The present disclosure relates to methods and apparatus for illuminating a display and, more particularly, to illumination devices having faceted and holographic light turning features.
Electromechanical systems include devices having electrical and mechanical elements, actuators, transducers, sensors, optical components (e.g., minors) and electronics. Electromechanical systems can be manufactured at a variety of scales including, but not limited to, microscales and nanoscales. For example, microelectromechanical systems (MEMS) devices can include structures having sizes ranging from about a micron to hundreds of microns or more. Nanoelectromechanical systems (NEMS) devices can include structures having sizes smaller than a micron including, for example, sizes smaller than several hundred nanometers. Electromechanical elements may be created using deposition, etching, lithography, and/or other micromachining processes that etch away parts of substrates and/or deposited material layers, or that add layers to form electrical and electromechanical devices.
One type of electromechanical systems device is called an interferometric modulator (IMOD). As used herein, the term interferometric modulator or interferometric light modulator refers to a device that selectively absorbs and/or reflects light using the principles of optical interference. In some implementations, an interferometric modulator may include a pair of conductive plates, one or both of which may be transparent and/or reflective, wholly or in part, and capable of relative motion upon application of an appropriate electrical signal. In an implementation, one plate may include a stationary layer deposited on a substrate and the other plate may include a metallic membrane separated from the stationary layer by an air gap. The position of one plate in relation to another can change the optical interference of light incident on the interferometric modulator. Interferometric modulator devices have a wide range of applications, and are anticipated to be used in improving existing products and creating new products, especially those with display capabilities.
Reflected ambient light is used to form images in some reflective display devices, such as those using pixels formed by interferometric modulators. The perceived brightness of these displays depends upon the amount of light that is reflected towards a viewer. In low ambient light conditions, light from an artificial light source is used to illuminate the reflective pixels, which then reflect the light towards a viewer to generate an image. New illumination devices are continually being developed to meet the needs of display devices, including displays with pixels that reflective light and displays that transmit light through pixels.
The systems, methods and devices of the disclosure each have several innovative aspects, no single one of which is solely responsible for the desirable attributes disclosed herein.
One innovative aspect of the subject matter described in this disclosure can be implemented in an illumination apparatus. The illumination apparatus includes a light source, a light guide, and a hologram. The light guide includes a plurality of spaced-apart facets configured to eject light, propagating from the light source internally through the light guide, out of the light guide. The hologram includes a plurality of holographic light turning features configured to turn light propagating internally through the light guide. The holographic light turning features are disposed in areas between the spaced apart facets. At least some of the holographic light turning features can be configured to turn light out of the light guide and towards the display elements. At least some of the holographic light turning features can be configured to turn light to provide a lower angle of reflectance of the light relative to an angle of incidence of the light on the holographic film. The hologram can be pixilated. A first plurality of the hologram pixels can be configured to eject light out of the light guide body, and a second plurality of the hologram pixels can be configured to collimate light such that an angle of reflectance of the light is less than an angle of incidence of the light on the holographic film.
Another innovative aspect of the subject matter described in this disclosure can be implemented in a display device. The display device includes an image formation means for reflecting incident light towards a display; a light generating means for generating light; a first light turning means for reflecting light from the light generating means towards the image formation means; and a second light turning means for diffracting light from the light generating means towards the image formation means.
Yet another innovative aspect of the subject matter described in this disclosure can be implemented in a method for manufacturing a display device. The method includes providing a light guide panel having a plurality of facets formed in a surface of the panel. A holographic film is provided on the surface of the light guide panel. The holographic film includes a hologram configured to turn light incident on the film.
Details of one or more implementations of the subject matter described in this specification are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages will become apparent from the description, the drawings, and the claims. Note that the relative dimensions of the following figures may not be drawn to scale.
Like reference numbers and designations in the various drawings indicate like elements.
