This invention relates generally to reconfigurable computer architectures, and particularly to CMOS compatible field-programmable gate arrays (FPGAs) having non-volatile universal memories supporting fine-grain reconfiguration to enable temporal logic folding, along with an RTL/gate-level automatic design optimization method and system.
After consistently providing large improvements in productivity and performance for more than two decades, CMOS is expected to approach its physical limits in the coming decade. To enable future technology scaling, intensive research is being directed towards the development of nanoscale molecular devices, such as carbon nanotube and nanowire. Such nanodevices demonstrate superior characteristics over MOSFET in terms of integration density, performance, power consumption, etc. However, lack of a mature fabrication process is a roadblock in implementing chips using these nanodevices. If photo-lithography could be used to implement structures made from these nanodevices, then such structures could be combined with CMOS logic to create hybrid CMOS/nanochips, which could leverage the beneficial aspects of both technologies.
Motivated by the impressive potential of nanotechnologies, researchers are investigating nanoelectronic circuits and architectures. If such circuits/architectures are implemented using bottom-up chemical self-assembly techniques, then the chip defect levels are expected to be high (between 1% and 10%). To be able to deal with such high defect levels, regular architectures are favored. Reconfigurable architectures, in addition to being regular, allow reconfiguration around fabrication defects as well as run-time faults. Thus, both regular and reconfigurable architectures have found popularity.
The present invention provides a hybrid CMOS/non-volatile universal memory reconfigurable architecture, referred to as NATURE. In one embodiment, the present invention is based on CMOS logic and high-density high-speed non-volatile nanotube random-access memory. In one instance, NRAM® of Nantero, Inc., identifies a source of nanotube random-access memory chips. Nanotube random-access memory chips can be fabricated using CMOS-compatible manufacturing processes. Thus, architectures of the present invention can also be fabricated with currently-available processes.
The present invention exploits the excellent properties of non-volatile universal memories, including NRAM® chips, and distributes them in a reconfigurable fabric to act as on-chip storage for multi-context reconfiguration bits. Non-volatile memories include the emerging technologies of carbon nanotube RAMs, phase change RAMs, magnetoresistive RAMs, and ferroelectric RAMs (FRAMs). Although certain illustrated embodiments of the present invention describe implementation using NRAM® chips, the present invention is not limited to such use. All alternative emerging non-volatile technologies could be implemented and are contemplated in the present invention.
The logic implemented in the logic elements of the reconfigurable architecture of the present invention can be changed every few cycles, making both coarse-grain and fine-grain dynamic reconfiguration possible. The present invention thereby addresses two primary challenges in existing CMOS-based FPGAs: logic density and efficiency of run-time reconfiguration. Traditional reconfigurable architectures only allow partial dynamic reconfiguration, (i.e., only a part of the architecture can be reconfigured at run-time) due to the area overhead associated with SRAMs that store the reconfiguration bits and the long latency of reconfiguration due to the accessing of off-chip storage. Since the access latency of on-chip storage is small, on-chip storage provides an opportunity to store multiple logic designs in the on-chip storage, and to invoke different designs through fine-grain dynamic reconfiguration.
Moreover, the ability to reconfigure the architecture of the present invention every few cycles provides for temporal logic folding, (i.e., the possibility of folding the logic circuit in time and mapping each fold to the same logic elements in the architecture). This provides significant gains (an order of magnitude or more for larger circuits) in the area-time product (where time refers to circuit delay, or latency) compared to traditional reconfigurable architectures, while allowing the flexibility of trading area for performance. For instance, a large logic circuit can be partitioned into a sequence of logic stages and stored in the on-chip configuration memory. At run-time, stage-by-stage, the logic circuit can be configured into the same hardware and executed in different clock cycles. Logic folding increases logic elements utilization, providing high logic density and a capability of using cheaper chips, having smaller capacities, to execute similar applications, hence, making them attractive for use in cost-conscious embedded systems.
In one exemplary realization, the architecture of NATURE includes island-style logic blocks, connected by a hierarchical reconfigurable interconnect fabric, where each logic block contains a super-macroblock (SMB) and a local switch matrix. The SMB includes a two-level logic cluster. The first level consists of a set of macroblocks (MBs). Each MB is composed of a set of logic elements (LEs). Low-latency reconfigurable crossbars are used to form local inter-MB and inter-LE connections. In NATURE, LE is the atomic functional element, and includes look-up tables (LUTs) and flip-flops. Each m-input LUT can realize any m-variable Boolean functions. Flip-flops are used to hold computation results which are used by subsequent cycles.
In this exemplary realization, support for reconfiguration is provided by using nanotube random-access memories as on-chip configuration storage, distributed within each level of logic and interconnect hierarchy. Each individual logic or interconnect element is associated with, or physically adjacent and connected to, a k-set nanotube random-access memory storage. Therefore, k different logic functions can be realized within the same hardware resource without accessing off-chip storage, thereby providing significant improvement in logic density with only moderate area cost and delay overhead. Also, since logic folding results in most communication being local, the need for global interconnect is greatly reduced.
Temporal logic folding enables a realization of different Boolean functions within the same LE in different clock cycles. For instance, traditionally a logic circuit consisting of n serially-connected LUTs requires n LUTs. With the temporal logic folding support of the present invention, all n LUTs can be potentially mapped to a single LE, via n configuration sets stored in a respective nanotube random-access memory. The subject logic circuit can then be executed cycle-by-cycle through run-time on-chip reconfiguration.
Different folding levels result in different circuit performance and area efficiency. Given a logic circuit, increasing the folding level leads to a higher clock period, but smaller cycle count, since a larger number of logic operations need to be performed within a single clock cycle. Since a constant latency is associated with each run-time reconfiguration, the overall circuit latency decreases as the folding level increases. On the other hand, increasing the folding level can result in much higher LE resource requirements. Accordingly, design flexibility is provided, and balancing performance capabilities with area efficiencies is always a consideration.
The present invention also provides an integrated design optimization platform for NATURE, referred to as NanoMap. NanoMap conducts design optimization from the RTL down to the physical level. Given an input design specified in RTL and/or gate-level VHDL, NanoMap optimizes and implements the design on NATURE through logic mapping, temporal clustering, placement, and routing. The design optimization techniques of the present invention exploit the design flexibilities enabled by fine-grain temporal logic folding. Given user-specified area and performance constraints, the mapping method and system of NanoMap can automatically explore and identify the best logic folding configuration, and make appropriate tradeoffs between performance and area efficiency. The present invention uses a force-directed scheduling (FDS) technique to balance resource use across different logic folding cycles. Combining NanoMap with existing commercial architectural synthesis tools provides a complete design automation flow for NATURE.
Accordingly, aspects of the present invention will be seen variously to:
In one aspect of the invention, a reconfigurable computer architecture, or field-programmable gate array, is provided that includes a plurality of programmable elements and at least one, separate random access memory associated with, or physically adjacent and connected to, each programmable element. The reconfigurable architecture could equally include a separate random access memory associated with each of a plurality of logic elements, or reconfigurable blocks. The random access memory is a non-volatile memory such as a carbon nanotube RAM, phase change RAM, magnetoresistive RAM, or ferroelectric RAM (FRAM). The random access memory can store run-time reconfiguration bits of the respective programmable element/logic element/reconfigurable block, or could store data on-chip, or could store both run-time reconfiguration bits and data on-chip. Further, data storage could be distributed across the respective RAM chip.
In a further aspect, n-programmable elements and n-random access memories comprise a macro-block (MB), m-macro-blocks and m-random access memories comprise a super macro-block (SMB), and one SMB and one local switch matrix comprise a logic block (LB). A plurality of LBs could be included in the architecture. In one embodiment of the invention, the value of m and n is four (4).
