Not Applicable
This application relates generally to concrete product manufacturing devices.
Concrete products machines generally include some form of vibration assembly to remove air pockets during the forming of a concrete product. Known vibration assemblies may employ vibration means such as rotary vibrations to shake the mold, or impact tables that strike the bottom of the production pallet to induce vibration. However, due to the variety of concrete products being molded, a given product may benefit from one vibration type, while being harmed by another. Current vibration technology for concrete products machines uses one or the other type of vibration, which is not optimal for every product.
SUMMARY
A hybrid vibration assembly comprising a concrete product mold, a vibration frame positioned to transmit vibration to at least a portion of the mold, and a stationary frame carrying the vibration frame. The assembly also comprises knocker bars supportable on the stationary frame in positions where, when installed, they carry at least a portion of the mold, a motor operatively connected to a vibrator mounted on the vibration frame, and a mechanical frame/mold clamp positioned and actuable to alternately couple the vibration frame to the mold and decouple the vibration frame from the mold.
These and other features and advantages will become apparent to those skilled in the art in connection with the following detailed description and appended drawings of one or more embodiments of the invention, in which:
A hybrid vibration assembly for a concrete products machine is generally shown at 10 in the figures. As shown in
The motors 12 may be adjusted to change frequency and/or amplitude of the vibrators 20 by changing the speed and/or phase of the eccentric weight vibrators 20. The adjustment of the motors 12 may be either manually-adjusted, or via an automated controller programmed to respond to a remote operator input. While the motors are shown supported by stationary frame 18 in the preferred embodiment shown in
As shown in
The vibration frame 22 may be configured to carry, and transmit vibration to, the mold 14 in several different ways depending on the type of vibration desired for the mold 14. For example, the vibration frame 22 may include standoffs 26 mounted to an upper vibration frame surface 23 and configured to support the weight of the mold 14, as well as frame connection points 28 for one or more mechanical frame/mold clamps 30 configured to alternately couple the vibration frame 22 to the mold 14 and decouple the vibration frame 22 from the mold 14. The vibration frame standoffs 26 may be positioned to be horizontally interleaved with the knocker bars 16 when the knocker bars 16 are supported on the stationary frame 18.
The mold 14 may comprise a typical concrete product pallet mold, i.e., comprising a mold box 15, and a pallet 32 configured to removably cover an open bottom 34 of the mold box 15, so that concrete products may be left on the pallet 32 after demolding. The standoffs 26 of the vibration frame 22 and/or the knocker bars 16 may be positioned to support the pallet 32. The frame/mold clamps 30 may also attach to the mold 14 at mold connection points 36 on the mold box 15. These mold connection points may alternatively be located anywhere on the mold 14, but in a preferred embodiment, none of these mold connection points 36 are located on the pallet 32.
The assembly may include pallet rubbers 38 made from a resilient material. The pallet rubbers 38 may be positioned between the pallet 32 and other components of the assembly 10 where a buffer is desired. In the preferred embodiment shown in the Figures, the pallet rubbers 38 are shown in several possible positions fastened atop the knocker bars 16 (in
The standoff extensions 40 comprise bars of a hard material that are removably supportable atop the standoffs 26. The extensions 40 are shaped to contact the mold when it is at least partially-supported by the knocker bars, effectively allowing transmission of vibration from the vibration frame 22 through the standoffs 26, and into the pallet 32.
The hybrid vibration assembly 10 may be configured to agitate the mold 14 in several different modes. These different modes may comprise variations in how the pallet 32 and mold 14 are supported and/or attached to the vibration frame 22, and variations in how the contents of the mold 14 are agitated.
In a first “traditional” vibration mode, shown in
In a second “clamped” mode, shown in
In a third, “impact,” mode, shown in
The word vibration, as used in this document, is intended to cover any rapid motion about and/or across an equilibrium position relative to one or more axes, and includes but is not limited to oscillatory motion, linear reciprocal motion, rotary reciprocal motion, and random motion.
This description, rather than describing limitations of an invention, only illustrates embodiments of the invention recited in the claims. The language of this description is therefore exclusively descriptive and is non-limiting. Obviously, it's possible to modify this invention from what the description teaches. Within the scope of the claims, one may practice the invention other than as described above.
This application is a division of U.S. patent application Ser. No. 17/966,763 filed Oct. 14, 22, and claims the benefit of the filing date of U.S. Provisional Patent Application Ser. No. 63/255,560 filed Oct. 14, 2021, which is incorporated herein by reference in its entirety.
| Number | Date | Country | |
|---|---|---|---|
| 63255560 | Oct 2021 | US |
| Number | Date | Country | |
|---|---|---|---|
| Parent | 17966763 | Oct 2022 | US |
| Child | 19091675 | US |