Hybrid pigmented hot stitched color liner system

Information

  • Patent Grant
  • 10907888
  • Patent Number
    10,907,888
  • Date Filed
    Monday, June 25, 2018
    6 years ago
  • Date Issued
    Tuesday, February 2, 2021
    3 years ago
Abstract
A method of making a liner for an appliance is provided. The method includes mixing a polymeric capping layer precursor and a pigment additive to form a color capping layer. The method also includes extruding a polymeric base resin to form a polymeric base layer at a base layer formation temperature. The method further includes laminating the polymeric base layer and the color capping layer to form the liner at about the base layer formation temperature.
Description
FIELD OF THE DISCLOSURE

The present disclosure generally relates to liners for appliances. More specifically, the present disclosure generally relates to pigmented liners for appliances.


BACKGROUND

This application relates to liners having particular colors, hues, tints, and the like which are desired for many appliance-related applications, such as refrigeration appliances. As appliance designers have recently placed more emphasis on interior design and lighting (e.g., given the lower energy usage of light-emitting diode (LED) sources), the importance of interior aesthetics has increased for many consumers. Similarly, appliance manufacturers often emphasize aesthetics, including interior design approaches, in attempting to obtain brand differentiation from their competitors.


Liners employed in appliances, including refrigeration appliances, are often produced with extrusion processes. As these liners often are fabricated from two or more layers, conventional approaches to adding color to these liners often involve adding pigments to each extruder employed in making a layer employed in the liner. As pigments are added to multiple extruders, the complexity, repeatability, and manufacturing cost of matching colors increases significantly for a liner that comprises two or more layers having pigments. Further, as significant loadings of pigments in these multi-layer liners are often employed, down-stream processes such as thermal forming used to incorporate the liners into an end product can lead to local discoloration and yield losses. Further, multiple and cost-intensive extrusion runs are often required to fabricate a liner having multiple, extruded layers with pigments that match a particular color, tint, or hue. Still further, these approaches for making a liner having multiple, extruded pigmented layers require one or more adhesives to bond the layers, which increases the cost and can decrease manufacturing yield.


Colored liners currently being utilized in appliances frequently present problems during manufacturing since these liners readily show scratches or defects in the liner surface where the pigment is incorporated. Such scratches imparted on the liner during either the manufacturing process or use by consumers can lead to premature wearing where the inside surface of the refrigeration appliance can look excessively worn or damaged. The flexibility and ability to produce liners where scratches are not readily shown would be beneficial to both manufactures and users for both the production process and downstream aesthetic appearances.


Accordingly, there is a need for methods of making liners, particularly pigmented liners for refrigeration appliances, which are repeatable, with high manufacturing flexibility, and low in cost. There is also a need for pigmented liners that do not readily show scratches or other wear marks that may be transferred to the liner surface during fabrication or consumer use.


SUMMARY OF THE DISCLOSURE

In at least one aspect of the present disclosure, a method of making a liner for an appliance is provided. The method includes mixing a polymeric capping layer precursor and a pigment additive to form a color capping layer; extruding a polymeric base resin to form a polymeric base layer at a base layer formation temperature; and laminating the polymeric base layer and the color capping layer to form the liner at about the base layer formation temperature.


According to another aspect of the present disclosure, a method of making a liner for an appliance is provided. The method includes mixing a polymeric capping layer precursor and a pigment additive to form a color capping layer; extruding a polymeric base layer at a base layer formation temperature into a laminating assembly contemporaneously with the color capping layer to form the liner at about the base layer formation temperature; and forming a textured pattern on an outer surface of the color capping layer.


According to yet another aspect of the present disclosure, a liner for an appliance is provided. The liner includes a polymeric liner that has a bilayer structure. The bilayer structure includes a color capping layer that includes a high-impact polystyrene material and a pigment additive. The bilayer structure also includes a polymeric base layer that includes a high-impact polystyrene material and a polyethylene material. The capping layer and the base layer are directly coupled with substantially no interfaces between them.


