Hybrid matching network topology

Information

  • Patent Grant
  • 11596309
  • Patent Number
    11,596,309
  • Date Filed
    Friday, August 27, 2021
    3 years ago
  • Date Issued
    Tuesday, March 7, 2023
    a year ago
Abstract
The present disclosure relates to plasma generation systems which utilize plasma for semiconductor processing. The plasma generation system disclosed herein employs a hybrid matching network. The plasma generation system includes a RF generator and a matching network. The matching network includes a first-stage to perform low-Q impedance transformations during high-speed variations in impedance. The matching network includes a second-stage to perform impedance matching for high-Q impedance transformations. The matching network further includes a sensor coupled to the first-stage and the second-stage to calculate the signals that are used to engage the first and second-stages. The matching network includes a first-stage network that is agile enough to tune each state in a modulated RF waveform and a second-stage network to tune a single state in a RF modulated waveform. The plasma generation system also includes a plasma chamber coupled to the matching network.
Description
BACKGROUND

In semiconductor manufacturing, plasma processing chambers utilize radio frequency (“RF”) power to generate plasma. Plasma is typically created and maintained by an electric current alternating at an RF frequency, which excites and ionizes the source gas used in the plasma chamber. Plasma processing chambers may be used for industrial processes such as, but not limited to, surface treatment of materials or plasma etching during a semiconductor fabrication process. To achieve efficient power transfer between a RF generator and a plasma load, an impedance-matching network is generally used to match a load impedance to a source impedance (e.g., 50 Ohms).


The plasma chamber presents electrical impedance that may vary greatly and quickly. It is important that the output impedance of the RF power generator be closely matched to the rapidly-changing load impedance of the plasma chamber to avoid damaging reflections of power back into the output circuitry of the RF power generator, which can occur when the impedances are mismatched. Impedance matching devices (e.g., matching networks) are used to match the load impedance of the plasma processing chamber to the output impedance of the RF power generator. For rapidly-varying load impedance, the matching network has to dynamically match the impedance accordingly.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present disclosure, examples in accordance with the various features described herein may be more readily understood with reference to the following detailed description taken in conjunction with the accompanying drawings, where like reference numerals designate like structural elements.



FIG. 1 is a block diagram of a hybrid matching network, according to a system and method of the present disclosure.



FIG. 2 is an illustration of a hybrid matching network topology, according to a system and method of the present disclosure.



FIG. 3 is a Smith Chart which displays a tunable range for a hybrid matching network with a first-stage matching network with eight switch terminals. The tunable range illustrated in this Smith Chart corresponds to the hybrid matching network topology of FIG. 2.



FIG. 4 is a Smith Chart which displays a tunable range for a hybrid matching network with a first-stage matching network with six switch terminals.



FIG. 5 is a Smith Chart which displays a tunable range for a hybrid matching network with a first-stage matching network with ten switch terminals.



FIG. 6 is a Smith Chart illustrating an impedance transformation to tune a load impedance to a source impedance, according to a system and method of the present disclosure.



FIG. 7 is a Smith Chart illustrating an impedance transformation to match a load impedance to a target impedance, according to a system and method of the present disclosure.



FIG. 8 is a flowchart of a method to perform impedance matching, according to a system and method of the present disclosure.





DETAILED DESCRIPTION

The description of the different advantageous implementations has been presented for purposes of illustration and is not intended to be exhaustive or limited to the implementations in the form disclosed. Many modifications and variations will be apparent to a person having ordinary skill in the art. Further, implementations may provide different advantages as compared to other implementations. The implementation or implementations selected are chosen and described to best explain the principles of the implementations, the practical application, and to enable a person having ordinary skill in the art to understand the disclosure for various implementations with various modifications as are suited to the particular use contemplated.


Before the present disclosure is described in detail, it is to be understood that, unless otherwise indicated, this disclosure is not limited to specific procedures or articles, whether described or not. It is further to be understood that the terminology used herein is for the purpose of describing particular implementations only and is not intended to limit the scope of the present disclosure.


During plasma processing, a radio frequency (“RF”) generator transmits RF alternating current (“AC”) waves through RF transmission lines and networks to a plasma processing chamber. To provide an efficient transfer of power from the RF generator to the plasma processing chamber, a matching network is employed to transform the time-varying impedance presented by the plasma chamber to the optimal load impedance of the RF generator.


Many RF matching networks have variable capacitors and a control circuit with a microprocessor to control the capacitance values of the variable capacitors. There may be various configurations of RF matching networks. Herein, a vacuum variable capacitor may be defined as an electro-mechanical device which has two concentric metallic rings that are moved in relation to each other to change capacitance. The value and size of the variable capacitors within the RF matching network may be determined by the power handling capability, frequency of operation, and impedance range of the plasma processing chamber.


Pulse-Frequency Modulation is a commonly used technique to deliver power in plasma processing systems. Herein, Pulse-Frequency Modulation Is a modulation method where the amplitude of the carrier waveform is varied between at least two discrete power levels at some frequency with some duty cycle. As such, power delivered in a pulse-waveform may affect plasma characteristics which may therefore cause the electrical impedance of the plasma chamber to vary with each pulse waveform. At the onset of each pulse, a spike in reflected power can result.


Many RF plasma generation systems employ multi-level pulsing for various different power states. Each power state may be associated with a unique impedance because the characteristics of the plasma may change based on the delivered power to the plasma chamber. During plasma processing, the plasma changes occur very quickly (e.g., at a rate of up to hundreds of thousands of Hertz). Many matching networks, such as those that have vacuum variable capacitors, generally react on the order of hundreds or thousands of milliseconds.