The following detailed description is directed to certain implementations for the purposes of describing the innovative aspects. However, the teachings herein can be applied in a multitude of different ways. The described implementations may be implemented in any device that is configured to display an image, whether in motion (e.g., video) or stationary (e.g., still image), and whether textual, graphical or pictorial. More particularly, it is contemplated that the implementations may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile telephones, multimedia Internet enabled cellular telephones, mobile television receivers, wireless devices, smartphones, bluetooth devices, personal data assistants (PDAs), wireless electronic mail receivers, hand-held or portable computers, netbooks, notebooks, smartbooks, printers, copiers, scanners, facsimile devices, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, electronic reading devices (e.g., e-readers), computer monitors, auto displays (e.g., odometer display, etc.), cockpit controls and/or displays, camera view displays (e.g., display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, microwaves, refrigerators, stereo systems, cassette recorders or players, DVD players, CD players, VCRs, radios, portable memory chips, washers, dryers, washer/dryers, packaging (e.g., MEMS and non-MEMS), aesthetic structures (e.g., display of images on a piece of jewelry) and a variety of electromechanical systems devices. The teachings herein also can be used in non-display applications such as, but not limited to, electronic switching devices, radio frequency filters, sensors, accelerometers, gyroscopes, motion-sensing devices, magnetometers, inertial components for consumer electronics, parts of consumer electronics products, varactors, liquid crystal devices, electrophoretic devices, drive schemes, manufacturing processes, electronic test equipment. Thus, the teachings are not intended to be limited to the implementations depicted solely in the Figures, but instead have wide applicability as will be readily apparent to one having ordinary skill in the art.
Illumination devices may be used to illuminate displays. In some implementations, an illumination device light guide can include both faceted and holographic light turning features. The light turning features turn light that has been injected into the light guide from a light source. In some implementations, both the faceted and the holographic light turning features are configured to eject light out of the light guide, towards the display elements of a display. Alternatively, or in addition to ejecting light out of the light guide, the holographic light turning features can “collimate” the light, so that diffracted light is more nearly parallel to the surface on which the holographic light turning feature is disposed. Stated another way, the angle of that diffracted light propagating away from the holographic film containing the holographic light turning features (referred to herein as the angle of reflectance) is less than the angle of incidence of that light on the holographic film. This collimation can help improve the uniformity of light across the light guide, by facilitating the propagation of light across the light guide.
Particular implementations of the subject matter described in this disclosure can be implemented to realize one or more of the following potential advantages. For example, the holographic light turning features may be positioned at locations between the facets, thereby providing a relatively high density of light turning features and improving the efficiency of light extraction out of the light guide and/or improving the brightness uniformity of the illumination device. The light guide can also be applied in a high efficiency illumination device for illuminating a display, such as a reflective display having interferometric modulators or a transmissive display.
One example of a suitable MEMS device, to which the described implementations may apply, is a reflective display device. Reflective display devices can incorporate interferometric modulators (IMODs) to selectively absorb and/or reflect light incident thereon using principles of optical interference. IMODs can include an absorber, a reflector that is movable with respect to the absorber, and an optical resonant cavity defined between the absorber and the reflector. The reflector can be moved to two or more different positions, which can change the size of the optical resonant cavity and thereby affect the reflectance of the interferometric modulator. The reflectance spectrums of IMODs can create fairly broad spectral bands which can be shifted across the visible wavelengths to generate different colors. The position of the spectral band can be adjusted by changing the thickness of the optical resonant cavity, i.e., by changing the position of the reflector.