These and other features, advantages, and objects of the present device will be further understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed description of the device, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the device, there are shown in the drawings, certain embodiment(s) that are presently preferred. It should be understood, however, that the device is not limited to the precise arrangements and instrumentalities shown. Drawings are not necessary to scale. Certain features of the device may be exaggerated in scale or shown in schematic form in the interest of clarity and conciseness.


In the drawings:



FIG. 1 is a schematic of a refrigeration appliance including a liner according to aspects of the present disclosure;



FIG. 2A is a schematic of an enlarged cross-section of the liner at region II marked in FIG. 1 comprising a color capping layer, a barrier layer, and a polymeric base layer, according to some aspects of the present disclosure;



FIG. 2B is a schematic of an enlarged cross-section of the liner at region II marked in FIG. 1 comprising a color capping layer and a polymeric base layer according to some aspects of the present disclosure;



FIG. 2C is a schematic view on an enlarged cross-section of the liner at region II marked in FIG. 1 comprising a color capping layer and a pigmented polymeric base layer according to some aspects of the present disclosure;



FIG. 3A is a flow-chart schematic of a method for making a liner for an appliance according to some aspects of the present disclosure;



FIG. 3B is an illustrated schematic of the method for making a liner for an appliance according to some aspects of the present disclosure;



FIG. 4A is a schematic of a hot lamination process according to some aspects of the present disclosure;



FIG. 4B is a schematic of a hot lamination process according to other aspects of the present disclosure; and



FIG. 5 is a schematic for shaping the liner into a final liner to be installed in a refrigeration appliance according to some aspects of the present disclosure.





DETAILED DESCRIPTION

Before the subject device is described further, it is to be understood that the device is not limited to the particular embodiments of the device described below, as variations of the particular embodiments may be made and still fall within the scope of the appended claims. It is also to be understood that the terminology employed is for the purpose of describing particular embodiments or aspects of embodiments, and is not intended to be limiting. Instead, the scope of the present device will be established by the appended claims.


Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range, and any other stated or intervening value in that stated range, is encompassed within the device. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges, and are also encompassed within the device, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the device.


In this specification and the appended claims, the singular forms “a,” “an” and “the” include plural reference unless the context clearly dictates otherwise.


Referring to FIGS. 1-5, a method 100 of making a liner 10 for an appliance 14 is provided. The method 100 includes mixing a polymeric capping layer precursor 15 and a pigment additive 16 to form a color capping layer 18 (step 104). The method 100 further includes extruding a polymeric base resin 20 to form a polymeric base layer 22 at a base layer formation temperature (step 108). The method 100 may further include laminating a barrier layer 26 between the polymeric base layer 22 and the color capping layer 18 to form the liner 10 at about the base layer formation temperature (step 112). The method may additionally include forming a textured pattern 24 on an outer surface 28 of the color capping layer 18 (step 116). The formed liner 10 includes a capping region 30, an optional barrier region 34, and a base region 38 where the capping region 30 includes the pigment additive 16. The method 100 additionally may include shaping the liner 10 into a final liner 74 at a shaping temperature where the final liner 74 is configured and/or is suitable for assembly into a refrigeration appliance (step 120).


Referring now to FIG. 1, the refrigeration appliance 14 is provided in an exemplary form that includes the liner 10 according to some aspects. As shown, the liner 10 is mounted to a cabinet 42 of the refrigeration appliance 14. In some configurations, the liner 10 is mounted to a foam layer 46 (see FIG. 2) installed on an interior surface of the cabinet 42. In other configurations, the liner 10 may be mounted directly to the cabinet 42. Typically, the liner 10 is attached, coupled, joined, or otherwise fastened to the cabinet 42 through the insulating foam 46, adhesive, bonding agent, mechanical fastener (e.g., rivets, screws, etc.) or another comparable approach. However, the liner 10 itself does not include any internal adhesives and, according to some aspects, includes one or more pigment additives 16 in the color capping layer 18 only (see FIGS. 2A-28).