In another instance, the reconfigurable architecture could include a plurality of logic elements; and an equal number of random access memories, where one random access memory is physically adjacent and connected to each logic element. The random access memory stores run-time reconfiguration bits of the respective logic element. The logic element further includes two flip-flops, where different computation values are stored in each of the two flip-flops at any point in time. In an alternative embodiment, switch blocks replace the logic elements.
The present invention also provides a method of run-time reconfiguration, where reconfiguration bits are written into a first random access memory at a time of initial configuration from off-chip storage, and reconfiguration bits are placed into a second random access memory during run-time reconfiguration to configure one or more logic elements or switches to implement different logic functionality or interconnections. In one instance, reconfiguration commences at one edge of clock signal, followed by computation at another edge of the clock signal. The method could provide that the first random access memory is nanotube random access memory, and the second random access memory is a static random access memory.
In another method of run-time reconfiguration, a series of n-serially connected look-up tables (LUT1, LUT2, . . . , LUTn) are mapped to a logic element (LE), and the LE is configured to implement LUT1 in a first cycle, to implement LUT2 in a second cycle, and continuing until configuring the LE to implement LUTn in nth cycle, wherein n cycles are needed for execution. Moreover, the LE could be configured to implement LUT1 in a first cycle, wherein LUT1 is then executed in the first cycle, the LE is then configured to implement LUT2 in a second cycle, wherein the LUT2 is then executed in the second cycle, with the method continuing until the LE is configured to implement LUTn in nth cycle, and LUTn is executed in the nth cycle. In certain embodiments, all communications between the LUTs could be local. As a variation to the method, a second LE could execute a LUT in the first cycle using output from the execution of the first LUT by the LE in the first cycle.
An alternative method maps one or more of a series of look-up tables (LUTs) to one or more logic elements (LEs), each LE is configured to implement a LUT in a first cycle, and after implementation of two sequential LUT computations, each LE is reconfigured to implement a LUT in a second cycle.
In a method for determining a logic folding configuration, and for balancing resource use across the logic folding configuration, an input circuit design specified in register-transfer level or gate-level VHDL is provided, and a folding level us determined by: 1) identifying each plane of the input circuit design; 2) obtaining circuit parameters within each plane; and 3) and by obtaining a user optimization objective. The register-transfer level or gate-level VHDL module is then partitioned into LUTs and LUT clusters, which are then assigned to a folding stage. The LUTs and LUT clusters are then mapped to a super-macroblock (SMB), and are then placed to specific macroblocks (MB) and logic elements (LE). Intra-SMB and inter-SMB routing is determined, then a layout generated for each folding stage and a configuration bitmap for each folding cycle of the reconfigurable architecture.
For the purpose of illustrating the invention, there is shown in the drawing(s) a form that is presently preferred; it being understood, however, that this invention is not limited to the precise arrangements and instrumentalities shown.
a illustrates a connection block for one input of a MB, and
a illustrates level-1 temporal logic folding, and
a illustrates a logic element (LE) architecture of the present invention having one flip-flop, and
a illustrates a high-level view of a logic block (LB) architecture where a SMB has 4 MBs, and
a illustrates an example Register Transfer Level (RTL) circuit,
a illustrates an ASAP schedule, and
a illustrates a storage lifetime for the ASAP schedule of
a illustrates a LUT computation Distribution Graph (DG), and
a illustrates clustering, and
A high-performance run-time reconfigurable architecture is provided, along with a design optimization method and system to efficiency balance performance and area considerations of the architecture. A high-density, high-speed non-volatile memory is implemented in the architecture to enable cycle-by-cycle reconfiguration and logic folding. Choice of different folding levels allows the designer flexibility in performing area-performance trade-offs. The significant increase in relative logic density (more than an order of magnitude for larger circuits) made possible by the present invention can allow the use of cheaper reconfigurable architectures with smaller logic capacities to implement the same functionality, thus giving a boost to such use in cost-conscious embedded systems.
One embodiment of the invention implements a non-volatile nanotube random-access memory, that is considerably faster and denser than DRAM, has much lower power consumption than DRAM or flash, has similar speed to SRAM and is highly resistant to environmental forces (temperature, magnetism). Use of highly-dense nanotube random-access memories, such as a NRAM® chip, or of other emerging non-volatile memory technologies, including Phase Change RAMs, Magnetoresistive RAMs, and Ferroelectric RAMs (FRAMs), allows on-chip multi-context configuration storage, thereby enabling fine-grain temporal logic folding of a circuit before mapping to the architecture.
Reconfigurable architectures do exist in the art. However, their teachings are limited to allowing later stages of a pipeline to be executed in a same set of logic blocks that executed an earlier stage of the pipeline. This can be regarded as coarse-grain temporal folding. However, such architectures are largely limited to stream media or DSP applications. The present invention, on the other hand, supports fine-grain temporal folding, and is without the application limitations present in current reconfigurable architectures. Current reconfigurable architectures are described in the following, which is incorporated herein by reference for its useful background information:
Carbon nanotubes are hollow cylinders composed of one or more concentric layers of carbon atoms in a honeycomb lattice arrangement. The diameter of a nanotube is usually a few nanometers and length up to millimeters. Nanotubes exhibit unique electronic, mechanical and chemical properties. For example, carrier transport in nanotube is ballistic in the micrometer range and allows current densities as high as 109 A/cm2. These properties of nanotubes make them very attractive building blocks for molecular electronics.
Carbon nanotube random-access memories are described in the following, which is incorporated herein by reference for its useful background information:
Phase Change RAMs, Magnetoresistive RAMs, and Ferroelectric RAMs (FRAMs)
Phase Change RAMs, Magnetoresistive RAMs, and Ferroelectric RAMs (FRAMs) are each respectively detailed in the following, each of which are incorporated herein by reference for their useful background information:
A high-level view of the architecture of the present invention is shown in
Super-Macroblock (SMB) Architecture
The embodiment of the invention illustrated in
An MB 118 contains n1 m-input reconfigurable logic elements (LEs) 120 (in this figure, n1=4). In the second level, n2 MBs 118 comprise an SMB 114, as shown in
Within an MB 118 or SMB 114, communications among various components can take place through a local crossbar 122. In this embodiment, a crossbar 122 is selected instead of a multiplexer at this level to speed up local communications. Since a crossbar 122 requires more SRAM 124 control bits, a slight price in area is exchanged for faster speed. However, since logic folding enables significant area savings, this area penalty is negligible. As shown in
An LE 120 implements a basic computation. The LE 120 can include an m-input look up table (LUT) 126 and a flip-flop 128 (see
Run-Time Reconfiguration
Run-time reconfiguration is mainly enabled by the carbon nanotube RAM 100 (or phase change RAMs, magnetoresistive RAMs, or ferroelectric RAMs) distributed throughout the architecture. The structure and operation of a carbon nanotube RAM are similar to those of a traditional memory. One minor difference is that in a carbon nanotube RAM, counters can be used instead of decoders as periphery circuits since reconfiguration bits for different logic contexts are read out in order.