The IMOD display device can include a row/column array of IMODs. Each IMOD can include a pair of reflective layers, i.e., a movable reflective layer and a fixed partially reflective layer, positioned at a variable and controllable distance from each other to form an air gap (also referred to as an optical gap or cavity). The movable reflective layer may be moved between at least two positions. In a first position, i.e., a relaxed position, the movable reflective layer can be positioned at a relatively large distance from the fixed partially reflective layer. In a second position, i.e., an actuated position, the movable reflective layer can be positioned more closely to the partially reflective layer. Incident light that reflects from the two layers can interfere constructively or destructively depending on the position of the movable reflective layer, producing either an overall reflective or non-reflective state for each pixel. In some implementations, the IMOD may be in a reflective state when unactuated, reflecting light within the visible spectrum, and may be in a dark state when unactuated, reflecting light outside of the visible range (e.g., infrared light). In some other implementations, however, an IMOD may be in a dark state when unactuated, and in a reflective state when actuated. In some implementations, the introduction of an applied voltage can drive the pixels to change states. In some other implementations, an applied charge can drive the pixels to change states.
The depicted portion of the pixel array in
In
The optical stack 16 can include a single layer or several layers. The layer(s) can include one or more of an electrode layer, a partially reflective and partially transmissive layer and a transparent dielectric layer. In some implementations, the optical stack 16 is electrically conductive, partially transparent and partially reflective, and may be fabricated, for example, by depositing one or more of the above layers onto a transparent substrate 20. The electrode layer can be formed from a variety of materials, such as various metals, for example indium tin oxide (ITO). The partially reflective layer can be formed from a variety of materials that are partially reflective, such as various metals, e.g., chromium (Cr), semiconductors, and dielectrics. The partially reflective layer can be formed of one or more layers of materials, and each of the layers can be formed of a single material or a combination of materials. In some implementations, the optical stack 16 can include a single semi-transparent thickness of metal or semiconductor which serves as both an optical absorber and conductor, while different, more conductive layers or portions (e.g., of the optical stack 16 or of other structures of the IMOD) can serve to bus signals between IMOD pixels. The optical stack 16 also can include one or more insulating or dielectric layers covering one or more conductive layers or a conductive/absorptive layer.
In some implementations, the layer(s) of the optical stack 16 can be patterned into parallel strips, and may form row electrodes in a display device as described further below. As will be understood by one having skill in the art, the term “patterned” is used herein to refer to masking as well as etching processes. In some implementations, a highly conductive and reflective material, such as aluminum (Al), may be used for the movable reflective layer 14, and these strips may form column electrodes in a display device. The movable reflective layer 14 may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes of the optical stack 16) to form columns deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18. When the sacrificial material is etched away, a defined gap 19, or optical cavity, can be formed between the movable reflective layer 14 and the optical stack 16. In some implementations, the spacing between posts 18 may be on the order of 1-1000 um, while the gap 19 may be on the order of <10,000 Angstroms (Å).
In some implementations, each pixel of the IMOD, whether in the actuated or relaxed state, is essentially a capacitor formed by the fixed and moving reflective layers. When no voltage is applied, the movable reflective layer 14a remains in a mechanically relaxed state, as illustrated by the pixel 12 on the left in
The processor 21 can be configured to communicate with an array driver 22. The array driver 22 can include a row driver circuit 24 and a column driver circuit 26 that provide signals to, e.g., a display array or panel 30. The cross section of the IMOD display device illustrated in
In some implementations, a frame of an image may be created by applying data signals in the form of “segment” voltages along the set of column electrodes, in accordance with the desired change (if any) to the state of the pixels in a given row. Each row of the array can be addressed in turn, such that the frame is written one row at a time. To write the desired data to the pixels in a first row, segment voltages corresponding to the desired state of the pixels in the first row can be applied on the column electrodes, and a first row pulse in the form of a specific “common” voltage or signal can be applied to the first row electrode. The set of segment voltages can then be changed to correspond to the desired change (if any) to the state of the pixels in the second row, and a second common voltage can be applied to the second row electrode. In some implementations, the pixels in the first row are unaffected by the change in the segment voltages applied along the column electrodes, and remain in the state they were set to during the first common voltage row pulse. This process may be repeated for the entire series of rows, or alternatively, columns, in a sequential fashion to produce the image frame. The frames can be refreshed and/or updated with new image data by continually repeating this process at some desired number of frames per second.