Referring now to FIG. 2A, the liner 10 (e.g., as incorporated into the appliance 14 depicted in FIG. 1) includes the color capping layer 18 and corresponding capping region 30, the polymeric base layer 22 and corresponding base region 38, and the barrier layer 26 and corresponding barrier region 34. The liner 10 and its combination of the barrier layer 26 sandwiched between the color capping layer 18 and polymeric base layer 22 may be positioned directly onto the foam layer 46. In some aspects, the foam layer 46 may include closed-cell and/or open-cell voids, air bubbles, and/or pores 50 distributed evenly throughout the foam layer 46. In some aspects, the foam layer 46 imparts an insulation layer between the liner 10 and the wrapper and/or cabinet 42 of the appliance 14.


The polymeric capping layer precursor used to form the color capping layer 18 may include a high-impact polystyrene (HIPS), polymethylmethacrylate (PMMS), polystyrene (PS), acrylonitrile butadiene styrene (ABS), polyurethane (PU), polypropylene (PP), polyethylene (PE), or combinations thereof. In some aspects, the polymeric capping layer precursor selected for use in the color capping layer 18 may be any known thermoplastic known in the art suitable for use in an extrusion process. In other aspects, the polymeric capping layer precursor used to form the color capping layer 18 may include a high-impact polystyrene (1115 HIPS) precursor material. As also depicted in FIG. 2A, the color capping layer 18 can be configured to have a thickness 54 (e.g., through extrusion, rolling, etc.) of about 0.10 mm to about 1.5 mm. In some aspects, the thickness 54 of the color capping layer 18 may range from about 0.25 mm to about 0.75 mm. Note that the thickness 54 of the color capping layer 18 is given in approximate dimensions, as would be typically associated with the color capping layer 18 being in a sheet or layer form before incorporation into the liner 10. The pigment additive 16 may be incorporated and/or disbursed within the color capping layer 18 at a level sufficient to impart a desired color, hue, tinting, or the like in the liner 10.


Still referring to FIG. 2A, the textured pattern 24 may be positioned on the outer surface 28 of the color capping layer 18 of the liner 10. The textured or granular pattern 24 is beneficial for the color and aesthetic preservation of the liner 10 over time since the textured pattern 24 can help protect the color capping layer 18 from visibly showing scratches, rub marks, gouges, and/or scrapes. The textured pattern 24 may include a variety of different surface patterns formed on the colored capping layer 18, for example, pyramidal, diamond, circular, trapezoidal, square, tetragonal, hexagonal, polygonal, or a combination of shapes thereof. In some aspects, the textured pattern 24 may include a 2D surface pattern, a 3D surface pattern, or a combination thereof. The textured or granular pattern 24 helps prevent visible markings or wear of the outer surface 28 of the liner 10 by offering an alternative to a glossy or smooth finished surface that can readily show marks or wear from the manufacturing process or normal wear. In some aspects, the textured or granular pattern 24 can absorb a scratch, scuff, and/or gouge while the textured pattern 24 can blend in or camouflage the respective mark. In some examples, the textured pattern 24 may be omitted such that the outer surface 28 is provided with a smooth appearance.