Accordingly, many of these matching networks are limited to latching on to one of the multi-level power states (e.g., high or low amplitudes). For example, for dual level pulsing, a matching network may latch on to the high amplitude or to the lower amplitude state and maintain position for the duration of the other state. This means that the system will behave optimally during one state, and sub-optimally for any other states.


The present disclosure provides a mechanism to match to all states by reacting to all impedance states to maintain a low-reflection coefficient during impedance variations. Advantageously, the present disclosure reduces the tuning time in matching networks. Herein, tuning time is defined as the amount of time that it takes for a matching network system to reach a tuned state from a detuned state.



FIG. 1 is a block diagram of a hybrid matching network 100, according to a system and method of the present disclosure. Advantageously, the hybrid matching network 100 disclosed herein employs a two-stage tunable matching network. As shown, the hybrid matching network 100 receives its RF input from a RF generator at RF input 109, the first-stage matching network 101 (e.g., a switch network), the second-stage matching network 103 (e.g., a mechanically-tuned matching network), a sensor element 102, and plasma chamber 104 (e.g., load) which are all coupled to one or more transmission lines 105-108. Herein, a hybrid matching network 100 may be defined as a multi-stage matching network which can operate simultaneously or in sequence to tune a load impedance to a target (e.g., source) impedance.


The first-stage matching network 101 may be responsible for matching to high-speed variations in impedance during different stages of a RF waveform and a second-stage matching network 103 may be responsible for high-Q impedance transformations. Accordingly, in several implementations of the present disclosure, the bulk of the impedance tuning is performed by the second-stage matching network 103, for high-Q transformations and the first-stage matching network 101 can be used to tune system impedance for low-Q transformations that arise from a pulsed waveform, changes in chamber conditions, or other factors. Herein, high-speed variation is defined as a change in impedance that is beyond the control loop bandwidth associated with a second-stage matching network.


The first-stage matching network may include fixed capacitors and PIN diodes, silicon-carbide field effect transistors (SiCFETs), metal oxide field effect transistors (MOSFETs), insulated gate bipolar transistors (IGBTs), or bipolar junction transistors (BJTs) electronic switches and the second-stage matching network may include vacuum variable capacitors, or air variable capacitors, and stepper motors, brushed direct current (DC) motors, brushless DC motors, or AC motors.


Advantageously, the hybrid matching system as disclosed herein can reduce the stress on the high-speed, secondary matching network (e.g., the first-stage matching network 103) and can assist in dialing in the matching network to tune the plasma system to a target impedance.


Herein, high Q or low Q refers to a high or low-quality factor. The Q-factor is defined as the ratio of energy stored in a system to the amount of energy dissipated in a system. Q-factor is a dimensionless unit and, for a single element, is expressed as the ratio between the element's reactance and its resistance. In a matching network, the minimum Q-factor is the configuration where the least amount of energy is stored for the transformation to be accomplished.


In some implementations, a high-Q impedance transformation is one that has a Q-factor that is greater than two whereas a low-Q impedance transformation is one that has a Q-factor that is less than two.



FIG. 2 is an illustration of a hybrid matching network 200 topology, according to a system and method of the present disclosure. The hybrid matching network 200 topology illustrates a first-stage matching network 201, a second-stage matching network 202, and a sensor element 203 coupled thereto. In some implementations, the bulk of the tuning is performed by the second-stage matching network 202 whereas the first-stage matching network 201 can be employed to implement “coarse tuning” for low-level and fast impedance variations.


The voltage and current sensed at an output (e.g., node 209/215) of the first-stage matching network 201 can be used to direct both stages simultaneously as they act independently. The RF power is delivered by a RF generator to the system input node 208, which is delivered to a plasma chamber (not shown) by way of the hybrid matching network 200.


In the implementation shown, the first-stage matching network 201 includes an impedance transformer 217 with banks 205, 206 of switch terminals 210 (e.g., switched capacitors) on two sides of the impedance transformer 217. Collectively, the impedance transformer 217 and the banks 205, 206 of switch terminals 210 (e.g., switched capacitors) provide the first-stage matching network 201 the flexibility to match impedances, within a specified range. The impedance transformer 217 may include a lumped-element pi network or a distributed network such as a transmission line to achieve the desired impedance transformation. For example, the impedance transformer 217 may include a pi network section to perform both a step-up and step-down impedance transformation to tune to a target impedance.


The specified range of the first stage is a design choice which can be made based on the application and the availability of devices at a given frequency and power level. Choosing a narrow range may limit stress on the first stage for a given frequency and power level, but also limits the applications in which it may be used. Choosing a large range has the opposite consequence. In either case, the system may function similarly.


Accordingly, the present disclosure provides an impedance transformer 217 to be used in conjunction with banks 205, 206 of switch terminals 210 (e.g., switched capacitors) to tune an impedance. The impedance transformer 217 may be realized by inserting a section of a transmission line with appropriate electrical length and characteristic impedance. For example, a quarter-wave impedance transformer may be used to match real impedances. However, a complex load impedance can also be transformed to a real impedance by adding a series or shunt reactive component. Notably, a quarter-wave transformer can provide a match at a particular operating frequency as well as an acceptable match across a bandwidth of one octave, or less, depending on the quality factor, Q, of the transformation and the application.


In the implementation shown in FIG. 2, the impedance transformer 217 includes a lumped-element pi network. The impedance transformer 217 performs the same impedance transformation as the transmission line or waveguide and can be made much more compact at lower frequencies but offers a more limited bandwidth. In one implementation, the impedance transformer 217 of lumped elements consists of capacitors 213, 214 in shunt network branches in addition to an inductor 216 in a series branch.