The combination of segment and common signals applied across each pixel (that is, the potential difference across each pixel) determines the resulting state of each pixel.
As illustrated in
When a hold voltage is applied on a common line, such as a high hold voltage VCHOLD
When an addressing, or actuation, voltage is applied on a common line, such as a high addressing voltage VCADD
In some implementations, hold voltages, address voltages, and segment voltages may be used which always produce the same polarity potential difference across the modulators. In some other implementations, signals can be used which alternate the polarity of the potential difference of the modulators. Alternation of the polarity across the modulators (that is, alternation of the polarity of write procedures) may reduce or inhibit charge accumulation which could occur after repeated write operations of a single polarity.
During the first line time 60a: a release voltage 70 is applied on common line 1; the voltage applied on common line 2 begins at a high hold voltage 72 and moves to a release voltage 70; and a low hold voltage 76 is applied along common line 3. Thus, the modulators (common 1, segment 1), (1,2) and (1,3) along common line 1 remain in a relaxed, or unactuated, state for the duration of the first line time 60a, the modulators (2,1), (2,2) and (2,3) along common line 2 will move to a relaxed state, and the modulators (3,1), (3,2) and (3,3) along common line 3 will remain in their previous state. With reference to
During the second line time 60b, the voltage on common line 1 moves to a high hold voltage 72, and all modulators along common line 1 remain in a relaxed state regardless of the segment voltage applied because no addressing, or actuation, voltage was applied on the common line 1. The modulators along common line 2 remain in a relaxed state due to the application of the release voltage 70, and the modulators (3,1), (3,2) and (3,3) along common line 3 will relax when the voltage along common line 3 moves to a release voltage 70.
During the third line time 60c, common line 1 is addressed by applying a high address voltage 74 on common line 1. Because a low segment voltage 64 is applied along segment lines 1 and 2 during the application of this address voltage, the pixel voltage across modulators (1,1) and (1,2) is greater than the high end of the positive stability window (i.e., the voltage differential exceeded a predefined threshold) of the modulators, and the modulators (1,1) and (1,2) are actuated. Conversely, because a high segment voltage 62 is applied along segment line 3, the pixel voltage across modulator (1,3) is less than that of modulators (1,1) and (1,2), and remains within the positive stability window of the modulator; modulator (1,3) thus remains relaxed. Also during line time 60c, the voltage along common line 2 decreases to a low hold voltage 76, and the voltage along common line 3 remains at a release voltage 70, leaving the modulators along common lines 2 and 3 in a relaxed position.
During the fourth line time 60d, the voltage on common line 1 returns to a high hold voltage 72, leaving the modulators along common line 1 in their respective addressed states. The voltage on common line 2 is decreased to a low address voltage 78. Because a high segment voltage 62 is applied along segment line 2, the pixel voltage across modulator (2,2) is below the lower end of the negative stability window of the modulator, causing the modulator (2,2) to actuate. Conversely, because a low segment voltage 64 is applied along segment lines 1 and 3, the modulators (2,1) and (2,3) remain in a relaxed position. The voltage on common line 3 increases to a high hold voltage 72, leaving the modulators along common line 3 in a relaxed state.