Still referring to FIG. 2A, the color capping layer 18 of the liner 10 may include one or more pigment additives 16, configured to impart color, tinting, or the like into the liner 10. As understood by those with ordinary skill in the field of the disclosure, various metallic, ceramic, polymeric pigments, and colorants can be added at various concentrations within the polymeric capping layer precursor employed in the color capping layer 18 of the liner 10. In some aspects, the pigment additive 16 is a granulated pigment. For example, titanium oxide can be included as the pigment additive 16 to achieve a white color. In other aspects, the liner 10 having a charcoal-sparkle appearance can be created by employing carbon black in one or more of quartz, mica, and stainless steel as the pigment additive 16. In some aspects of the disclosure, the pigment additives 16 are incorporated into the capping region 30 of the color capping layer 18 at a concentration level and disbursed to ensure that the liner 10 exhibits a particular color, hue, or the like, as desired by the user of the appliance 14. In some aspects, no additional pigment additives 16 are used, directly or indirectly transferred, and/or incorporated in the base region 38 of the polymeric base layer 22 to obtain the desired color, hue, or tinting for the liner 10. According to other aspects, the pigment additives 16 may be incorporated into the capping region 30 and the base region 38 at concentrations sufficient for the liner 10 to obtain the desired color, hue, or tinting. In some aspects, the mixing step 104 includes mixing the polymeric capping layer precursor with about 5% to about 30% pigment additive 16 by weight of the color capping layer 18. According to some aspects, the pigment additives 16 are incorporated into the capping region 30 of the color capping layer 18 at a concentration from about 10% to about 25% (by weight of the capping layer 18). Optionally, the pigment additives 16 may be incorporated into the capping region 30 at a concentration from about 1% to about 10% (by weight of the capping layer 18). In still other aspects, the concentration of the pigment additive 16 in the capping region 30 of the color capping layer 18 is loaded between about 15% to about 25% (by weight of the capping layer 18) and in the base region 38 of the polymeric base layer 22, if present, from about 3% to about 5% (by weight of the base layer 22). In some aspects, the color capping layer comprises from about 70% to about 95% by weight polymeric capping layer precursor and from about 5% to about 30% pigment additive by weight.


Still referring to FIG. 2A, the barrier layer 26 and corresponding barrier region 34 may help protect the liner 10 from wrinkling, deformations, and/or delamination effects caused during manufacturing or end use. In some aspects, the barrier layer 26 may prevent the diffusion of volatiles and other potential contaminants associated with injecting the foam 46 positioned between the liner 10 and the cabinet 42. In some aspects, the contaminants associated with the foam 46 that could discolor or lead to other deteriorating defects in the liner 10 have no negative effects on the color capping layer 18 disclosed herein. The barrier layer 26 may be sandwiched directly between the color capping layer 18 and polymeric base layer 22 to form the liner 10 with no additional adhesives and/or bonding agents used between the respective layers 18, 22, 26. In some aspects, the barrier region 34 includes a polyethylene material used in combination with a material employed in the base region 38, typically a material comparable to that employed in the capping layer 18 or capping region 30, e.g., a high-impact polystyrene (HIPS). In some aspects, the barrier layer 26 may be formed using a low density polyethylene, a high density polyethylene, a polypropylene, a polycarbonate, a polyester, a polyamide, a polystyrene, a high-impact polystyrene (HIPS), or a combination thereof. According to some aspects, additional compatibilizers, as understood by those with ordinary skill in the art, are added to the barrier region 34 to ensure that the polyethylene layers and HIPS material within the barrier region 34 are combined without the formation of voids, bubbles, delamination defects, etc. In some aspects, the barrier region 34 may include one or more barrier layers 26 comprising a polyethylene material, layered on the respective material of the base layer 22. As also depicted in FIG. 2, the barrier region 34 of the barrier layer 26 can be configured with a thickness 58 (e.g., through extrusion, rolling, etc.) of about 0.10 mm to about 1.5 mm. In some aspects, the barrier layer 26 has a thickness 58 of about 0.25 mm to about 0.75 mm. Note that the thickness 58 of the barrier layer 26 is given in approximate dimensions, as would be typically associated with the barrier layer 26 being in a sheet or layer form before incorporation into the liner 10.