The banks 205, 206 of switches 212 each include individual (e.g., RF) switch terminal 210 (in each respective banks 205, 206 of switches 212) which include switches 212 and reactive tuning elements 221 which allow the first stage to match a variety of load impedances. In some implementations, a look-up table stored in a memory element (not shown) of the hybrid matching network 200 may be referenced to determine the state of the switches 212 to collectively tune the output impedance of the first stage to a complex conjugate of the calculated input impedance of the second-stage matching network. In the implementation shown in FIG. 2, the banks 205, 206 each include four switch terminals 210 of switches 212 and therefore eight switch terminals 210 to effect impedance tuning. As will be described in more detail with respect to FIGS. 3 and 4, the number of switch terminals 210 can affect the tuning precision of the first-stage matching network 201.


In addition, a switch actuator 204 is coupled to each switch terminal 210 for each bank 205, 206 of switch terminals 210. Herein, a switch actuator is defined as the portion of the system responsible for bringing a switch terminal 210 into, or out of, the circuit by engaging (e.g. close) or disengaging (e.g. open) the switch 212 in that switch terminal 210. The switch actuator 204 may be coupled to the banks 205, 206 of switch terminals 210 by electrical, magnetic, optical, or mechanical means. In the implementation shown, the switch actuator 204 is coupled to the eight switches 212 in the banks 205, 206 of switch terminals 210. In addition, the switch actuator 204 is coupled to the sensor element 203. The sensor element 203 may operate the switch actuator 204 to engage the first-stage matching network 201.


The state of the switches 212 of the banks 205, 206 of switch terminals 210 may be expressed in a binary format. For example, a first-stage matching network 201 with the switches 212 of bank 205 all being closed and the switches 212 of bank 206 being open may be expressed as [1111 0000]. Likewise, a first-stage matching network 201 with the first half of the switches 212 of banks 205, 206 being open and the second half of the switches 212 of banks 205, 206 being closed may be expressed as [0011 0011]. In one implementation, a look-up table may be used to relate the proper configuration states of the switch terminals 210 to the readings from sensor element 203. In this case, after sensor data has been received and processed, the switch terminals 210 can be actuated to a set of states that minimizes the reflection coefficient (e.g. gamma) at the input 208 of the first stage.


The sensor element 203, as shown, is coupled to an input 215 of the second-stage matching network 202. The sensor element 203 can detect voltage and current, or forward and reflected coupled waves. The sensor element 203 may be a voltage and current sensor, or a bi-directional coupler which detects the voltage, current, forward, or reflected waveforms. In particular, the sensor element 203 measures voltage and current and calculates the relationship between the measured voltage and current in both phase and magnitude. Moreover, the sensor element 203 can detect high-speed variations in plasma chamber impedance and can use the change in impedance caused by the high-speed variations to engage the first-stage matching network 201.


It should be understood by a person having ordinary skill in the art having the benefit of this disclosure that the magnitude ratio and phase relationship of voltage and current waveforms at a particular node in a matching network can be used to direct the tunable elements in an automatic matching network. In this case, a notable aspect is the location of the sensor, and the types of information it gathers. The magnitude ratio and phase relationship of these quantities at the node where sensor element 203 exists in the system allow us to drive the second-stage matching network matching network as well as actuate the switch terminals 210 in the first-stage matching network simultaneously. In this implementation, magnitude and phase are used to drive the tunable elements in the second-stage matching network matching network, and those same values are used to calculate the input impedance to the second-stage matching network, which is the load impedance for the first-stage matching network. When this impedance is computed, the switch terminals 210 are actuated such that the output impedance of the first stage is the complex conjugate of the calculated load impedance. These operations occur simultaneously and independently. As the second-stage matching network self-adjusts its tunable elements to achieve a minimization of gamma looking into its input 215, it is constantly presenting some load at the input to the first stage. Therefore, under any circumstance where the impedance looking into node 215 is approximately the complex conjugate of one of the available configurations of switch terminals 210, the first stage can minimize gamma looking into node 208, which is the input to the hybrid matching system. As the second-stage matching network continuously drives towards minimum gamma at node 215, the first stage can continue to actuate switch terminals 210 to maintain the most optimal impedance match at node 208.



FIG. 2 also shows an illustration of the second-stage matching network 202. In some implementations, the second-stage matching network 202 may be configured similarly to conventional matching networks. For instance, the second-stage matching network 202 may include one or more variable capacitors 218, 219 and an inductor 220. The variable capacitors 218, 219 may be adjusted, for example, by a lead screw (not shown) in a mechanical means (e.g., using motors 211) to transform the impedance presented by a plasma chamber (not shown) to match a target impedance (e.g., source impedance, typically 50 ohms).



FIG. 3 is a Smith Chart 300 which displays the tunable range 302 for the first stage of a hybrid matching network system that contains eight switch terminals 210 (see FIG. 2). The tunable range illustrated in this Smith Chart corresponds to the first-stage matching network of the hybrid matching network topology of FIG. 2. Notably, the Smith Chart 300 reflects the hybrid matching network 200 topology illustrated in FIG. 2 in which the first-stage matching network 201 has eight switch terminals 210. The tunable range 302 illustrated in FIG. 3 is the conjugate of the range of (e.g., load) impedances of which a first-stage matching network can transform to the target impedance (e.g. 50 ohms in this example).


In some implementations, the profile (e.g. shape) of the tunable range 301 can differ from this example. The profile of the tunable range 302 may be determined by the topology of the first-stage matching network and the value of the reactive tuning elements. In this example, the values of reactive tuning elements 221 in switch terminals 210, and the value of the reactive elements 213, 214, 216 in the impedance transformer 217 shown in FIG. 2 may determine the profile of the tunable range 302.


