition to the “two piece extrusion” method.
Furthermore, while the present invention will be described in connection with the long-felt, yet unresolved need in the art of light fixture manufacturing for a solution to the disadvantageous in the art with prior art methods for batch production, one of ordinary skill in the art armed with the present specification will readily appreciate that the inventive methods and concepts herein are adaptable to virtually any industry that involves or encounters similar practical, logistical, and cost prohibitive issues in metal housing production.
The invention as described and claimed herein should become evident to a person of ordinary skill in the art given the following enabling description and drawings. The aspects and features of the invention believed to be novel and other elements characteristic of the invention are set forth with particularity in the appended claims. The drawings are for illustration purposes only and are not drawn to scale unless otherwise indicated. The drawings are not intended to limit the scope of the invention. The following enabling disclosure is directed to one of ordinary skill in the art and presupposes that those aspects of the invention within the ability of the ordinarily skilled artisan are understood and appreciated.
The above benefits and other advantages of the various embodiments of the present invention will be more apparent from the following detailed description of exemplary embodiments of the present invention and from the accompanying drawing figures, in which:
In exemplary embodiments of the present invention shown in
According to this embodiment of the invention, as best shown in
Extrusion members 50 are preferably extruded aluminum strips in lengths corresponding with the length of the housing sidewall to which it will be attached. The strips are bent to define generally u-shaped “clips” for clipping onto the ends of the sidewalls. As best shown in
In operation, the clip 50 is forced fit onto the housing sidewall end 21. The elasticity and bias of the clip's u-shaped design allows it to be elastically deformed during fitting and resiliently clamp down on the sidewall when released. The shoulder of the clip pins the shoulder of the sidewall underneath to hinder slippage. To prevent slippage and ensure proper positioning of the substrate and extrusion member, one or more rivets are threaded between the corresponding rivet holes disposed along the length of the sides. After securing the extrusion members to each side of the housing substrate, the hybrid housing assembly is completed and ready for the next step in the fixture manufacturing and assembly process.
As discerned from the various views, the backing bar 70 profile is similar to the outside of the u-clip of the previous embodiments. The top of the backing bar 70 includes a rivet hole 71 as seen in other embodiments. The backing bar 70 also includes a shoulder 71 formed from an outwardly deflecting bend relatively central to the bar 70. The shoulder 71 of the backing bar 70 also operates similarly to the previous embodiments in fitting over a matching shoulder ridge formed in the sidewall of the housing substrate (also resulting in the aligning of the corresponding rivet holes). A notable difference rests in that the backing bar 70 terminates to form a small flange or “foot” 73 at its distal end.
The ceiling trim extrusion member 80 is similar to the extrusion member of the previous embodiments with several notable exceptions. The ceiling trim extrusion member 80 has a first side 81 that descends generally linearly towards a u-shaped bend 82. However, the first side 81 includes a bend defining a small, outwardly projecting ledge 83. The member 80 follows the u-bend 82 with a small inwardly projecting flange 84 followed by an outwardly-extending L-shaped bend 85. The u-shaped bend 82 and flange 84 define a pocket 90 sized and shaped to accept the “foot” 73 of the backing bar 70. Preferably, as shown, the foot 73 is tapered and/or angled to allow it to cam past, and be retained under, the flange 84 and within the pocket 90. Once positioned, corresponding rivet holes in the backing bar, housing sidewall, and ceiling trim member allow the composite to be sandwiched and fastened together to prevent slippage and disengagement.
As shown in the figures, and as will be appreciated by one of ordinary skill in the art, the L-shaped bend 85 of ceiling trim member 80 and the u-shaped bend 82 serve as horizontal flanges or “stops” for the tracks of tee track assemblies 100. The u-shaped bend stop is used for “grid” ceiling interfaces (best shown on
As will now be readily appreciated by one of ordinary skill in the art armed with the present specification, the inventive methods of the present invention lend themselves to forming metal housing substrates of desired widths and lengths that may be called into service to be recessed into any variety of ceiling types and arrangements. In brief, a plurality of aluminum extrusion members, e.g., ceiling trim members and backing bars, are extruded into predetermined lengths having profiles of the types described herein, or any other suitable configurations, that lend to sandwiching and mating with the housing substrate sidewalls in a manner that secures the housing composite together to form a hybrid fixture housing suitable for the area and conditions of deployment of the light fixture.
The foregoing embodiments and advantages are merely exemplary and are not to be construed as limiting the scope of the present invention. The description of an exemplary embodiment of the present invention is intended to be illustrative, and not to limit the scope of the present invention. Various modifications, alternatives and variations will be apparent to those of ordinary skill in the art, and are intended to fall within the scope of the invention.
This application claims the benefit of priority under 35 U.S.C. §102 (e) to U.S. Provisional Application No. 61/759,348 filed Jan. 31, 2013, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61759348 | Jan 2013 | US |