Referring to FIG. 2A, the polymeric base layer 22 may provide structural support to the liner 10 in addition to spacing the pigment additives 16 of the color capping layer 18 away from the surface of the liner 10. By putting distance or space between the outer surface of the liner 10 and the color capping layer 18, no contact may be made between the more delicate colored capping layer 18 and the user and/or potential food products stored in the appliance 14. The polymeric base resin 20 used to form the base region 38 of the polymeric base layer 22 may include a high-impact polystyrene (HIPS), polymethylmethacrylate (PMMS), polystyrene (PS), acrylonitrile butadiene styrene (ABS), polyurethane (PU), polypropylene (PP), polyethylene (PE), or combinations thereof. In some aspects, the polymeric base resin 20 selected for use in the base layer 22 are thermoplastics, suitable for use in an extrusion process. In other aspects, the polymeric base resin 20 (see FIGS. 4A and 4B) used to form the polymeric base layer 22 may include a high-impact polystyrene (1170 HIPS) precursor material. As also depicted in FIG. 2A, the base region 38 of the polymeric base layer 22 can be configured with a thickness 62 (e.g., through extrusion, rolling, etc.) of about 0.10 mm to about 1.5 mm. In some aspects, the polymeric base layer 22 has thickness 62 of about 0.25 mm to about 0.75 mm. Note that the thickness 62 of the base layer 22 is given in approximate dimensions, as would be typically associated with the polymeric base layer 22 being in a sheet or layer form before incorporation into the liner 10.


Still referring to FIG. 2A, the liner 10 is configured such that the capping region 30, the barrier region 34, and the base region 38 (i.e., for liner 10) are joined with substantially no interfaces between them. The term “interface”, as defined herein, is meant to include boundaries marked by structural defects such as cracks, folds, or bubbles where two layers (e.g. 18, 22, and 26) meet and interact. When layers made from different polymeric materials (e.g. 18, 22, and/or 26) are laminated together, the blending of the respective polymeric materials at the junction between the layers is not considered an “interface” because the boundary is not marked by one or more defects that may lead to a decrease in structural integrity. In some aspects, the liner 10, including the capping region 30, the barrier region 34, and/or the base region 38 are joined with substantially no interfaces between the respective layers forming a uniform bilayer or trilayer with the appearance of a monolayer. That is, a cross-section of the liner 10 when viewed under low magnification will not reveal any indications of an interface or interfaces between the capping region 30, the barrier region 34, and/or the base region 38. Advantageously, the lack of any appreciable interfaces between these two or three regions significantly reduces the likelihood that these regions will delaminate during subsequent processing (e.g., thermal-forming of the liner 10 into a refrigeration appliance 14, such as depicted in FIG. 1) and other demands of the application environment of the liner 10. Another advantage of these liners 10 is that the base region 38, the barrier region 34, and/or the capping region 30 for the liner 10 are configured with substantially no interfaces between them, thus eliminating the necessity of employing adhesives or other bonding agents to join them. As these implementations of the liner 10 do not require adhesives, they can be fabricated, e.g. through lamination processes, at a lower cost and using faster fabrication processes. Further, the lack of adhesives employed between these regions tends to result in improved color uniformity for these liners 10 in comparison to conventional, pigmented multi-layer liners with layers joined with internal adhesives. In some aspects, the interfaces between the barrier layer 26 and the base layer 22, the barrier layer 26 and the capping layer 18, and/or between the base layer 22 and the capping layer 18 include a polymer blend where the respective polymeric resins used in the respective layers flow and mix to form the corresponding polymer blends at the interface.