A carbon nanotube RAM 100 is associated with each reconfigurable block (e.g., LE 120 or switch block 112, etc.) to store its run-time reconfiguration bits. Reconfiguration commences at one edge of the clock signal CLK, followed by computation at another edge of CLK. Reconfiguration bits are written into the carbon nanotube RAMs 100 at the time of initial configuration from off-chip storage. During run-time reconfiguration, reconfiguration bits are placed into SRAM 124 cells to configure the LE 120 or switch block 112 to implement different logic functionality or interconnections. For example, if k configuration sets are stored in a carbon nanotube RAM 100, then the associated components can be reconfigured k times during execution. As an example, for the MB 118 architecture embodiment shown in
Inclusion of carbon nanotube RAMs 100 (or phase change RAMs, magnetoresistive RAMs, or ferroelectric RAMs) in the LB 102 incurs area overhead. Assuming a 100 nm technology for implementing CMOS logic, 100 nm nanotube length, and k=16, the carbon nanotube RAMs 100 occupy roughly 10.6% of the LB 102 area. However, through carbon nanotube RAM-enabled logic folding, the number of LBs 102 required to implement a circuit is reduced nearly k-fold. To account for these facts, the concept of relative logic density is introduced, and is defined as the ratio of the amount of logic that architectures of the present invention can implement in a given amount of area compared to the amount of logic a traditional reconfigurable architecture can implement in the same amount of area. When k=16 and assuming the circuit being implemented can use 16 configurations (as most large circuits would), the relative logic density can be calculated as 16(1−0.106)=14.3. This means that in the same area, architectures of the present invention can implement roughly 14 times more logic than a traditional architecture, or equivalently needs 14 times less area to implement the same functionality.
It can be seen that both the carbon nanotube RAM size and relative logic density vary with the value of k. If k is too small, more global communication may be needed. If k is too large, it may not be possible to make use of the extra configurations, thus leading to wasted carbon nanotube RAM area that could have been put to other use. Since the best k value varies with the specific design, the value of k can be obtained through a design optimization technique, NanoMap, introduced below, or through design space exploration of the architecture with various values of k and mapping a large number of circuits to that instance of the architecture. In many instances, k=16 is a preferred value.
To further improve the performance of the architecture at the expense of increased area, one can use a shadow reconfiguration SRAM to hide the reconfiguration latency for transferring bits from the carbon nanotube RAMs to the SRAMs. This allows one group of SRAM bits to load reconfiguration bits from nanotube NRAMs, while another SRAM group supports the current computation. The performance improvement due to this feature will depend on the level of logic folding.
Interconnect Design
Reconfigurable interconnect resources are provided in reconfigurable architectures to enable communication between programmable LBs 102. Interconnect design is very important for reconfigurable architectures because routing delays can be quite large, and most of the chip area is devoted to programmable routing. Consequently, the routing architecture must be designed to be both fast and area-efficient, and to aid logic folding and local communication.
There are primarily two methods for providing both local and global routing resources: segmented routing and hierarchical routing. One embodiment of the present invention uses a hybrid of segmented and hierarchical routing. In this embodiment, within the SMB 114, the interconnect is hierarchical to aid the logic clusters and local communication. To connect SMBs 114, wire segments of various lengths are used. In segmented routing, short wires accommodate local traffic. Such wires are connected together using switch boxes to emulate long wires.
The following routing architecture features address an interconnect structure of the present invention:
For the length of each routing wire segment, since too many short wires decrease circuit performance, and too many long wires provide little routing flexibility and may waste area, one embodiment of the present invention implements a mixed wire segment scheme including length-1 130, length-4 132, and long wires 134. Length-1 130 (length-4 132) wire segments span one (four) LB(s) 102 before connecting to a switch block 112, while long wires 134 traverse the chip horizontally and vertically, connecting to each LB 102 along the way. Besides these wire segments, there are also direct links 136 from the outputs of one LB to its four neighboring LBs, further facilitating local communications.
To address the number of wires (tracks) in each routing channel, for the architecture instance in which m=n1=n2=4, I=64, and O=32 (where I/O refers to the number of inputs/outputs of an SMB), one embodiment of the invention implements 128 horizontal and vertical tracks and assume a 25%, 50%, and 25% distribution for length-1 130, length-4 132, and long wires 134, respectively, among the 128 tracks in each direction. In addition, 32 tracks are used for direct links 136 between adjacent SMBs (since O=32).
Next is a consideration of the design of the connection block 110, characterized by Fc′, and switch block 112, characterized by Fs (Fc refers to the number of adjacent tracks a pin of an LB can connect to and Fs the number of tracks to which each track entering the switch block can connect). Higher values of Fc and Fs result in higher routing flexibility, however, at the expense of a higher number of switches and hence more routing area. For a cluster of N LUTs, Fc can be chosen as 1/N of the total number of tracks and Fs should be greater than three in order to achieve routing completion while maintaining area efficiency. In one embodiment of the invention, Fc=1/N and Fs=6 is used. Another related and important issue is whether or not the internal connection blocks or switch blocks should be populated (such a block is said to be populated if it is possible to make connections from the middle of the block to LBs or to other blocks). When both are fully populated, the number of routing tracks required to achieve routing completion can be reduced, at the expense of a larger number of switches attached to a wire (resulting in more capacitance and, hence, decrease in speed). In one embodiment of the invention, the connection blocks are depopulated and the switch blocks are populated to provide the best performance-area advantage.
The third feature considers the type of switch. There are typically three types of switches: pass transistor, multiplexer and tri-state buffer. Since a pass transistor has the shortest switching time, pass transistors are implemented in one embodiment of the invention for the local crossbars within the MB and SMB. A multiplexer has longer delay, but needs fewer reconfiguration bits. Therefore, a multiplexer 138 is implemented in one embodiment of the invention to connect to the inputs of a SMB 114 (e.g., see
For the last feature, one embodiment of the invention uses pass transistors that are 10 times the size of a minimum-sized transistor and five times the size of a minimum-sized transistor for tri-state buffers and multiplexers. Minimum width and spacing are used for the metal wires.
Temporal Logic Folding
Temporal logic folding provides design flexibility and benefits in the present invention. The basic idea behind logic folding is that one can use run-time reconfiguration, and in one embodiment of the invention nanotube RAM-enabled run-time reconfiguration, to realize different Boolean functions in the same LE every few cycles. For example, suppose a subcircuit can be realized as a series of n serially connected LUTs. Traditional reconfigurable architectures will need n LUTs to implement the subcircuit. However, using run-time reconfiguration, at one extreme all these LUTs can be mapped to a single LE, which is configured to implement LUT1 in the first cycle, LUT2 in the second cycle, and so on, requiring n cycles for execution. Traditional reconfigurable architectures only support partial dynamic reconfiguration and do not allow such fine-grain temporal logic folding. Moreover, all communications between the LUTs mapped to the same LE are local. Hence, global communication is reduced, and routing delay is significantly reduced as well.
Logic folding occurs at the expense of reconfiguration time. However, results reveal that the time required to output the reconfiguration bits from an carbon nanotube RAM to the SRAM (i.e., the reconfiguration time to switch from one LUT to another), is only around 160 ps. This is small compared to routing delay saved. Also, by allowing use of shadow SRAM, the reconfiguration time can be hidden by overlapping computation.
Logic folding can be performed at different levels of granularity, providing flexibility to enable area-performance trade-offs. As an example, consider the LUT graph (in which each node denotes a LUT) shown in
There are various trade-offs involved in the choice of the folding level. First, when the folding level is large, the cycle period increases because a larger amount of computation is executed in one cycle. The number of LEs needed also increases since they are not fully time-shared. However, the total number of cycles decreases. This fact coupled with the reduction in reconfiguration time may reduce total circuit delay. However, this would generally be true when communications between LEs are still local in the folded circuit, usually within the range of several SMBs. If the area required for implementing the subcircuit is out of this range and long global communication is required in one cycle, then a small folding level may give better performance.