Finally, during the fifth line time 60e, the voltage on common line 1 remains at high hold voltage 72, and the voltage on common line 2 remains at a low hold voltage 76, leaving the modulators along common lines 1 and 2 in their respective addressed states. The voltage on common line 3 increases to a high address voltage 74 to address the modulators along common line 3. As a low segment voltage 64 is applied on segment lines 2 and 3, the modulators (3,2) and (3,3) actuate, while the high segment voltage 62 applied along segment line 1 causes modulator (3,1) to remain in a relaxed position. Thus, at the end of the fifth line time 60e, the 3×3 pixel array is in the state shown in
In the timing diagram of
The details of the structure of interferometric modulators that operate in accordance with the principles set forth above may vary widely. For example,
As illustrated in
In implementations such as those shown in
The process 80 continues at block 84 with the formation of a sacrificial layer 25 over the optical stack 16. The sacrificial layer 25 is later removed (e.g., at block 90) to form the cavity 19 and thus the sacrificial layer 25 is not shown in the resulting interferometric modulators 12 illustrated in
The process 80 continues at block 86 with the formation of a support structure e.g., a post 18 as illustrated in
The process 80 continues at block 88 with the formation of a movable reflective layer or membrane such as the movable reflective layer 14 illustrated in
The process 80 continues at block 90 with the formation of a cavity, e.g., cavity 19 as illustrated in
Displays such as interferometric modulator displays use reflected light to produce an image. In a dark or low-light environment, e.g., some indoor or nighttime environments, there may be insufficient ambient light to generate a useful image. Front lights may be used in such environments to augment or substitute for ambient light. The front light receives light from a light source and redirects it towards the display elements of the display. The light is reflected back past the front light and towards, e.g., the viewer to produce a viewable image.
In addition to reflecting light towards display elements of the display 150, the facets 130 can undesirably alter the exit angle for light that was reflected from the display elements of the display 150. The exit angle for light that was reflected from the display 150 (and is on its way towards the viewer) may be altered if that light strikes a facet 130 on its way out of the display 150. Rather than exiting towards the viewer, as does light with no intervening facet 130, light that strikes a facet 130 may have an altered exit angle, thus degrading image quality. To minimize image degradation, the number of facets 130 can be limited and spaced apart.
In some implementations, limiting the number of and spacing apart the facets 130 can limit the amount of light that may be turned (or extracted) out of the light guide 120 and towards the display 150. The surface area between the facets 130 is effectively an “unused” area 160; that is, it is an area that is not used for extraction or light turning. Depending on the given light source, due to the unused area 160, the amount of light extracted in a given area is not as much as theoretically possible and, thus, the brightness of the display 150 may be less than theoretically possible.
In some implementations, a hybrid light guide structure with both facets and holographic light turning features can be provided. The holographic light turning features may be provided between the facets, to allow the previously “unused” area 160 to be used for light turning. Advantageously, the uniformity of light across the light guide 120 or the light extraction efficiency, or both, may be increased.
The light guide 220 can include a plurality of facets 230 having reflective surfaces for light turning. Part or all of the surfaces of the facets 230 may be coated with a reflective film, e.g., a metal film, or light turning may occur by total internal reflection.
A holographic film 238 may be disposed on a major surface 222 of the light guide 220. The facets 230 can be formed in, on or near the surface 222. A hologram 240 can be recorded in the holographic film 238. The hologram 240 may be a surface or a volume hologram. The hologram 240 can include light turning features 244. The features 244 may be distributed across the entirety of the holographic film 238, or may be present only at selected locations, e.g., between the facets 230, to minimize the undesired turning of light traveling through the facets 230. One having ordinary skill in the art will readily appreciate that the holographic light turning features 244 may turn light by diffraction and the facets 230 may turn light by reflection.
The holographic light turning features 244 can allow areas 250 between and away from the facets 230 to be utilized for light turning. The hologram 240 and light turning features 244 can be configured to turn light out of the light guide 220 and towards a display 260. For example, the light source 210 can inject a light ray 270 into the light guide 220 and the light ray 270 may reflect off the boundaries of the light guide 220 until contacting a holographic light turning feature 244, which turns the light ray 270 to eject it out of the light guide 220 towards the display 260. In addition, another light ray 272 may contact one of the facets 230 and be ejected out of the light guide 220 by that facet. The holographic light turning features 244 may augment the facets 230 to increase the amount of light extracted from the light guide 220, thereby increasing the perceived brightness of the display 260 without needing to increase the power of the light source 210.