Referring now to FIGS. 2B and 2C, in some aspects, the liner 10 may not include the barrier layer 26 and corresponding barrier region 34. The liner 10 without the barrier layer 26 includes the color capping layer 18 having pigment additives 16 evenly dispersed throughout. The color capping layer 18 additionally includes the outer surface 28 having the textured pattern 24 and an inner surface directly coupled or layered onto the polymeric base layer 22. The polymeric base layer 22 may be positioned directly onto the foam layer 46 having one or more voids 50 where the foam layer 46 is sandwiched directly between the polymeric base layer 22 and the wrapper and/or cabinet 42. In some examples, the base layer 22 may include the pigment additives 16 dispersed throughout. For example, the base layer 22 may be provided with a lower concentration of the pigment additive 16 than the concentration that is provided in the color capping layer 18. In one specific example, the color capping layer 18 may be provided with a composition of 70% HIPS and 30% pigment additive 16 while the base layer 22 is provided with a composition of 70% HIPS and 30% PE mixture, where the PE mixture has a composition of 96% PE and 4% pigment additive 16. However, the present disclosure is not so limited. For example, the PE mixture may be provided with a composition that utilizes the pigment additive 16 at a concentration of at least about 1%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, and/or combinations or ranges thereof, with a balancing concentration of polyethylene (PE). It may be beneficial to provide the pigment additive 16 in the base layer 22 at a concentration that is equal to, or generally corresponds with (e.g., within about 10%), the concentration of the pigment additive 16 in the color capping layer 18. The capping layer thickness 54 and base layer thickness 62 may include the same thickness values described herein. Advantages of not using the barrier layer 26 in the liner 10 can include a reduction in weight, a reduction in liner 10 thickness, and/or a simpler and more efficient manufacturing process.


Referring now to FIGS. 3A and 3B, the method 100 of making the liner 10 for the refrigeration appliance 14 is depicted in schematic form. The method 100 includes the mixing step 104 for mixing the polymeric capping layer precursor and the pigment additive 16 to form the color capping layer 18. In some aspects, the mixing step 104 includes mixing the polymeric capping layer precursor with about 5% to about 30% pigment additive 16 by weight or from about 15% to about 25% pigment additive 16 by weight of the capping layer 18. The mixing step 104, for example, can be conducted within an extruder or in a separate vessel or container. According to some aspects, the mixing step 104 is conducted such that the polymeric capping layer precursor and the pigment additive 16 are mixed in particulate form. In some aspects, the mixing step 104 is conducted such that the color capping layer 18 exhibits a predetermined color. In some aspects, the color capping layer 18 includes the polymeric capping layer precursor from about 50% to about 98% by weight, from about 60% to about 95% by weight, from about 70% to about 95% by weight, or from about 75% to about 95% by weight of the color capping layer 18.


Referring again to FIGS. 3A and 3B, the method 100 of making the liner 10 for the appliance 14 further includes the extruding step 108 for forming the polymeric base layer 22. In some aspects, the extruding step 108 is conducted in an extruder suitable for extrusion of thermoplastic materials into polymeric layers. According to some aspects, the base layer formation temperature is set between about 120° F. to about 425° F., about 120° F. to about 160° F., from about 275° F. to about 400° F., or from about 290° F. to about 370° F. In other aspects, the extruding step 108 is conducted with other apparatuses to accomplish the same or similar function as would be understood by those with ordinary skill in the art, e.g., hot-pressing apparatus, injection molding apparatus, etc.


Still referring to FIGS. 3A and 3B, the method 100 of making the liner 10 of the appliance 14 further includes the laminating step 112 for laminating the barrier layer 26 between the color capping layer 18 and the polymeric base layer 22 to form the liner 10 at about the base layer formation temperature. According to some aspects of the disclosure, the laminating step 112 of the method 100 is conducted by using rollers, e.g. one or more calendaring rollers 70 (see FIGS. 4A and 4B). Accordingly, the laminating step 112 using rollers can involve rolling the polymeric base layer 22, the color capping layer 18, and the barrier layer 26 together, at about the base layer formation temperature to form the liner 10. By rolling these layers together at about the same temperature in which they were extruded or otherwise processed in earlier steps, the laminating step 112 ensures that these layers are joined together with substantially no interfaces between them. In some aspects, the liner 10 can be characterized as a bilayer or trilayer appearing as a monolayer having substantially no interfaces between the two or three respective regions 30, 34, and/or 38. In some aspects, the lamination step 112 is conducted to form the liner 10 having substantially no interfaces between the capping region 30, the barrier region 34, and the base region 38. In some aspects, the laminating step is conducted such that the color capping layer 18 exhibits a predetermined color.