Another important advantage of logic folding occurs when the circuit is too large to fit into a traditional reconfigurable architecture; it could then be mapped into the architecture of the present invention with logic folding. In a situation where the number of available LEs is limited, factors considered for obtaining the best folding level may differ from those mentioned above. In such a case, the number of cycles required to execute the whole computation will be dependent on the number of computation nodes in the LUT graph divided by the number of available LEs. Hence, the best folding level might be one that best uses the available LEs. A smaller folding level will use LEs less efficiently, and require more cycles, while a larger folding level will increase the cycle period and result in time inefficiencies.
Experimental Results-NATURE
Various MCNC benchmarks and arithmetic circuits illustrate the benefits of the run-time reconfiguration and logic folding features of the present invention. Architectures of the present invention present a family of carbon nanotube RAM-based (and phase change RAM-based, magnetoresistive RAM-based, and ferroelectric RAM-based) reconfigurable architectures at different levels of granularity in terms of the number of LEs in an MB (n1), number of MBs in an SMB (n2), number of inputs per LE (m), number of configuration sets stored in the NRAM (k), etc. Accordingly, different architecture instances may be best suited for different circuit types. Since it appears that a cluster of four 4-input LUTs provides one of the best area-delay trade-offs, one embodiment of the present invention (for experimental purposes) uses an architecture instance corresponding to n1=4, n2=4, and m=4. Parameter k is varied in order to compare implementations corresponding to selected folding levels: level-1, level-2, level-4 and no logic folding (note that the number of carbon nanotube RAM bits increases as we go from no folding to level-4 folding and towards level-1 folding since the number of LE configurations increases).
Several small/middle sized benchmarks were manually mapped to the underlying architecture instance. The depth of the circuit LUT graph, number of LEs, circuit delay, product of number of LEs and delay (this is a proxy for the area-time product, which is reasonable since the present invention is a regular architecture), and frequency are shown, for different levels of folding, in Table I of
Area/performance trade-offs that become possible because of use of logic folding are observed. Consider the 64-bit ripple-carry adder. Its LUT graph has 64 LUTs on the critical path. Using level-1 logic folding, the complete adder can be mapped to only two LEs. This, of course, requires reconfiguration of the LEs from the local carbon nanotube RAMs at each cycle. If more LEs are allowed (as in level-2, level-4 and no folding cases), the execution time goes down because fewer reconfigurations are required (note that, in this instance, the presence of a shadow SRAM is not assumed to overlap the reconfiguration and computation times of an LE—if assumed, the execution time for level-1 folding would go down by roughly 1.6.times. at the expense of a doubling of SRAM area). Traditional reconfigurable architectures will require 128 LEs for such an adder (some architectures incorporate a carry generation circuit with each LE; in such a case, they will require 64 LEs although each LE will be larger due to the carry generation circuit overhead) because they cannot perform any temporal logic folding. As the number of required LEs increases, the need for using higher-level (i.e., more global) interconnects to connect them also increases. This is one of the reasons traditional reconfigurable architectures are not competitive with ASICs in terms of performance.
Next, consider the area-time product. For larger, more serially-connected circuits of larger depth, the area-time product advantage of level-1 folding relative to no folding is typically larger. For example, for the 64-bit ripple-carry adder, it is observed that the advantage is about 34.times. This results from a large saving in area while maintaining competitive performance.
Table I of
In spite of the fact that traditional reconfigurable architectures devote a vast majority of their area to interconnects, their LE utilization may not be high (an extremely large number of routing tracks may be needed to approach 100% LE utilization). Because of the cycle-by-cycle reconfiguration features of the architecture of the present invention, the LE utilization and relative logic density can be very high, with a reduced need for a deep interconnect hierarchy. Thus, architectures of the present invention suggest an evolutionary path for existing reconfigurable architectures, where fewer levels of interconnect hierarchy will be used and the area saved can provide for distribution of emerging non-volatile universal memories, such as carbon nanotube RAMs, throughout the chip.
A Discussion of Some Alternative NATURE Architectures
As discussed, NATURE can be characterized along a large number of varying dimensions, all of which are contemplated in the present invention. A non-exclusive list of exemplary characterizations are: 1) number of logic elements (LEs) per logic block; 2) number of inputs per LE; 3) size of carbon nanotube RAMs supporting each LE (this determines the granularity of reconfiguration); 4) depth of the FPGA interconnect hierarchy (localized communications can help drastically reduce this depth); 5) mix of different types of interconnects (much fewer longer interconnects are necessary); 6) number of registers per LE (because of the success of logic folding in reducing the number of LEs required for implementing the combinational logic by an order of magnitude, implementing sequential blocks now becomes the bottleneck for further area reduction); etc.
For instance, as an extension of the high level architecture view of
In the
The inputs to the LE 120 include m inputs to a look-up table (LUT) 126 and one to a flip-flop 128, as shown in
To realize cycle-by-cycle logic reconfiguration capability, an carbon nanotube RAM 100 is again associated with each reconfigurable block (i.e., LE 120 or crossbar 122), to store the run-time reconfiguration bits. During reconfiguration, the reconfiguration bits are placed in the SRAM 124 cells to reconfigure the LE 120 or crossbar 122 to implement different logic functionality and interconnections. For example, if k configuration sets are stored in the carbon nanotube RAM 100, then k different logic functions can be realized within the same hardware resource without the need to access off-chip storage. For the MB 118 architecture shown in
As a basis for relative discussions concerning other alternative NATURE architectures, the embodiment of
Number of LEs n1 per MB: Changing the value of n1 leads to area-delay trade-offs. For example, consider n1=6, as shown in the exemplary embodiment of
Number of MBs n2 per SMB: Varying n2 will also result in area/delay trade-offs. Increasing n2 allows more logic to be implemented in an SMB 114, and more local communications between MBs 118 within the SMB 114. Hence, circuit delay may be reduced. However, the area of the SMB 114 will increase correspondingly. Consider the case of n2=6, as shown in the exemplary embodiment of
Number of inputs m per LUT: The number of inputs m for each LUT is a very important consideration for any FPGA architecture. If m is too large, and the application cannot always make use of all the inputs of each LUT, area is wasted. If m is too small, a larger number of LUTs are required and, therefore, more MBs, SMBs and more interconnect communications. For example, if m=5, the SMB area increases to 1.25 times. In an instance where most LUTs only require four inputs, the mapped number of SMBs remains nearly the same. Hence, the mapped area increases by 1.25 times. However, random logic (such as a controller) may benefit from a larger m. Because of the ability of FPGAs in the present invention to implement temporal logic folding, the value of m most suitable to conventional FPGAs may not be the same as in the present invention. Further, depending on the application, and desired folding level, the present invention contemplates that different inputs can exist for any given LUT 126 for each LE 120 of a MB 118. An exemplary embodiment is shown in
Number of flip-flops per LE: Since temporal logic folding may reduce the combinational logic by more than an order of magnitude, the number of registers in the circuit may now become the bottleneck of further area reduction. Thus, as opposed to traditional LEs that include only one flip-flop, the present invention includes embodiments having more flip-flops per LE to further reduce the number of LEs required. However, if the inputs to the flip-flops are separately accessed, the number of inputs/outputs of an LE will increase as the number of flip-flops in an LE increases. Then, as discussed above, the communication network within and outside the SMB may grow very fast due to the increase in the number of inputs/outputs per LE, MB and SMB. Hence, the SMB size may increase significantly. If flip-flops in each LE are not used efficiently, area may be wasted.
For example, assume two flip-flops 128 per LE 120 as shown in
In an instance of level-1 folding with configuration sets k=16, significant area savings were realized (i.e., reduced number of LEs). However, increasing the number of flip-flops to three per LE could result, in the same instance, in an area increase. Since area saving depends on the value of k, simultaneously consideration of these two parameters are necessary.
