The present disclosure relates to a metal-oxide semiconductor field-effect transistor, and more particularly to a metal-oxide semiconductor field-effect transistor which can change the gate drive voltage according to the load.
The requirements for transistor switches are getting higher and higher. Volume reduction, frequency increase, and loss reduction have become important issues, because as the frequency increases, the switching state is constantly changed. Therefore, the accumulated switching loss cannot be underestimated. The substantial loss in the transistor are mainly the drive loss and conduction loss that occur in the gate. The proportion of the drive loss and the conduction loss is different under different load conditions. In other words, the conduction loss is extremely small under light load condition while the drive loss is more significant. Conversely, in the case of heavy load, the conduction loss accounts for a larger proportion than the drive loss. Therefore, if the transistor is intended to be widely employed in various load conditions, it is not possible to improve only one of the losses. it needs to optimize two kinds of losses according to different load conditions. For example,
Chinese Patent No. CN102931961A discloses a method and a device for controlling the power consumption of a metal oxide semiconductor unit, Firstly, by determining the load state of the transistor, and then further adjusting the drive power consumption according to the load state, and by controlling the drive voltage, the total power consumption in both the heavy load state and the light load state can be effectively reduced. The drive voltage can be achieved by connecting multiple metal-oxide semiconductor field-effect transistors in parallel and shielding each metal-oxide semiconductor field-effect transistor according to the situation. However, this method requires multiple sets of metal-oxide semiconductor field-effect transistors connected in parallel, thereby resulting in higher cost and volume. Accordingly, how to effectively adjust the drive power consumption according to the load condition while taking into account the manufacturing cost and the use space is a problem to be solved.
It is a primary object of the present disclosure to provide a. hybrid metal-oxide semiconductor field-effect transistor with variable gate impedance that can adjust the on-resistance according to light and heavy loads.
According to the present disclosure, the hybrid metal-oxide semiconductor field-effect transistor with variable gate impedance includes a hybrid metal-oxide semiconductor field-effect transistor, a first feedback loop, and a variable gate drive voltage generator. When the hybrid metal-oxide semiconductor field-effect transistor is connected to a load, a first electrical signal can be transmitted to the variable gate drive voltage generator through the first feedback loop. The variable gate drive voltage generator generates a gate drive voltage based on the first electrical signal to drive the hybrid metal-oxide semiconductor field-effect transistor. The variable gate drive voltage generator generates a relatively high gate drive voltage under heavy load, and a relatively low gate drive voltage under light load, so that the hybrid metal-oxide semiconductor field-effect transistor can effectively reduce power consumption and achieve the best system efficiency under heavy load and light load respectively.
Referring to
The hybrid metal-oxide semiconductor field-effect transistor (Hybrid MOSFET) 11 includes a gate U, a source S, and a drain D. The hybrid metal-oxide semiconductor field-effect transistor 11 can, for example, achieve the effects of both super junction metal-oxide semiconductor field-effect transistor (SJ MOSFET, with high-speed switching and low on-resistance at low current) and insulated gate bipolar transistor (IGBT, with high voltage withstand and low on-resistance at high current). In this way, it performs well in both heavy load (with high current) and light load (with low current). In addition, the on-resistance (Rdson) of the hybrid metal-oxide semiconductor field-effect transistor 11 can be changed with a gate drive voltage (VGS). For example, when the gate drive voltage is relatively larger, the on-resistance is smaller; on the contrary, when the gate drive voltage is relatively smaller, the on-resistance is larger.
One end of the first feedback loop 12 is electrically connected to the drain D of the hybrid metal-oxide semiconductor field-effect transistor 11 while the other end of the first feedback loop 12 is electrically connected to the variable gate drive voltage generator 13. The first feedback loop 12 can transmit a first electrical signal, such as the drain current ID, generated by the hybrid metal-oxide semiconductor field-effect transistor 11 due to the load, to the variable gate drive voltage generator 13.
The variable gate drive voltage generator 13 is respectively electrically connected to the gate G of the hybrid metal-oxide semiconductor field-effect transistor 11 and the first feedback loop 12 for applying a gate drive voltage to the gate G of the hybrid metal-oxide semiconductor field-effect transistor 11 to control the conduction or disconnection of the hybrid metal-oxide semiconductor field-effect transistor 11. In addition, the variable gate drive voltage generator 13 uses a first electrical signal E1 generated by the load as a control signal and further generates a corresponding gate drive voltage based thereon. In this way, different gate driving voltages can be applied to the hybrid metal-oxide semiconductor field-effect transistor 11 under different load conditions.
Referring to
Referring to
Step S1 of receiving a first electrical signal, wherein, when the first electrical signal E1 generated by the load passes through the hybrid metal-oxide semiconductor field-effect transistor 11, the first feedback loop 12 transmits the first electrical signal E1 to the variable gate drive voltage generator 13. Meanwhile, the variable gate driving voltage generator 13 can determine the load size through the first electrical signal E1.
Step S2 of generating a drive voltage, wherein the variable gate driving voltage generator 13 uses a first electrical signal E1 as a control signal and performs modulation based on the control signal to generate a gate drive voltage V.
Step S3 of driving, wherein the variable gate drive voltage generator 13 transmits the gate drive voltage V to the hybrid metal-oxide semiconductor field-effect transistor 11, thereby driving it in an ON state. Different gate drive voltages V generate relatively different on-resistance, thereby effectively reducing the power loss according to different load conditions.
Optionally, the variable gate drive voltage generator 13 has at least one threshold, so that the gate drive voltage V can be adjusted according to different loads (ie, the first electrical signal E1) to achieve the minimum power loss. Regarding the influence of the gate drive voltage V generated under different load conditions on the power loss of the hybrid metal-oxide semiconductor field-effect transistor 11, the following two conditions are described for heavy load (with large current) and light load (with low current). However, it is hereby clarified according to the present disclosure that the gate drive voltage V is not limited to the two conditions.
Referring to
Referring to
Referring to
According to the present disclosure, the first electrical signal and the second electrical signal generated by the variable passive component assembly serve as control signal to be sent to the variable gate drive voltage generator through the first feedback loop and the second feedback loop. The variable gate drive voltage generator can. generate different gate drive voltages according to the load conditions. Under heavy load, a relatively high gate drive voltage is generated for reducing the on-resistance, Under light load, a relatively low gate drive is generated for reducing the drive loss that accounts for most of the overall loss of the system. Accordingly, the present invention can effectively reduce power loss regardless of light load or heavy load, and. does not require a plurality of metal-oxide semiconductor field-effect transistors in series/parallel, which can effectively reduce cost and volume while also improving system efficiency.
Number | Date | Country | Kind |
---|---|---|---|
110128605 | Aug 2021 | TW | national |