Please refer to
In this embodiment, the fractional-N PLL 240 comprises a PFD 242, a loop filter 244, a controllable oscillator 246, and a fractional-N frequency divider 248. The fractional-N frequency divider 248 performs a frequency dividing operation or a fractional-N frequency dividing operation upon the oscillation signal S_osc outputted from the controllable oscillator 246 for generating a frequency-divided signal S_fd; the frequency-divided signal S_fd to be used in tracking the reference signal S_ref according to the divisor value generated from the decision circuit 230 by employing phase swallow means. The PFD 242 is utilized for generating a second detection signal according to a phase error or frequency difference between the reference signal S_ref and the frequency-divided signal S_fd. The loop filter 244 is utilized for generating a second control signal according to the second detection signal. The controllable oscillator 246 is utilized for controlling the frequency of the oscillation signal S_osc according to the second control signal. In practice, the PFD 242, loop filter 244, and controllable oscillator 246 can all be implemented with analog circuits. For example, the loop filter 244 can be implemented with a charge pump 262 and low-pass filter 264, and the controllable oscillator 246 can be implemented with a voltage-controllable oscillator (VCO).
For solving the problems in circuit design incurred by the prior art analog PLL, the PLL 200 suppresses an effect caused by variations of the input signal SI by digital processing. In addition, a clock signal (e.g. a quartz oscillation signal) having a frequency being much higher than that of the input signal SI is used as the reference signal S_ref, and the loop bandwidth of the fractional-N PLL 240 is designed to be wide enough for suppressing an effect caused by variations of the oscillation signal S_osc.
Additionally, the fractional-N frequency divider 248 comprises a multi-phase clock generator 272 and a phase selector and frequency divider 274. The multi-phase clock generator 272 is utilized for generating a plurality of clock signals having different phases according to the oscillation signal S_osc generated from the controllable oscillator 246. The phase selector and frequency divider 274 is coupled to the decision circuit 230 and the PFD 242, and is utilized for selectively outputting one of the clock signals having different phases to generate a phase swallowed signal according to an integer divisor value or a non-integer divisor value outputted from the decision circuit 230, and for performing a frequency dividing operation upon the phase swallow signal to generate the frequency-divided signal S_fd. However, this is not intended to be a limitation of the present invention. For example, the controllable oscillator 246 can also be implemented by a ring oscillator having multiple outputs. The ring oscillator with multiple outputs is utilized for generating a plurality of clock signals having different phases, where the clock signals comprise the oscillation signal S_osc. The multi-phase clock generator 272 is therefore omitted. This also falls within the scope of the present invention.
Please refer to
M1+K1/P=M0+K0/P+(dM+dK/P) Equation (1)
wherein parameters M1, K1/P represent the integer part and fractional part respectively of the divisor value.
Each time before the frequency dividing operation is performed, the phase selector and frequency divider 274 generates the phase swallowed signal from the plurality of clock signals having different phases according to the divisor value outputted from the calculation unit 320 by employing phase swallow means. The phase selector and frequency divider 274 then performs the frequency dividing operation upon the phase swallowed signal. Therefore, a phase error between the current and preceding frequency-divided signals S_fd outputted from the fractional-N frequency divider 248 is shorter than the length of a period of the oscillation signal S_osc. The ability of the fractional-N PLL 240 for tracking the reference signal S_ref can be improved. Furthermore, the frequency-divided signal S_fd generated by the fractional-N frequency divider 248 can be used as an operating clock signal for driving the digital loop filter 220 and the decision circuit 230 to improve the ability of the PLL 200 for tracking the input signal S1 further.
In practice, the PLL 200 can also be applied in a control circuit in an LCD device. That is, a horizontal synchronous signal Hsync in the LCD device may be the input signal S1, and the oscillation signal S_osc outputted from the fractional-N PLL 240 (or a signal generated by performing a frequency dividing operation upon the oscillation signal S_osc) may be used as a sampling clock signal (or a clock signal having a higher frequency being a multiple of that of the sampling clock signal) for driving an analog-to-digital converter (ADC) in the LCD device. As mentioned above, the PLL 200 can therefore suppress variations of the horizontal synchronous signal Hsync and sampling clock signal to improve an image quality of the LCD device. This also obeys the spirit of the present invention.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
095139013 | Oct 2006 | TW | national |