Number of reconfiguration sets k: The value of k determines the amount of logic folding possible. If k is too small, more LEs are needed to perform a mapping. If k is too large, use of the extra configurations may not be possible, thus resulting in wasted carbon nanotube RAM area that could have been put to other use. Complicating this fact is that the best value of k varies with a change in the optimization objective (e.g., area, delay or area-delay product).
Number of logic levels per SMB: In the baseline design, two levels of logic are used in an SMB (i.e., SMB→MB and MB→LE) to facilitate local communication. However, since any communication between two LEs in different SMBs has to traverse two levels of interconnect, the communication delay is larger compared with that within just one level of logic. In addition, a two-level logic structure requires more implementation area than a one-level logic structure. Hence, a one-level structure has an advantage in area and inter-SMB delay, but a disadvantage in intra-SMB delay.
Interconnect parameters: In the carbon nanotube RAM-based FPGAs of the present invention, inter-LE communications become much more local. Hence, the interconnect hierarchy can be sharply reduced. Currently, the baseline sets Fc=W/N and Fs=6, where N is the number of LEs in an SMB and W is the number of interconnect tracks per channel. A larger Fc and Fs can provide more routing flexibility, but at the cost of more routing area. The values for Fc and Fs can also be varied to achieve an optimal trade-off between routability and area efficiency.
Moreover, in most embodiments of the present invention, every input in the SMB 114 is accessible from the interconnect, with full routability within an SMB 114. However, complete routability within an SMB 114 may not be necessary. Both I and M (see
NanoMap Design Optimization
The present invention also provides an integrated design optimization platform for NATURE, referred to as NanoMap. NanoMap conducts design optimization from the RTL down to the physical level. Given an input design specified in RTL and/or gate-level VHDL, NanoMap optimizes and implements the design on NATURE through logic mapping, temporal clustering, placement, and routing. The design optimization techniques of the present invention exploit the design flexibilities enabled by fine-grain temporal logic folding. Given user-specified area and performance constraints, the mapping method and system of NanoMap can automatically explore and identify the best logic folding configuration, and make appropriate tradeoffs between performance and area efficiency. The methods of the present invention can be implemented as software running on a general-purpose computer, such as an INTEL® PENTIUM® based personal computer running a MICROSOFT® WINDOWS® operating system, although the invention is not limited to that particular implementation.
To demonstrate the design optimization flow of NanoMap, an example RTL circuit 140 will be provided, and concepts associated therewith are first introduced for ease of exposition. Given an RTL circuit 140, the registers contained therein are first levelized. The logic between two levels of registers is referred to as a plane. The registers associated with the plane are called plane registers. The propagation cycle of a plane is called plane cycle. Using temporal logic folding, each plane is further partitioned into folding stages. Resources can be shared among different folding stages within a plane or across planes. The propagation cycle of a single folding stage is defined as folding cycle. Note that different planes should consist of the same number of folding stages to guarantee global synchronization. Thus, the key issue is to determine how many planes are folded together and to determine the appropriate folding level (i.e., the number of folding stages in one plane necessary to achieve the best area-performance tradeoff under specified design constraints).
a) shows an example comprising a four-bit controller-datapath consisting of a single plane. The controller consists of flip-flops s0 and s1, and LUTs LUT1-LUT4. The datapath consists of registers reg1-reg3, a ripple-carry adder and parallel multiplier module, requiring in all 100 LUTs and 14 flip-flops. The ripple-carry adder consists of eight LUTs with a logic depth (i.e., the number of LUTs along the critical path) of four. The parallel multiplier consists of 38 LUTs with a logic depth of seven. The control logic consists of four LUTs. Suppose the optimization objective is to minimize circuit delay under a total area constraint of 20 LEs. We assume each LE contains one LUT and two flip-flops. Hence, 20 LEs equal 20 LUTs along with 40 flip-flops. Since the number of available flip-flops is more than required, we concentrate on the LUT constraint.
The present invention uses an iterative optimization flow. As a smaller number of folding stages leads to better performance, NanoMap starts with a guessed folding level, resulting in a minimal number of folding stages under the given area constraint, and gradually refines it. In the
Next, based on the chosen folding level, the adder and multiplier modules are partitioned into a series of connected LUT clusters in a way that if the folding level is p, then all the LUTs at a depth less than or equal to p in the module are grouped into the first cluster, all the LUTs at a depth larger than p but less than or equal to 2p are grouped into the second cluster, and so on. The LUT cluster can be considered in its entirety with its logic depth being less than or equal to the folding level. This implies that one LUT cluster can be executed within one folding cycle, thereby being contained in one folding stage. By dealing with LUT clusters instead of a group of single LUTs, the logic mapping procedure can be greatly sped up.
Next, after choosing a suitable folding level, Force Directive Scheduling (FDS) is used to determine the folding cycle assignment of each LUT and LUT cluster to balance the resource usage across the six folding stages. If the number of LUTs and flip-flops required by every folding stage is below the area constraint (i.e., 20 LEs) the solution is valid and offers the best possible performance. Otherwise, the folding level is reduced by one, followed by another round of optimization. This process continues until the area constraint is met, assuming the area constraint can be satisfied.
c) illustrates the mapping result 144 for level-2 folding for the first three folding stages of the total of six folding stages. Note that plane registers, which provide inputs to the plane, need to exist through all the folding stages in the plane. The first folding cycle requires 14 LEs. Four LEs are required for mapping LUT cluster 1 of the adder, which is depicted as add: c1 in
Next, clustering, which groups LEs into SMBs, placement and routing are performed to produce the final layout of the implementation and obtain the best possible circuit delay under the given constraint. When performing clustering, inter-stage relationships are honored, since some computation results need to be preserved through several folding cycles. Once the results are assigned to some flip-flops in an SMB, they are not assigned to other SMBs in other folding cycles. In the
Automated Optimization Flow of NanoMap
Logic Mapping: (Steps 202-206) Steps 202-206 of
Temporal Clustering: (Steps 207-208) Steps 207-208 of
Temporal Placement: (Steps 209-214) Steps 209-214 of
Routing: (Step 215) Step 215 of
The following details the above steps. For logic mapping, focus is provided on folding level determination and FDS technique.
Choosing the Folding Level
The folding level choice is critical to achieving the best area-performance tradeoff. As previously noted, the best folding level depends on input circuit structure, obtained by identifying each plane and obtaining the circuit parameters within each plane. The following outlines the necessary circuit parameters:
Given the specified optimization objective and constraint (e.g., circuit delay minimization under area constraint or area minimization under delay constraint, etc.), the best folding level is computed using above parameters. The following details a targeting of one of the design objectives. Similar procedures can target other objectives.
Suppose the optimization goal is to minimize circuit delay. If there is no area constraint, we can use no-folding to obtain the shortest delay. If an area constraint is given, it is satisfied first, then the best possible delay obtained. There are two scenarios considered:
1) Multiple planes are allowed to share resources: Since circuit delay is equal to plane cycle times the number of planes in the circuit, plane cycle has to be minimized under the area constraint. First, all the planes together are stacked (i.e., resources are shared across all planes, since this does not increase circuit delay but reduces area). Suppose the area used up at this point is LUT_max. If LUT_max is larger than available_LE, logic folding is required to reduce the area within each plane. The minimum required number of folding stages within each plane is given by:
Since the number of folding cycles should be kept the same in each plane, maximum logic depth is used to compute the folding level:
Using the chosen folding level, the present invention uses FDS and temporal clustering to obtain the area required. If the area constraint is not satisfied, the folding level is decreased by one. NanoMap then iterates until the area constraint is met or the folding level reduces to the minimum allowed, min_level, which is limited by num_reconf:
2) Multiple planes are not allowed to share resources: Such a scenario is possible if the RTL circuit is pipelined and, hence, the different pipeline stages need to be resident in the FPGA simultaneously. In this scenario, temporal logic folding can only be performed within each plane. Then the folding level requested can be directly computed by the following equation:
After an appropriate folding level is chosen, the RTL module is partitioned into LUT clusters accordingly. The original mixed module/LUT network is transformed to an equivalent LUT/(LUT cluster) network which is fed to FDS.