Most notably, because the first-stage matching network is a discrete system with a finite number of configurations, the number of switch terminals 210 (see FIG. 2) within the first-stage matching network of a hybrid matching network determines the density of the tunable range 302. Accordingly, the greater the number of switch terminals within the first-stage matching network, the greater the density of the resulting tunable range 302. In some implementations, eight switch terminals may be sufficient for applications that can tolerate a small amount of gamma at the input of the hybrid match system. As such, the number of switch terminals designed for a first-stage matching network may account for a target VSWR.


The tunable range 302 includes an impedance grid 306 of orthogonal arcs 307, 308. Each successive arc represents one increment in the total value of reactance in switch banks 205 and 206 (see FIG. 2) respectively. Load impedances that are the conjugate value of one of the intersections of 307 and 308 can be transformed to the target impedance precisely. Load impedances that fall in between these intersections, such as impedance point 305, can be very nearly transformed to the target impedance by choosing the switch configuration that most nearly represents the conjugate of that load impedance.


For example, an impedance point 303 within the tunable range 302 lies directly at the intersection of horizontal and vertical impedance arcs 307, 308. Accordingly, the first-stage matching network can tune this load impedance to match a source impedance with a high-degree of precision (e.g., 50+0.3j Ohms for a 50-Ohm source impedance). In contrast, the first-stage matching network can tune a load impedance point 305 to a source impedance with moderate-to-high precision (e.g., 50.5−2.4j Ohms).


In addition, the first-stage matching network of the hybrid matching network can tune a load impedance that is outside of a VSWR 301 but within the tunable range 302. For example, the load impedance represented by impedance point 304, which notably lies directly at the intersection of horizontal and vertical impedance arcs 307, 308, can be tuned directly to the source impedance with high-precision. Accordingly, the load impedance that is directly on arcs 307, 308 of the impedance grid 306 may be tuned directly to a source impedance regardless of the distance the load impedance is from the source impedance.


As previously discussed, the profile of the tunable range 302 may be determined by the total value of the reactive tuning elements 221 (see FIG. 2) in the switch terminals 210 and an impedance transformer. It may be advantageous to have the range of the first stage matching network skewed in one direction or another for specific applications where the direction of impedance shifts due to pulsing or other operational parameters of a plasma chamber or individual process are known and well characterized.



FIG. 4 and FIG. 5 show the tunable range for two possible implementations of the first stage matching network. The difference between these two implementations is the number of switch terminals. In FIG. 4 the number of switch terminals is six, or three per bank, which yields tunable range 401. In FIG. 5 the number of switch terminals 210 is ten, or five per bank, which yields tunable range 501 on the Smith Chart 500. The gaps between discrete switch configurations are larger in FIG. 4 than FIG. 5; therefore, the worst-case impedance match can be less acute in a system with six switch terminals than a system with ten switch terminals.



FIG. 6 is a Smith Chart 600 illustrating an impedance transformation to tune a load impedance of 53−j30 ohms (impedance point 601) to a target impedance (in this case, 50 ohms), according to a system and method of the present disclosure. In the example shown, a first-stage matching network of a hybrid matching network was employed to tune a load impedance to within a target VSWR 606 (e.g., to impedance point 602).



FIG. 6 further illustrates impedance curves 603-605 which represent the transformation of voltage and current in phase and magnitude through the first-stage matching component of the hybrid matching network. In the example shown, the impedance curve 603 is associated with a first bank of switches (e.g., on a first end of the impedance transformer) whereas the impedance curve 605 is associated with a second bank of switches (e.g., on a second end of the impedance transformer). Furthermore, the impedance curve 604 is associated with an inductor element of the impedance transformer. Collectively, curves 603-605 show a pathway in impedance transformation that the first-stage matching network undergoes to tune a load impedance to a target (e.g., source) impedance (e.g., impedance point 602) in a single step. As previously discussed, the first-stage matching network can tune a load impedance to a target impedance with high precision in various implementations. For example, impedance point 602 is close to 50 Ohms (e.g., 48.4−2.8j Ohms) for a target impedance of 50 Ohms.



FIG. 7 is a Smith Chart 700 illustrating an impedance transformation to match a load impedance 701 to a target impedance 709, according to a system and method of the present disclosure. This example is given to further demonstrate the advantages gained by using a hybrid matching network with the sensor arrangement as it is disclosed. Because the tuning goals of either stage network may be completely independent, both control loops may operate simultaneously without any unwanted interactions. In the example shown, a hybrid matching network was employed to tune a load impedance 701 of 1−j31 ohms to a target impedance 709 of 50 ohms. FIG. 7 depicts a Smith Chart 700 and impedance curves 702-707 which represent the path taken to transform the load impedance 701 to the target impedance 709 through the first and second-stage matching networks of the hybrid matching network.


In the example shown, the impedance curves 702-704 are associated with the impedance transformation attributed to the device elements of the second-stage matching network of a hybrid matching network. Similarly, the impedance curves 705-707 are associated with the impedance transformation attributed to the device elements of the first-stage matching network of a hybrid matching network. For example, the impedance curves 705-707 are associated with the impedance transformation attributed to capacitors within a first bank of switch terminals (i.e., curve 707), an inductor device element of the impedance transformer (i.e., curve 705), and the capacitors within a second bank of switch terminals (i.e., curve 706) of the first-stage matching network of the hybrid matching network. This example uses the topologies chosen in FIG. 2, where the first-stage matching network 201 (see FIG. 2) is a pi network with two banks 205, 206 of switch terminals 210 and the second-stage matching network 202 (see FIG. 2) is a step-down L network which includes a variable shunt capacitor, a variable series capacitor, and a fixed series inductor. It should be obvious to a person having ordinary skill in the art having the benefit of this disclosure that this hybrid matching system could employ alternative network topologies for the first-stage matching network and the second-stage matching network, so long as doing so does not depart from the spirit and scope of the present disclosure.