In some implementations, and with reference to
With reference to
In another example, the density of the pixels 246i+n for collimation can decrease with distance from the light source 210, since the need to collimate light to increase propagation distance across the light guide 220 decreases with distance from the light source 210. In some implementations, the pixels 246i+n for collimation serve to increase the distance that light propagates across the light guide 220 before travelling out of the light guide 220. At farther distances from the light source 210, as the light propagates farther across the light guide 220, the need to propagate the light still farther across the light guide 220 decreases as the light comes to the opposite side of the light guide 220, while it becomes increasingly desirable to extract light out of the light guide 220. Thus, the density of the pixels 246i+n for collimation can decrease with distance from the light source 210 and, in some implementations, the density of the pixels 244i+n configured to eject light increase with distance from the light source 210.
In addition, within each set of the pixels 244i+n and 246i+n the properties of individual pixels can vary. For example, individual ones of the pixels 244i+n and/or pixels 246i+n can be configured to accept and turn light incident on the pixels 244i+n and/or pixels 244i+n in different ranges of angles. This feature can be implemented to minimize optical artifacts, since a single uniform hologram can have difficulties turning light from a wide range of angles. In some implementations, the pixels 244i+n and 246i+n effectively define a plurality of hologram regions, with each pixel having a limited range of angles accepted for turning, which can increase the efficiency of the turning and reduce artifacts. In addition, the degree of collimation of the pixels 246i+n or the direction that the pixels 244i+n are configured to turn light can vary between individual pixels, thereby allowing the illumination properties of the illumination device 202 (as shown in
In some implementations, only some of the pixels 244i+n and 246i+n are configured to turn light. The other pixels may be devoid of holographic light turning features and may be used simply as spacers to separate the other pixels that contain holographic light turning features. In some other implementations, the pixels 244i+n, 246i+n for turning light may be configured to perform only one of the functions of collimating light or ejecting light out of the light guide.
Components of the display systems 100, 200 (
The hologram 240 may be formed by two or more beams of laser light directed into and meeting in the holographic film 238. One beam may be normal to the holographic film 238 and the other may impinge on the holographic film 238 from the same direction as light to be turned by the hologram 240. Also, the hologram 240 can be disposed on one or both of the major surfaces 222, 224. Alternatively, the hologram 240 may be on the same side of the light guide 220 as the facets 230, or on different sides of the light guide 220. In some implementations, where the light guide 220 can support the formation of a hologram 240, the light guide 220 and the holographic film 238 may be a single, integral body of holographic material. In addition, other materials may be disposed over the holographic film 238, such as anti-reflective and/or scratch-resistant layers. Also, although the holographic film 238 has been illustrated as the uppermost part of the display device 200 for ease of illustration and discussion, the holographic film 238 can be configured in or on other areas of the display device 200.
The pixels 244i+n and 246i+n may be formed by separately forming individual sets of pixels. In some implementations, the pixels 244i+n may be formed using a mask with openings that allow illumination of selected portions of the holographic film 238 in a first position. The mask may be shifted to other positions, e.g., a second position, to form the pixels 246i+n and the holographic film 238 may be exposed to light while the mask is in each of these other positions. Thus, an array of regularly repeating, discrete regions configured with particular light turning characteristics may be formed. Each discrete region can form a pixel of the hologram 238. At each position, the holographic film 238 can be exposed to laser light of a different wavelength and/or direction. The wavelength may correspond to the wavelength of light that the pixel is configured to turn. The laser light can include laser beams oriented substantially normal to the holographic film 238. In addition, a secondary beam is directed into the holographic film 238 at the same direction as light to be turned by the hologram 240. In some implementations, multiple secondary beams may be applied to allow light from a plurality of different directions to be turned by the pixel that is formed.
In some implementations, the illumination device 202 may be applied as a backlight for use with transmissive displays in which light travels through display elements. For example, instead of being situated in front of a display 260 that reflects light back past the light guide 220, as in implementations in which the display 260 has reflective display elements, the light guide 220 and light source 210 may be disposed behind the display 260 in a transmissive display. In this implementation, the light guide 220 and light source 210 are oriented to emit light that propagates forward, the light propagating through the display elements of the display 260 and towards, e.g., a viewer.