Force-Directed Scheduling (FDS)
Different folding stages share the same set of LEs temporally. Overall LE use is then determined by the folding stage using the maximum number of LEs. To optimize overall resource use in each plane, a modified Force-Deflected Scheduling (FDS) method is implemented to assign the LUT or LUT cluster to folding stages and balance the resource use of the folding stages.
Force-Deflected Scheduling (FDS) is described in the following, which is incorporated herein by reference for its useful background information:
FDS is a popular scheduling technique in high-level synthesis. However, the present invention uses FDS in another scenario. FDS uses an iterative approach to determine the schedule of operations, to minimize overall resource use. The resource use is modeled as a force. The scheduling of an operation to some time slot, which results in the minimum force, indicates a minimum increase in resource use. The force is calculated based on distribution graphs (DGs), which describe the probability of resource use for a type of operation in each time slot.
In the present invention, since the LE use in each folding cycle is dependent on both the LUT computations and register storage operations conducted in parallel, two DGs must be assembled: one describing the resource use of the LUT computation; and another for register storage use. The following details: 1) how DGs are created; and 2) how forces are calculated based on the two created DGs.
1) Creation of DGs: First, to build the LUT computation DG, the time frame of each LUT or LUT cluster needs to be determined. For a LUT or LUT cluster i, its time frame time_framei, or feasible time interval, is defined as the span from the folding cycle it is assigned to in the ASAP schedule to the folding cycle it is assigned to in the ALAP schedule. From the ASAP/ALAP schedules shown in
Following a definition similar to that given by P. G. Paulin and J. P. Knight, above, a LUT computation DG models the aggregated probability distribution of the potential concurrency of N LUT/(LUT cluster) computations within each folding cycle j, whose value LUT_DG(j) is the sum of the probabilities of all the computations assigned to this folding cycle, as follows:
where weighti is one for a LUT and equal to the number of LUTs in a LUT cluster.
To build the register storage DG, which models the distribution of register storage usage, a procedure similar to that of P. G. Paulin and J. P. Knight, above, is adopted. A storage operation is created at the output of every source computation that transfers a value to one or more destination computations in a later folding cycle. If both the source and destinations of a storage operation are scheduled, the distribution of the storage operation equals its lifetime, which begins from the folding cycle of the source and ends at the folding cycle of the last destination. Here, it is assumed the results are stored at the beginning of each folding cycle. If one or more of the source or destinations are not scheduled, a probabilistic distribution is obtained.
The following heuristic is used to quickly estimate the resulting storage distribution. First, ASAP_life and ALAP_life of a storage operation are defined as its lifetime in the ASAP and ALAP schedules, respectively. For example, in
The longest possible lifetime max_life for the storage operation is the union of its ASAP_life and ALAP_life, whose length is obtained as:
|max_life|=(ALAP_life end−ASAP_life_begin+1) (6)
For the ongoing example, S begins in folding cycle 2 in the ASAP schedule (i.e., ASAP_life_beginS=2). Its lifetime ends in cycle 4 in the ALAP schedule (i.e., ALAP_life_endS=4). Thus, the length of the maximum lifetime for S (e.g., |max_lifeS=3).
If ASAP_life overlaps with ALAP_life, the overlap time, overlap, is the intersection of ASAP_life and ALAP_life, whose length is similarly obtained as:
|overlap|=(ASAP life end−ALAP life begin+1) (7)
Within the overlap time, a storage operation must exist with probability 1. For the example, there is no overlap time for S. Then an estimate of the average length of all possible lifetimes can be obtained by:
Next, the probability of a storage operation performed for a LUT or LUT cluster computation i in folding cycle j can be calculated as follows:
when j is outside of overlapi and jεmax_lifei:
when j is within overlaps, which means a storage operation must be performed:
storagei(j)=weighti (10)
The process is carried out for all the storage operations, and the separate probabilities due to N LUTs and LUT clusters in folding cycle j are added to obtain a single storage DG as follows:
storage—DG(j)=Σi=1Nstoragei(j)jεmax_lifei (11)
The two DGs obtained for the example in
2) Calculation of Forces: In the FDS algorithm, force is used to model the impact of scheduling operations on resource use. A higher force implies higher concurrency of run-time operations, which requires more resources in parallel. The force is calculated based on DGs, which present the probability of resource usage concurrency. For a given computation with time frame spanning folding cycles a to b, the force in cycle j is calculated by:
force(j)=DG(j)*x(j) (12)
where DG(j) is either LUT_DG(j) or storage_DG(j) in our case, and x(j) is the increase (or decrease) in the probability of computation in cycle j due to the scheduling of the computation. For example, before scheduling, the computation has a uniform probability of being scheduled in each folding cycle in its time frame. If in a scheduling attempt, the computation is scheduled in folding cycle .alpha., the probability of the computation being scheduled in folding cycle a will increase to 1 and the probability of the computation being scheduled in other folding cycles will decrease to 0. The self-force associated with the assignment of a computation i, whose time frame spans folding cycles a to b, to folding cycle j is defined as the sum of all the resulting forces in each folding cycle in its time frame:
In the approach of the present invention, the resource use can be dictated by either LUT computations or storage operations. Assume there are h LUTs and 1 flipflops in one LE, then the self-force for scheduling a LUT or LUT cluster i in folding cycle j is determined by
where LUT_self_forcei(j) and storage_self_forcei(j) are computed using Equation (13) based on the LUT computation and storage DGs.
Assigning a LUT computation to a specific folding cycle will often affect the time frame of its predecessors and successors, which in turn creates additional forces affecting the original move. Equation (13) is used to compute the force exerted by each predecessor or successor. The overall force is then the sum of the self-force and the forces of predecessors and successors. Then the total forces under each schedule for a computation are compared and the computation is scheduled into the folding cycle with the lowest force, which will result in the least concurrency.
3) Summary of the FDS algorithm: The pseudo-code of the proposed FDS technique is shown in Algorithm 1. Algorithm 1 uses an iterative approach to schedule one computation in each iteration. In each iteration, the LUT computation and register storage DGs are obtained. The LUT or LUT cluster with the minimum force is chosen, and assigned to the folding cycle with the minimum force. This procedure continues until all the LUT or LUT cluster computations are scheduled.
Temporal Clustering
After scheduling, a network of LUTs is assigned to each folding stage. For each folding stage, we use a constructive algorithm to assign LUTs to LEs and pack LEs into MBs and SMBs. To construct each SMB, an unpacked LUT with the maximal number of inputs is first selected as an initial seed. Then, new LUTs with high attractions to the seed LUT are chosen and assigned to the SMB. The attraction between a LUT i and the seed LUT, Attractioni,seed′ depends on timing criticality and input pin sharing [17], as follows:
and as described in the following, which is incorporated herein by reference for its useful background information:
In Equation 15, Criticality models the timing criticality of LUT i (e.g., the number of critical paths that this LUT is on), Netsi,seed is the number of shared I/Os between these two LUTs, and G is the number of I/Os per LE. α is a parameter that allows a tradeoff between timing criticality and interconnect demand.