In the example, the load impedance 701 of 1−31j is transformed by the second-stage matching network to 28.4+8.2j. When the sensor 203 (see FIG. 2) calculates an impedance within the tunable range of the first-stage matching network, the first-stage matching network may become active. The switches 212 (see FIG. 2) may be actuated to the configuration that most nearly matches the conjugate of the calculated load impedance. From the moment that the switches 212 (see FIG. 2) are correctly actuated, the reflection coefficient at the input of the system may be minimized. The second-stage matching network may continue to drive to minimize the reflection coefficient at its input 215 (see FIG. 2). As the impedance looking into node 215 (see FIG. 2) changes by the motion of the tunable elements and the load presented by the plasma chamber, the first-stage matching network may still be active, provided the impedance looking into node 215 (see FIG. 2) is still within its tunable range. Even as those operations continue, from the overall system perspective, the tuning goal has already been achieved.


Still referring to FIG. 7, the impedance curve 707 is associated with a first bank of switches (e.g., on a first end of the impedance transformer) whereas the impedance curve 706 is associated with a second bank of switches (e.g., on a second end of the impedance transformer). Furthermore, the impedance curve 705 is associated with an inductor element of the impedance transformer. Collectively, curves 705-707 show a pathway in impedance transformation that the first-stage matching network undergoes to tune a load impedance to a target (e.g., source) impedance (e.g., impedance point 709). As previously discussed, the first-stage matching network can tune a load impedance to a target impedance with high precision in various implementations. For example, impedance point 709 is close to 50 Ohms (e.g., 50.2−0.4j Ohms) for a target impedance of 50 Ohms.



FIG. 8 is a flowchart 800 of a method to perform impedance matching according to a system and method of the present disclosure. Flowchart 800 begins with detecting a RF signal (block 801). The RF signal may be detected by a sensor element, a component of the hybrid matching network. If the detected RF signal is greater in amplitude than a pre-determined threshold which is defined according to an application, the sensor performs calculations (e.g., phase error, magnitude error, and impedance) necessary to begin the tuning procedure (block 805). If the amplitude of the phase and magnitude error is not higher than the pre-determined threshold, and the calculated impedance is not inside the tunable range of the first-stage matching network, then both stages maintain their pre-set positions (block 802, 804). These pre-set positions are application dependent and can exist anywhere within the usable range of the tunable elements in the network.


In addition, if the error signals generated by comparing the magnitudes and phase relationship of voltage and current are above some threshold, then they can be used to tune the variable elements in the second-stage matching network (block 808). If the input impedance at node 215 (see FIG. 2), calculated from the difference in magnitude and phase relationship of voltage and current, is within the tunable range of the first-stage (block 807) then the switch terminals can be actuated to the configuration that causes the output impedance of the first-stage to match the complex conjugate of the calculated load impedance (block 809). If the phase and magnitude derived error signals are smaller than some threshold, while RF is detected at a sufficient level, the tunable elements in the second-stage matching network can remain at their current position as the tuning goal has been achieved (block 802). The first-stage matching network can continuously monitor the calculated input impedance to node and change its configuration to minimize the reflection coefficient seen at its input.


Although the present disclosure has been described in detail, it should be understood by a person having ordinary skill in the art, with the benefit of this disclosure, that various changes, substitutions and alterations can be made without departing from the spirit and scope of the disclosure. Any use of the words “or” and “and” in respect to features of the disclosure indicates that examples can contain any combination of the listed features, as is appropriate given the context.


While illustrative implementations of the application have been described in detail herein, it is to be understood that the inventive concepts may be otherwise variously embodied and employed, and that the appended claims are intended to be construed to include such variations, except as limited by the prior art.


Reference throughout this specification to “one implementation” or “an implementation” means that a particular feature, structure, or characteristic described in connection with the implementation is included in at least one implementation of the present disclosure. Thus, the appearances of the phrases “in one implementation” or “in some implementations” in various places throughout this specification are not necessarily all referring to the same implementation. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more implementations.


In the foregoing specification, a detailed description has been given with reference to specific exemplary implementations. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the disclosure as set forth in the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative sense rather than a restrictive sense.