The display device 40 includes a housing 41, a display 30, an antenna 43, a speaker 45, an input device 48, and a microphone 46. The housing 41 can be formed from any of a variety of manufacturing processes, including injection molding, and vacuum forming. In addition, the housing 41 may be made from any of a variety of materials, including, but not limited to: plastic, metal, glass, rubber, and ceramic, or a combination thereof. The housing 41 can include removable portions (not shown) that may be interchanged with other removable portions of different color, or containing different logos, pictures, or symbols.
The display 30 may be any of a variety of displays, including a bi-stable or analog display, as described herein. The display 30 also can be configured to include a flat-panel display, such as plasma, EL, OLED, STN LCD, or TFT LCD, or a non-flat-panel display, such as a CRT or other tube device. In addition, the display 30 can include an interferometric modulator display, as described herein.
The components of the display device 40 are schematically illustrated in
The network interface 27 includes the antenna 43 and the transceiver 47 so that the display device 40 can communicate with one or more devices over a network. The network interface 27 also may have some processing capabilities to relieve, e.g., data processing requirements of the processor 21. The antenna 43 can transmit and receive signals. In some implementations, the antenna 43 transmits and receives RF signals according to the IEEE 16.11 standard, including IEEE 16.11(a), (b), or (g), or the IEEE 802.11 standard, including IEEE 802.11a, b, g or n. In some other implementations, the antenna 43 transmits and receives RF signals according to the BLUETOOTH standard. In the case of a cellular telephone, the antenna 43 is designed to receive code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), Global System for Mobile communications (GSM), GSM/General Packet Radio Service (GPRS), Enhanced Data GSM Environment (EDGE), Terrestrial Trunked Radio (TETRA), Wideband-CDMA (W-CDMA), Evolution Data Optimized (EV-DO), 1xEV-DO, EV-DO Rev A, EV-DO Rev B, High Speed Packet Access (HSPA), High Speed Downlink Packet Access (HSDPA), High Speed Uplink Packet Access (HSUPA), Evolved High Speed Packet Access (HSPA+), Long Term Evolution (LTE), AMPS, or other known signals that are used to communicate within a wireless network, such as a system utilizing 3G or 4G technology. The transceiver 47 can pre-process the signals received from the antenna 43 so that they may be received by and further manipulated by the processor 21. The transceiver 47 also can process signals received from the processor 21 so that they may be transmitted from the display device 40 via the antenna 43.
In some implementations, the transceiver 47 can be replaced by a receiver. In addition, the network interface 27 can be replaced by an image source, which can store or generate image data to be sent to the processor 21. The processor 21 can control the overall operation of the display device 40. The processor 21 receives data, such as compressed image data from the network interface 27 or an image source, and processes the data into raw image data or into a format that is readily processed into raw image data. The processor 21 can send the processed data to the driver controller 29 or to the frame buffer 28 for storage. Raw data typically refers to the information that identifies the image characteristics at each location within an image. For example, such image characteristics can include color, saturation, and gray-scale level.
The processor 21 can include a microcontroller, CPU, or logic unit to control operation of the display device 40. The conditioning hardware 52 may include amplifiers and filters for transmitting signals to the speaker 45, and for receiving signals from the microphone 46. The conditioning hardware 52 may be discrete components within the display device 40, or may be incorporated within the processor 21 or other components.
The driver controller 29 can take the raw image data generated by the processor 21 either directly from the processor 21 or from the frame buffer 28 and can re-format the raw image data appropriately for high speed transmission to the array driver 22. In some implementations, the driver controller 29 can re-format the raw image data into a data flow having a raster-like format, such that it has a time order suitable for scanning across the display array 30. Then the driver controller 29 sends the formatted information to the array driver 22. Although a driver controller 29, such as an LCD controller, is often associated with the system processor 21 as a stand-alone Integrated Circuit (IC), such controllers may be implemented in many ways. For example, controllers may be embedded in the processor 21 as hardware, embedded in the processor 21 as software, or fully integrated in hardware with the array driver 22.