To support temporal logic folding, inter-folding stage resource sharing needs to be considered during clustering. Since due to logic folding, several folding stages may be mapped to a set of LEs, some of the LEs may be used to store the internal results and transfer them to another folding cycle. Such LEs may perform this job over several cycles and feed other LEs in each folding cycle. As illustrated in
Placement and Routine
In the present invention, placement and routing is performed by a modified VPR. VPR refers to the techniques of the following, which is incorporated herein by reference for its useful background information:
Placement uses a two-step simulated annealing approach. Placement starts with a fast low-precision placement. Routability analysis and delay estimation are then used to evaluate the quality of the initial placement. For routability analysis, a highly-efficient empirical estimation technique is used, as described in the following, which is incorporated herein by reference for its useful background information:
The routing demand for the interconnect resources for horizontal and vertical channels, Dki,horizontal and Dki,vertical, each net k is estimated as:
where (X, Y) are the dimensions of the net bounding box for net k, and q is a pin-count dependent net-weight, as detailed in C. L. E. Chang. The sum of the demands of all the nets is then compared to the per-channel routing resources of NATURE to make sure the resources are adequate. Delay estimation is based on the timing analysis step of VPR. Routability analysis and delay estimation results are then used to evaluate the feasibility of the initial placement, which determines whether a high-precision placement or another round of logic folding should be invoked.
VPR placer was modified in the present invention to support temporal logic folding. Such temporal folding introduces inter-folding stage dependencies. Consider the example in
Experimental Results—an Instance of NATURE Using NanoMap
Presented here are experimental results for the mapping of seven RTL/gate-level benchmarks to an instance of NATURE using NanoMap to illustrate the benefits of run-time reconfiguration and logic folding. NATURE is a family of architectures, which may vary in the number of inputs and registers in an LE, number of LEs in an MB, number of MBs in an SMB, etc. In this experimental instance, an architecture having one four-input LUT in an LE, four LEs in an MB, and four MBs in an SMB, are selected to obtain good area-delay trade-offs. Observations show that temporal logic folding greatly reduces the area for implementing logic, so much so that the number of registers in the design becomes the bottleneck for area reduction. Thus, as opposed to traditional LEs that include only one register, the present invention, in this example, includes two registers per LE, which increases an SMB's area to 1.5 times (all experiments are based on a 100 nm technology). However, the LE area increase is more than offset by the significant reduction in overall area. To fully explore the potential of logic folding, we assume that a varying number of reconfiguration sets, k, is available in carbon nanotube RAMs depending on the application. We also show the tradeoffs when the size of carbon nanotube RAM is instead fixed to 16.
Among the seven benchmarks targeted, ex1 is the circuit shown in
First, all benchmarks were mapped under the area-time (AT) product minimization objective to show the logic density benefits of temporal logic folding against the traditional no-folding case. Table II of
The corresponding area (where the number of LEs is used as a proxy for area due to the regular architecture), circuit delay and AT product improvement with respect to the no-folding case for examples without and with limitations on k are shown in Table II—Columns 9-11 and 13-15, respectively. The average reduction in the number of LEs is 14.8 times (9.2 times) and in the AT product 11.0 times (7.8 times), at the price of a 31.8% (19.4%) increase in circuit delay for large enough k (with k limited to 16).
Accordingly, the present invention can target many different optimization objectives: (i) minimization of circuit delay with or without an area constraint; (ii) minimization of area with or without a delay constraint; (iii) minimization of the AT product; and (iv) finding a feasible implementation under both area and delay constraints.
Different optimization objectives for different benchmarks are selected, with results presented in Table III. Objectives are noted in Column 2 of Table III of
The present invention presents a hybrid nanotube/CMOS dynamically reconfigurable architecture, NATURE, and an RTL/gate-level automatic design optimization flow, NanoMap, for the NATURE reconfigurable architecture. NATURE supports run-time fine-grain reconfiguration and, hence, enables temporal logic folding. Through logic folding, significant logic density improvement and flexibility in performing area-delay tradeoffs are possible.
NanoMap incorporates temporal logic folding during the logic mapping, temporal clustering and placement steps. NanoMap provides for automatic selection of a best folding level, and uses force-direct scheduling to balance resources across the different folding stages. Mapping, as provided by the present invention, can target various optimization objectives and user constraints. With NanoMap, the potential of NATURE can be effectively realized.
These and other advantages of the present invention will be apparent to those skilled in the art from the foregoing specification. Accordingly, it will be recognized by those skilled in the art that changes or modifications may be made to the above-described embodiments without departing from the broad inventive concepts of the invention. It should therefore be understood that this invention is not limited to the particular embodiments described herein, but is intended to include all changes and modifications that are within the scope and spirit of the invention.
This application is a divisional application of U.S. patent application Ser. No. 12/297,638 filed Apr. 9, 2009 (Date of U.S. Entry) as a 371 application of International Application No. PCT/US2007/009658 filed Apr. 19, 2007, which claims benefit of U.S. Provisional Application Ser. Nos. 60/793,665, filed Apr. 19, 2006, entitled “A Hybrid Nanotube/CMOS Dynamically Reconfigurable Architecture;” and 60/919,225, filed Mar. 21, 2007, entitled “NanoMap: An Integrated Design Optimization Flow for a Hybrid Nanotube/CMOS Dynamically Reconfigurable Architecture.” Each of the above-identified related applications are incorporated herein by this reference.
This invention was made with government support under Grant #CCF-0429745 awarded by the National Science Foundation. The Government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