Claims
  • 1. A method, comprising: determining a presence of RF waves that exceeds a first pre-determined threshold;calculating a first value representing a magnitude and phase relationship of voltage and current;based on the first value, tuning a second-stage matching network of a hybrid matching network;calculating a second value representing an impedance from the calculated magnitude and phase relationship of the voltage and current; andbased on the second value, tuning a first-stage matching network of the hybrid matching network.
  • 2. The method of claim 1, further comprising allowing for the simultaneous execution of parallel control loops, the parallel control loops being associated with the first-stage matching network and the second-stage matching network, which simultaneous execution directs the first-stage matching network and the second-stage matching network of the hybrid matching network to achieve shorter system tuning times.
  • 3. The method of claim 1, wherein, when the first-stage matching network is disengaged, the first-stage matching network functions as a filter.
  • 4. The method of claim 1, further comprising configuring a state of a plurality of switch terminals within the first-stage matching network as part of engaging the first-stage matching network.
  • 5. The method of claim 1, wherein the first-stage matching network is engaged when an input impedance to the second-stage matching network enters a tunable range of the first-stage matching network.
  • 6. The method of claim 1, wherein operation of the first-stage matching network and the second-stage matching network occurs either independently, simultaneously, or sequentially.
  • 7. The method of claim 1, wherein the tuning of the second stage matching network is offset relative to a characteristic impedance of a system in order to optimize a secondary tuning goal.
  • 8. The method of claim 7, wherein the secondary tuning goal is to minimize a transformation Q of the first stage matching network.
  • 9. The method of claim 7, wherein the secondary tuning goal is to increase or decrease the Q of an entire hybrid matching system.
  • 10. The method of claim 7, wherein the secondary tuning goal is to maximize a usable tuning range of the first stage matching network.
  • 11. A method, comprising: determining a presence of a plurality of radio frequency (RF) waves that exceed a first pre-determined threshold;calculating a first value representing a magnitude and phase relationship of forward power and reflected power;based on the first value, tuning a second-stage matching network of a hybrid matching network;calculating a second value representing an impedance from the calculated magnitude and phase relationship of the forward power and the reflected power; andbased on the second value, tuning a first-stage matching network of the hybrid matching network.
  • 12. The method of claim 11, further comprising allowing for the simultaneous execution of parallel control loops, the parallel control loops being associated with the first-stage matching network and the second-stage matching network, which simultaneous execution directs the first-stage matching network and the second-stage matching network of the hybrid matching network to achieve shorter system tuning times.
  • 13. The method of claim 11, wherein, when the first-stage matching network is disengaged, the first-stage matching network functions as a filter.
  • 14. The method of claim 11, further comprising configuring a state of a plurality of switch terminals within the first-stage matching network as part of engaging the first-stage matching network.
  • 15. The method of claim 11, wherein the first-stage matching network is engaged when an input impedance to the second-stage matching network enters a tunable range of the first-stage matching network.
  • 16. The method of claim 11, wherein operation of the first-stage matching network and the second-stage matching network occurs either independently, simultaneously, or sequentially.
  • 17. The method of claim 11, wherein tuning of the second stage matching network is offset relative to a characteristic impedance of a system in order to optimize a secondary tuning goal.
  • 18. The method of claim 17, wherein the secondary tuning goal is to minimize a transformation Q of the first stage matching network.
  • 19. The method of claim 17, wherein the secondary tuning goal is to increase or decrease the Q of an entire hybrid matching system.
  • 20. The method of claim 17, wherein the secondary tuning goal is to maximize a usable tuning range of the first stage matching network.
CROSS-REFERENCE TO RELATED APPLICATIONS

This Application is a divisional application of, incorporates by reference, and claims priority to co-pending U.S. patent application Ser. No. 16/854,022 having the same inventorship and title as the instant application, which is incorporated by reference herein for all applicable purposes.