In some aspects, the lamination step 112 can be heated to about the base layer formation temperature, e.g., about 275° F. to about 400° F. That is, a temperature that is about the base layer formation temperature allows for efficient laminating of the respective layers 18, 22, and 26. In some aspects, temperatures considered “about the base layer formation temperature” include temperatures less than or equal to 3° F., less than or equal to 5° F., less than or equal to 10° F., or less than or equal to 15° F. of the melting temperature of the polymeric base resin 20 or blend used. The pressure applied by the rollers in the lamination step 112, and the fact that the rollers are set to approximately the base layer formation temperature, ensures that the capping layer 18, base layer 22 and barrier layer 26 are merged together during the lamination step 112 to form the uniform liner 10.


Referring again to FIGS. 3A and 3B, the method 100 of making the liner 10 can be conducted with an additional shaping step (step 120) after formation of the liner in steps 104, 108, 112, and 116. Step 116 may include sub-steps 116a and 116b, as depicted in FIG. 5 according to some aspects of the present disclosure. Referring now to FIG. 5, the step 120 of method 100 can be conducted by shaping the liner 10 into a final liner 74 using a shaping temperature suitable for subsequent assembly into the refrigeration appliance. To impart a desired shape to the liner 10, the liner 10 may be heat pressed or compression molded between a heated top mold 72a and a heated bottom mold 72b (step 120a). The final liner 74 is formed to a desired shape/design and is configured for assembly into the appliance 14 (e.g., the refrigeration appliance 14 as shown in FIG. 1). In some aspects, the shaping step 120 is conducted according to a thermal-forming process, typically at a temperature that approaches, but does not exceed, the base layer formation temperature, employed in earlier steps of the method 100. In some aspects, the shaping temperature of the shaping step may range between temperatures from about 200° F. to about 350° F.


Referring now to FIGS. 4A and 4B, in some aspects, the method 100 of making the liner 10 of the appliance 14 may reduce energy usage and timing needs by directly extruding the polymeric base resin 20 and corresponding polymeric base layer 22 into a laminating assembly 64. In these aspects, as the polymeric base layer 22 is freshly formed using an extruder 66 where the polymeric base layer 22 is still hot from the extrusion and forming processes, the polymeric base layer 22 is directly positioned into the laminating assembly 64 contemporaneously with the color capping layer 18 and barrier layer 26 loaded from a pulley roller 68 to be laminated into the liner 10 using one or more rollers 70. At least one of the advantages of laminating the freshly formed and still hot polymeric base layer 22 with the color capping layer 18 and barrier layer 26 is the ability to save energy from not having to heat each of the respective layers 18, 22, 26 to about the base layer formation temperature. Since the temperature of the polymeric base layer 22 is about the base layer formation temperature upon being formed, the polymeric base layer 22 may be readily laminated to the barrier layer 26 and color capping layer 18 to form the liner 10 with substantially no interfaces between the respective layers (see FIG. 2A). In some aspects, no barrier layer 26 may be incorporated and the polymeric base layer 22 may be readily and directly laminated to the color capping layer 18 to form the liner 10 with substantially no interfaces between the respective layers (see FIG. 2B). In some aspects, the base layer formation temperature may be from about 120° F. to about 160° F., from about 125° F. to about 350° F., from about 175° F. to about 325° F., or from about 200° F. to about 275° F. In some aspects, the base layer formation temperature is above their glass transition temperature for amorphous polymers or when the amorphous polymer begins to flow and/or above their melting point for crystalline polymers or when the crystalline polymer begins to flow.