The array driver 22 can receive the formatted information from the driver controller 29 and can re-format the video data into a parallel set of waveforms that are applied many times per second to the hundreds, and sometimes thousands (or more), of leads coming from the display's x-y matrix of pixels.
In some implementations, the driver controller 29, the array driver 22, and the display array 30 are appropriate for any of the types of displays described herein. For example, the driver controller 29 can be a conventional display controller or a bi-stable display controller (e.g., an IMOD controller). Additionally, the array driver 22 can be a conventional driver or a bi-stable display driver (e.g., an IMOD display driver). Moreover, the display array 30 can be a conventional display array or a bi-stable display array (e.g., a display including an array of IMODs). In some implementations, the driver controller 29 can be integrated with the array driver 22. Such an implementation is common in highly integrated systems such as cellular phones, watches and other small-area displays.
In some implementations, the input device 48 can be configured to allow, e.g., a user to control the operation of the display device 40. The input device 48 can include a keypad, such as a QWERTY keyboard or a telephone keypad, a button, a switch, a rocker, a touch-sensitive screen, or a pressure- or heat-sensitive membrane. The microphone 46 can be configured as an input device for the display device 40. In some implementations, voice commands through the microphone 46 can be used for controlling operations of the display device 40.
The power supply 50 can include a variety of energy storage devices as are well known in the art. For example, the power supply 50 can be a rechargeable battery, such as a nickel-cadmium battery or a lithium-ion battery. The power supply 50 also can be a renewable energy source, a capacitor, or a solar cell, including a plastic solar cell or solar-cell paint. The power supply 50 also can be configured to receive power from a wall outlet.
In some implementations, control programmability resides in the driver controller 29 which can be located in several places in the electronic display system. In some other implementations, control programmability resides in the array driver 22. The above-described optimization may be implemented in any number of hardware and/or software components and in various configurations.
The various illustrative logics, logical blocks, modules, circuits and algorithm steps described in connection with the implementations disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. The interchangeability of hardware and software has been described generally, in terms of functionality, and illustrated in the various illustrative components, blocks, modules, circuits and steps described above. Whether such functionality is implemented in hardware or software depends upon the particular application and design constraints imposed on the overall system.
The hardware and data processing apparatus used to implement the various illustrative logics, logical blocks, modules and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose single- or multi-chip processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. In some implementations, particular steps and methods may be performed by circuitry that is specific to a given function.
In one or more aspects, the functions described may be implemented in hardware, digital electronic circuitry, computer software, firmware, including the structures disclosed in this specification and their structural equivalents thereof, or in any combination thereof. Implementations of the subject matter described in this specification also can be implemented as one or more computer programs, i.e., one or more modules of computer program instructions, encoded on a computer storage media for execution by, or to control the operation of, data processing apparatus.
Various modifications to the implementations described in this disclosure may be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other implementations without departing from the spirit or scope of this disclosure. Thus, the disclosure is not intended to be limited to the implementations shown herein, but is to be accorded the widest scope consistent with the claims, the principles and the novel features disclosed herein. The word “exemplary” is used exclusively herein to mean “serving as an example, instance, or illustration.” Any implementation described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other implementations. Additionally, a person having ordinary skill in the art will readily appreciate, the terms “upper” and “lower” are sometimes used for ease of describing the figures, and indicate relative positions corresponding to the orientation of the figure on a properly oriented page, and may not reflect the proper orientation of the IMOD as implemented.
Certain features that are described in this specification in the context of separate implementations also can be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation also can be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products. Additionally, other implementations are within the scope of the following claims. In some cases, the actions recited in the claims can be performed in a different order and still achieve desirable results.