US Referenced Citations (220)
Number Name Date Kind
4679007 Reese et al. Jul 1987 A
5175472 Johnson, Jr. et al. Dec 1992 A
5195045 Keane et al. Mar 1993 A
5394061 Fujii Feb 1995 A
5474648 Patrick et al. Dec 1995 A
5576629 Turner et al. Nov 1996 A
5609737 Fukui et al. Mar 1997 A
5629653 Stimson May 1997 A
5737175 Grosshart et al. Apr 1998 A
5792261 Hama et al. Aug 1998 A
5810963 Tomioka Sep 1998 A
5842154 Harnett et al. Nov 1998 A
5849136 Mintz et al. Dec 1998 A
5866869 Schneider Feb 1999 A
5889252 Williams et al. Mar 1999 A
5910886 Coleman Jun 1999 A
5914974 Partlo Jun 1999 A
6016131 Sato et al. Jan 2000 A
6157179 Miermans Dec 2000 A
6164241 Chen et al. Dec 2000 A
6252354 Collins et al. Jun 2001 B1
6313584 Johnson et al. Nov 2001 B1
6313587 MacLennan et al. Nov 2001 B1
6326597 Lubomirsky et al. Dec 2001 B1
6407648 Johnson Jun 2002 B1
6455437 Davidow et al. Sep 2002 B1
6463875 Chen et al. Oct 2002 B1
6507155 Barnes et al. Jan 2003 B1
6677828 Harnett et al. Jan 2004 B1
6703080 Reyzelman Mar 2004 B2
6806437 Oh Oct 2004 B2
6876155 Howald et al. Apr 2005 B2
6894245 Hoffman May 2005 B2
6949887 Kirkpatrick et al. Sep 2005 B2
7030335 Hoffman Apr 2006 B2
7042311 Hilliker et al. May 2006 B1
7079597 Shiraishi et al. Jul 2006 B1
7102292 Parsons et al. Sep 2006 B2
7192505 Roche et al. Mar 2007 B2
7196283 Buchberger, Jr. Mar 2007 B2
7215697 Hill et al. May 2007 B2
7220937 Hoffman May 2007 B2
7251121 Bhutta Jul 2007 B2
7259623 Coleman Aug 2007 B2
7298128 Bhutta Nov 2007 B2
7467612 Suckewer Dec 2008 B2
7514936 Anwar Apr 2009 B2
7795877 Radtke Sep 2010 B2
7796368 Kotani Sep 2010 B2
7800368 Vaughan Sep 2010 B2
8169162 Yuzurihara May 2012 B2
8203372 Arduini Jun 2012 B2
8222822 Gilbert Jul 2012 B2
8421377 Kirchmeier Apr 2013 B2
8466622 Knaus Jun 2013 B2
8471746 Kurunezi et al. Jun 2013 B2
8491759 Pipitone et al. Jul 2013 B2
8742669 Carter et al. Jun 2014 B2
8779662 Boston Jul 2014 B2
8803424 Boston Aug 2014 B2
8884180 Ilie Nov 2014 B2
8896391 du Toit Nov 2014 B2
8928229 Boston Jan 2015 B2
9042121 Walde et al. May 2015 B2
9065426 Mason et al. Jun 2015 B2
9105447 Brouk et al. Aug 2015 B2
9111725 Boston Aug 2015 B2
9124248 Van Zyl et al. Sep 2015 B2
9142388 Hoffman et al. Sep 2015 B2
9148086 Fife et al. Sep 2015 B2
9166481 Vinciarelli Oct 2015 B1
9171700 Gilmore Oct 2015 B2
9196459 Bhutta Nov 2015 B2
9208992 Brouk et al. Dec 2015 B2
9224579 Finley et al. Dec 2015 B2
9225299 Mueller et al. Dec 2015 B2
9287098 Finley et al. Mar 2016 B2
9294100 Van Zyl et al. Mar 2016 B2
9306533 Mavretic Apr 2016 B1
9313870 Walde et al. Apr 2016 B2
9337804 Mason et al. May 2016 B2
9345122 Bhutta May 2016 B2
9385021 Chen Jul 2016 B2
9418822 Kaneko Aug 2016 B2
9478397 Blackburn et al. Oct 2016 B2
9483066 Finley et al. Nov 2016 B2
9490353 Van Zyl et al. Nov 2016 B2
9496122 Bhutta Nov 2016 B1
9520269 Finley et al. Dec 2016 B2
9524854 Hoffman et al. Dec 2016 B2
9525412 Mavretic Dec 2016 B2
9536713 Van Zyl et al. Jan 2017 B2
9543122 Bhutta Jan 2017 B2
9544987 Mueller et al. Jan 2017 B2
9558917 Finley et al. Jan 2017 B2
9577516 Van Zyl et al. Feb 2017 B1
9578731 Van Zyl Feb 2017 B2
9584090 Mavretic Feb 2017 B2
9589767 Hoffman et al. Mar 2017 B2
9591739 Bhutta Mar 2017 B2
9620340 Finley et al. Apr 2017 B2
9651957 Finley et al. May 2017 B1
9660613 Van Zyl et al. May 2017 B2
9673028 Walde et al. Jun 2017 B2
9697911 Bhutta Jul 2017 B2
9711331 Mueller et al. Jul 2017 B2
9711335 Christie et al. Jul 2017 B2
9728378 Bhutta et al. Aug 2017 B2
9729122 Mavretic Aug 2017 B2
9741544 Van Zyl et al. Aug 2017 B2
9745660 Bhutta Aug 2017 B2
9748076 Choi et al. Aug 2017 B1
9755641 Bhutta Sep 2017 B1
9773644 Van Zyl et al. Sep 2017 B2
9807863 Van Zyl et al. Oct 2017 B1
9812305 Pelleymounter et al. Nov 2017 B2
9844127 Bhutta Dec 2017 B2
9852890 Mueller et al. Dec 2017 B2
9854659 Van Zyl et al. Dec 2017 B2
9865432 Bhutta Jan 2018 B1
9952297 Wang Apr 2018 B2
10008317 Iyer Jun 2018 B2
10020752 Vinciarelli Jul 2018 B1
10026592 Chen Jul 2018 B2
10026594 Bhutta Jul 2018 B2
10026595 Choi et al. Jul 2018 B2
RE47026 Vaughan Sep 2018 E
10074518 Van Zyl et al. Sep 2018 B2
10139285 Murray et al. Nov 2018 B2
10141788 Kamstedt Nov 2018 B2
10194518 Van Zyl et al. Jan 2019 B2
10217618 Larson et al. Feb 2019 B2
10224184 Van Zyl et al. Mar 2019 B2
10224186 Polak et al. Mar 2019 B2
10263577 Van Zyl et al. Apr 2019 B2
10269540 Carter et al. Apr 2019 B1
10314156 Van Zyl et al. Jun 2019 B2
10332730 Christie et al. Jun 2019 B2
10340879 Mavretic Jul 2019 B2
10373811 Christie et al. Aug 2019 B2
10374070 Wood Aug 2019 B2
10410836 McChesney Sep 2019 B2
10411769 Bae Sep 2019 B2
10447174 Porter, Jr. et al. Oct 2019 B1
10469108 Howald et al. Nov 2019 B2
10475622 Pankratz et al. Nov 2019 B2
11107661 Oliveti Aug 2021 B2
20030121609 Ohmi et al. Jul 2003 A1
20030150710 Evans et al. Aug 2003 A1
20030230984 Kitamura et al. Dec 2003 A1
20040016402 Walther et al. Jan 2004 A1
20040026235 Stowell, Jr. Feb 2004 A1
20050034811 Mahoney et al. Feb 2005 A1
20050045475 Watanabe Mar 2005 A1