4987319 | Kawana | Jan 1991 | A |
5399922 | Kiani et al. | Mar 1995 | A |
5448496 | Butts et al. | Sep 1995 | A |
5539331 | Hatori et al. | Jul 1996 | A |
5914616 | Young et al. | Jun 1999 | A |
6009531 | Selvidge et al. | Dec 1999 | A |
6249143 | Zaveri et al. | Jun 2001 | B1 |
6481000 | Zaveri et al. | Nov 2002 | B1 |
6924663 | Masui et al. | Aug 2005 | B2 |
7109752 | Schmit et al. | Sep 2006 | B1 |
7111224 | Trimberger | Sep 2006 | B1 |
7126372 | Vadi et al. | Oct 2006 | B2 |
7126381 | Schmit et al. | Oct 2006 | B1 |
7145361 | Rohe et al. | Dec 2006 | B1 |
7157933 | Schmit et al. | Jan 2007 | B1 |
7193440 | Schmit et al. | Mar 2007 | B1 |
7224181 | Schmit et al. | May 2007 | B1 |
7224182 | Hutchings et al. | May 2007 | B1 |
7230869 | Redgrave et al. | Jun 2007 | B1 |
7236009 | Rohe et al. | Jun 2007 | B1 |
7242216 | Schmit et al. | Jul 2007 | B1 |
7259587 | Schmit et al. | Aug 2007 | B1 |
7262633 | Schmit et al. | Aug 2007 | B1 |
7268586 | Redgrave | Sep 2007 | B1 |
7272031 | Redgrave | Sep 2007 | B1 |
7276933 | Teig et al. | Oct 2007 | B1 |
7301242 | Teig | Nov 2007 | B2 |
7301368 | Schmit et al. | Nov 2007 | B2 |
7310003 | Hutchings et al. | Dec 2007 | B2 |
7312630 | Rohe et al. | Dec 2007 | B2 |
7317331 | Teig et al. | Jan 2008 | B2 |
7372297 | Pugh et al. | May 2008 | B1 |
7420389 | Schmit et al. | Sep 2008 | B2 |
7449915 | Schmit et al. | Nov 2008 | B2 |
7461362 | Caldwell et al. | Dec 2008 | B1 |
7468614 | Rohe et al. | Dec 2008 | B2 |
7489162 | Schmit et al. | Feb 2009 | B1 |
7492186 | Hutchings et al. | Feb 2009 | B2 |
7496879 | Rohe et al. | Feb 2009 | B2 |
7504858 | Schmit et al. | Mar 2009 | B1 |
7512850 | Redgrave et al. | Mar 2009 | B2 |
7514957 | Schmit et al. | Apr 2009 | B2 |
7518400 | Redgrave et al. | Apr 2009 | B1 |
7518402 | Schmit et al. | Apr 2009 | B2 |
7521958 | Hutchings et al. | Apr 2009 | B2 |
7521959 | Teig | Apr 2009 | B2 |
7525342 | Teig et al. | Apr 2009 | B2 |
7525344 | Teig et al. | Apr 2009 | B2 |
7525835 | Redgrave | Apr 2009 | B2 |
7528627 | Redgrave et al. | May 2009 | B2 |
7529992 | Teig et al. | May 2009 | B1 |
7530033 | Caldwell et al. | May 2009 | B2 |
7532030 | Redgrave | May 2009 | B2 |
7532032 | Schmit et al. | May 2009 | B2 |
7535252 | Teig et al. | May 2009 | B1 |
7545167 | Teig et al. | Jun 2009 | B2 |
7548085 | Hutchings et al. | Jun 2009 | B2 |
7548090 | Redgrave et al. | Jun 2009 | B2 |
7550991 | Redgrave et al. | Jun 2009 | B2 |
7557609 | Rohe et al. | Jul 2009 | B2 |
7564260 | Schmit et al. | Jul 2009 | B1 |
7564261 | Schmit et al. | Jul 2009 | B2 |
7570077 | Redgrave | Aug 2009 | B2 |
7573296 | Schmit et al. | Aug 2009 | B2 |
7576564 | Schmit et al. | Aug 2009 | B2 |
7587697 | Schmit et al. | Sep 2009 | B1 |
7587698 | Rohe et al. | Sep 2009 | B1 |
7595655 | Hutchings et al. | Sep 2009 | B2 |
7609085 | Schmit et al. | Oct 2009 | B1 |
7610566 | Caldwell et al. | Oct 2009 | B1 |
7616027 | Schmit et al. | Nov 2009 | B2 |
7622951 | Schmit et al. | Nov 2009 | B2 |
7626419 | Schmit et al. | Dec 2009 | B1 |
7634337 | Brozovich et al. | Dec 2009 | B2 |
7652498 | Hutchings et al. | Jan 2010 | B2 |
7652499 | Schmit et al. | Jan 2010 | B2 |
7656188 | Teig et al. | Feb 2010 | B2 |
7667486 | Schmit et al. | Feb 2010 | B2 |
7669097 | Teig et al. | Feb 2010 | B1 |
7679401 | Redgrave | Mar 2010 | B1 |
7694083 | Schmit et al. | Apr 2010 | B1 |
7694265 | Rohe et al. | Apr 2010 | B2 |
7696780 | Hutchings et al. | Apr 2010 | B2 |
7728617 | Redgrave et al. | Jun 2010 | B2 |
7737722 | Rohe et al. | Jun 2010 | B2 |
7743085 | Schmit et al. | Jun 2010 | B2 |
7788478 | Redgrave et al. | Aug 2010 | B2 |
7797497 | Schmit et al. | Sep 2010 | B1 |
7804730 | Redgrave et al. | Sep 2010 | B2 |
7816944 | Hutchings | Oct 2010 | B2 |
7825685 | Chandler et al. | Nov 2010 | B2 |
7825687 | Redgrave | Nov 2010 | B2 |
7839162 | Hutchings | Nov 2010 | B2 |
7839166 | Schmit et al. | Nov 2010 | B2 |
7849434 | Rohe et al. | Dec 2010 | B2 |
7870529 | Rohe et al. | Jan 2011 | B2 |
7870530 | Rohe et al. | Jan 2011 | B2 |
7872496 | Schmit et al. | Jan 2011 | B2 |
7898291 | Rohe et al. | Mar 2011 | B2 |
20040095159 | Kimura | May 2004 | A1 |
20070241775 | Redgrave | Oct 2007 | A1 |
20070241781 | Hutchings | Oct 2007 | A1 |
20070241783 | Schmit et al. | Oct 2007 | A1 |
20070241785 | Schmit et al. | Oct 2007 | A1 |
20070244957 | Redgrave | Oct 2007 | A1 |
20070244958 | Redgrave | Oct 2007 | A1 |
20070244959 | Teig et al. | Oct 2007 | A1 |
20070245270 | Teig | Oct 2007 | A1 |
20070245287 | Rohe et al. | Oct 2007 | A1 |
20070245288 | Rohe et al. | Oct 2007 | A1 |
20070257700 | Caldwell et al. | Nov 2007 | A1 |
20080224730 | Redgrave et al. | Sep 2008 | A1 |
20090002020 | Hutchings et al. | Jan 2009 | A1 |
20090002021 | Hutchings et al. | Jan 2009 | A1 |
20090002024 | Hutchings et al. | Jan 2009 | A1 |
20090007027 | Hutchings et al. | Jan 2009 | A1 |
20090146686 | Voogel et al. | Jun 2009 | A1 |
20090167345 | Voogel et al. | Jul 2009 | A1 |
20090327987 | Teig et al. | Dec 2009 | A1 |
20100001759 | Teig et al. | Jan 2010 | A1 |
20110060546 | Miller et al. | Mar 2011 | A1 |
20110068820 | Fox | Mar 2011 | A1 |
20130275823 | Cordero et al. | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
2009002600 | Dec 2008 | WO |
2009035586 | Mar 2009 | WO |
2009039462 | Mar 2009 | WO |
2009131569 | Oct 2009 | WO |
2009151934 | Dec 2009 | WO |
2010016857 | Feb 2010 | WO |
2010033263 | Mar 2010 | WO |
2010053590 | May 2010 | WO |
2011035076 | Mar 2011 | WO |
Entry |
---|
Rueckes, et al., “Carbon Nanotube Based Non-Volatile random Access Memory for Molecular Computing”, Science, vol. 289, pp. 94-97, Jul. 7, 2000. |
International Search Report from PCT/US07/09658 dated May 2,2008. |
Written Opinion from PCT/US07/09658 dated May 2, 2008. |
Ward, et al., “A Non-Volatile Nanoelectromechan1cal Memory Element Utilizing a Fabric of Carbon Nanotubes”, Nantero, Inc., Woburn, MA, (c) 2004 IEEE, p. 34-38. |
Lai, Current Status of the Phase Change Memory and Its Future, Intel Corporation, Santa Clara, CA, Dec. 2003, 4 pages. |
Tehrani, et al., “Magnetoresistive Random Access Memory Using Magnetic Tunnel Junctions”, Proceedings of the IEEE, vol. 91, No. 5, May 2003, p. 703-714. |
Fox, et al., “Current and Future Ferroelectric Nonvolatile Memory Technology”, J. Vac. Sci. Technol. B 19(5), Sep./Oct. 2001, p. 1967-1971. |
Zhang, et al., “Nature: A Hybrid Nanotube/CMOS Dynamically Reconfigurable Architecture”, 30 pages. |
Zhang, et al., “Nature: A Hybrid Nanotube/CMOS Dynamically Reconfigurable Architecture”, IEEE Design Automation Conference, Jul. 2006, 30 pages. |
Number | Date | Country | |
---|---|---|---|
20140059282 A1 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
60793665 | Apr 2006 | US | |
60919225 | Mar 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12297638 | US | |
Child | 13314155 | US |