Claims
- 1. A hybrid organic-inorganic semiconductor light emitting diode comprising a layer of a light emitting, inorganic electroluminescent material and an overlying layer of an organic photoluminescent material, said organic photoluminescent material comprising a host material doped with dye molecules, wherein said host material is Coumarin 6 doped with 2% DCM.
- 2. A hybrid organic-inorganic semiconductor light emitting diode comprising a layer of a light emitting, inorganic electroluminescent material and an overlying layer of an organic photoluminescent material, said organic photoluminescent material comprising a host material doped with dye molecules, wherein said host material is Coumarin 7 doped with 2% DCM.
- 3. A hybrid organic-inorganic semiconductor light emitting diode comprising a layer of a light emitting, inorganic electroluminescent material and an overlying layer of an organic photoluminescent material, wherein said organic photoluminescent layer has an as-deposited surface roughness amplitude of about 100 nm or less.
- 4. A hybrid organic-inorganic semiconductor light emitting diode comprising a layer of a light emitting, inorganic electroluminescent material and an overlying layer of an organic photoluminescent material which has an as-deposited amorphous finely polycrystalline morphology.
- 5. A hybrid organic-inorganic semiconductor light emitting diode comprising, in sequence, a substrate, a n-doped semiconductor layer, a light emission region where electrons and holes recombine to produce light, a p-doped semiconductor layer, and a layer of an organic photoluminescent material which comprises a single fluorescent compound.
- 6. A diode as set forth in claim 5, wherein said single fluorescent compound is Alq3.
- 7. A diode as set forth in claim 5, wherein said single fluorescent compound is DCM.
- 8. A hybrid organic-inorganic semiconductor light emitting diode comprising, in sequence, a substrate, a n-doped semiconductor layer, a light emission region where electrons and holes recombine to produce light, a p-doped semiconductor layer, and a layer of an organic photoluminescent material which comprises a fluorescent compound or combination of compounds which absorb light at the wavelength emitted by said light emission region and re-emit light at a different wavelength.
- 9. A hybrid organic-inorganic semiconductor light emitting diode comprising, in sequence, a substrate, a n-doped semiconductor layer, a light emission region where electrons and holes recombine to produce light, a p-doped semiconductor layer, and a layer of an organic photoluminescent material which comprises a host material doped with dye molecules selected from the group consisting of Coumarins, rhodamines, sulforhodamines, DCM, and metal porphorine.
- 10. A diode as set forth in claim 9, wherein said host material is a Coumarin.
- 11. A diode as set forth in claim 9, wherein said host material is Coumarin 6 doped with 2% DCM.
- 12. A diode as set forth in claim 9, wherein said host material is Coumarin 7 doped with 2% DCM.
- 13. A hybrid organic-inorganic semiconductor light emitting diode comprising, in sequence, a substrate, a n-doped semiconductor layer, a light emission region where electrons and holes recombine to produce light, a p-doped semiconductor layer, and a layer of an organic photoluminescent material, wherein said organic photoluminescent layer has an as-deposited surface roughness amplitude of about 100 nm or less.
- 14. A hybrid organic-inorganic semiconductor light emitting diode comprising, in sequence, a substrate, a n-doped semiconductor layer, a light emission region where electrons and holes recombine to produce light, a p-doped semiconductor layer, and a layer of an organic photoluminescent material, wherein said organic photoluminescent layer has an as-deposited amorphous finely polycrystalline morphology.
CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a continuation-in-part of application Ser. No. 08/788,509, filed Jan. 24, 1997.
US Referenced Citations (1)
Number |
Name |
Date |
Kind |
4035774 |
Chang |
Jul 1977 |
|
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
788509 |
Jan 1997 |
|