20050270805 Yasumura Dec 2005 A1
20060005928 Howald Jan 2006 A1
20060169582 Brown et al. Aug 2006 A1
20060169584 Brown et al. Aug 2006 A1
20060249729 Mundt et al. Nov 2006 A1
20070121267 Kotani May 2007 A1
20070222428 Garvin et al. Sep 2007 A1
20080061793 Anwar et al. Mar 2008 A1
20080061901 Gilmore Mar 2008 A1
20080087381 Shannon et al. Apr 2008 A1
20080129298 Vaughan Jun 2008 A1
20080197854 Valcore et al. Aug 2008 A1
20080272875 Huang et al. Nov 2008 A1
20080317974 de Vries Dec 2008 A1
20090026964 Knaus Jan 2009 A1
20090206974 Meinke Aug 2009 A1
20100012029 Forester et al. Jan 2010 A1
20100072172 Ui et al. Mar 2010 A1
20100096261 Hoffman et al. Apr 2010 A1
20100098882 Lubomirsky et al. Apr 2010 A1
20100159120 Dzengeleski et al. Jun 2010 A1
20110121735 Penny May 2011 A1
20110140607 Moore et al. Jun 2011 A1
20110148303 Van Zyl et al. Jun 2011 A1
20110174777 Jensen et al. Jul 2011 A1
20120097104 Pipitone et al. Apr 2012 A1
20120097524 Pipitone et al. Apr 2012 A1
20120145322 Gushiken et al. Jun 2012 A1
20120164834 Jennings et al. Jun 2012 A1
20120262064 Nagarkatti et al. Oct 2012 A1
20130002136 Blackburn et al. Jan 2013 A1
20130140984 Hirayama Jun 2013 A1
20130180964 Ilic Jul 2013 A1
20130214683 Valcore et al. Aug 2013 A1
20130240482 Nam et al. Sep 2013 A1
20130278140 Mudunuri et al. Oct 2013 A1
20130345847 Valcore et al. Dec 2013 A1
20140225504 Kaneko Aug 2014 A1
20140239813 Van Zyl Aug 2014 A1
20140265911 Kamata et al. Sep 2014 A1
20140328027 Zhang et al. Nov 2014 A1
20140367043 Bishara et al. Dec 2014 A1
20150002020 Boston Jan 2015 A1
20150115797 Yuzurihara Apr 2015 A1
20150150710 Evans et al. Jun 2015 A1
20150313000 Thomas et al. Oct 2015 A1
20160002020 Orita Jan 2016 A1
20160248396 Mavretic Aug 2016 A1
20160308560 Howald et al. Oct 2016 A1
20170018349 Otsubo et al. Jan 2017 A1
20170133886 Kurs et al. May 2017 A1
20170202591 Shelton, IV Jul 2017 A1
20170338081 Yamazawa Nov 2017 A1
20170345620 Coumou et al. Nov 2017 A1
20180034446 Wood Jan 2018 A1
20180102238 Gu et al. Apr 2018 A1
20180261431 Hammond, IV Sep 2018 A1
20190172683 Mavretic Jun 2019 A1
20190199241 Murakami et al. Jun 2019 A1
20190385822 Marakhtanov et al. Dec 2019 A1
20210013009 Oliveti Jan 2021 A1
20210386294 Oliveti Dec 2021 A1
20220076933 Scullin Mar 2022 A1
20220157581 Scullin May 2022 A1
20220167851 Oliveti Jun 2022 A9
20220270859 Poghosyan Aug 2022 A1
Foreign Referenced Citations (17)
Number Date Country
04239211 Aug 1992 JP
05284046 Aug 1993 JP
2006-310245 Jun 2008 JP
2010-016124 Jan 2010 JP
2015-502213 Jan 2015 JP
10-2006-0067957 Jun 2006 KR
10-2014-0077866 Jun 2014 KR
10-2017-0127724 Nov 2017 KR
10-2018-0038596 Apr 2018 KR
2012054305 Apr 2012 WO
2012054306 Apr 2012 WO
2012054307 Apr 2012 WO
2016048449 Mar 2016 WO
2016097730 Jun 2016 WO
2019096564 May 2019 WO
2019147513 Aug 2019 WO
2019-244734 Dec 2019 WO
Non-Patent Literature Citations (13)
Entry
PCT/US2018/062951—International Search Report and Written Opinion of International Searching Authority, dated Aug. 28, 2019, 10 pages.
Stowell, et al., “RF-superimposed DC and pulsed DC sputtering for deposition of transparent conductive oxides”, Thin Solid Films 515 (2007), pp. 7654-7657.
Bender, et al., “Characterization of a RF=dc-magnetron discharge for the sputter deposition of transparent and highly conductive ITO films”, Appl. Phys. A 69, (1999), pp. 397-409.
Economou, Demetre J., “Fundamentals and application of ion-ion plasmas”, Applied Surface Science 253 (2007), pp. 6672-6680.
Godyak et al., “Plasma parameter evolution in a periodically pulsed ICP”, XXVIIth, Eindhoven, the Netherlands, Jul. 18-22, 2005, 4 pages.
Banna, et al., “Inductively Coupled Pulsed Plasmas in the Presence of Synchronous Pulsed Substrate Bias for Robust, Reliable, and Fine Conductor Etching”, IEEE Transactions on Plasma Science, vol. 37, No. 9, Sep. 2009, pp. 1730-1746.
Kushner, Mark J., “Pulsed Plasmas as a Method to Improve Uniformity During Materials Processing”, Journal of Applied Physics, Jul. 1, 2004, vol. 96, No. 1, pp. 82-93.
LTM Technologies, M. Haass “Synchronous Plasma Pulsing for Etch Applications”, Apr. 3, 2010 16 pages.
PCT/US2020/038892—International Search Report and Written Opinion of the International Searching Authority, dated Oct. 6, 2020, 3 pages.
PCT/US2020/038899—International Search Report and Written Opinion of the International Searching Authority, dated Sep. 26, 2019, 5 pages.
PCT/US2021/012847—International Search Report and Written Opinion of the International Searching Authority, dated May 6, 2021, 11 pages.
PCT/US2021/012849 International Search Report and Written Opinion of the International Searching Authority, dated May 10, 2021, 11 pages.
PCT/US2021/012851 International Search Report and Written Opinion of the International Searching Authority, dated May 6, 2021, 10 pages.
Related Publications (2)
Number Date Country
20210386294 A1 Dec 2021 US
20220167851 A9 Jun 2022 US
Divisions (1)
Number Date Country
Parent 16506373 Jul 2019 US
Child 17458786 US