Still referring to FIGS. 4A and 4B, the method 100 of making the liner 10 includes forming the textured pattern 24 on the outer surface 28 on the color capping layer 18 (step 116). In some aspects, the textured pattern 24 may be formed into the outer surface 28 on the color capping layer 18 using a granular pattern mold roller 70a. Depending on the desired aesthetic and color appearance desired for the liner 10, the granular pattern mold roller 70a can be configured to impart or mold, for example, pyramidal, diamond, circular, trapezoidal, square, tetragonal, hexagonal, polygonal, or a combination of shapes thereof into the outer surface 28 of the color capping layer 18. In some aspects, the textured pattern 24 may include a 2D surface pattern, a 3D surface pattern, or a combination thereof. The added textured or granular pattern 24 helps maintain color, prevent visible markings, and/or prevent visible wear of the outer surface 28 of the liner 10 by offering an alternative to a glossy or smooth finished surface that readily can show marks or wear from the manufacturing process or normal wear.


Referring further to FIGS. 4A and 4B, in some aspects of the present disclosure, the liner 10 is provided with the color capping layer 18 and the base layer 22 while the barrier layer 26 is excluded. The polymeric base resin 20 used to form the polymeric base layer 22 may include a high-impact polystyrene (HIPS) precursor material, such as 1170 HIPS, as well as polyethylene (PE). For example, the base layer 22 may include a mixture of 70% high-impact polystyrene (HIPS) and a polyethylene (PE) mixture. The polyethylene (PE) mixture may include a loading concentration of high-impact polystyrene (HIPS). For example, the polyethylene (PE) mixture may include a loading concentration of high-impact polystyrene (HIPS) of at least about 2% HIPS, at least about 4% HIPS at least about 6% HIPS, at least about 8% HIPS, at least about 10% HIPS, at least about 12% HIPS, at least about 14% HIPS, at least about 16% HIPS, at least about 18% HIPS, at least about 20% HIPS, and/or combinations or ranges thereof. Accordingly, one specific example of the composition of the base layer 22 may be 70% HIPS and 30% PE mixture, where the PE mixture has a composition of 90% PE and 10% HIPS by weight. The color capping layer 18 may have a composition similar to those described herein, such as high-impact polystyrene (HIPS) with a loading concentration of the pigment additive 16 (see FIG. 2B). For example, the color capping layer 18 may be made with a composition that includes high-impact polystyrene (HIPS) at a concentration in the range of at least about 70% to less than about 99% and a loading of the pigment additive 16 of at least about 1% to less than about 30%.


Referring still further to FIGS. 4A and 4B, in some aspects of the present disclosure, the color capping layer 18 and the base layer 22 may each be provided with the pigment additive 16 (see FIG. 2C). In such an example, the base layer 22 may be provided with a lower concentration of the pigment additive 16 than the concentration that is provided in the color capping layer 18. In one specific example, the color capping layer 18 may be provided with a composition of 70% HIPS and 30% pigment additive 16 while the base layer 22 is provided with a composition of 70% HIPS and 30% PE mixture, where the PE mixture has a composition of 96% PE and 4% pigment additive 16. However, the present disclosure is not so limited. For example, the PE mixture may be provided with a composition that utilizes the pigment additive 16 at a concentration of at least about 1%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, and/or combinations or ranges thereof, with a balancing concentration of polyethylene (PE). It may be beneficial to provide the pigment additive 16 in the base layer 22 at a concentration that is equal to, or generally corresponds with (e.g., within about 10%), the concentration of the pigment additive 16 in the color capping layer 18. The color capping layer 18 may be provided with any of the compositions disclosed herein, including combinations thereof without departing from the concepts disclosed herein. Additionally, the base layer 22 may be provided with any one of the compositions disclosed herein or combinations thereof. Further, the base layer 22 may be provided with a composition that is a hybrid of the compositions disclosed herein for the color capping layer 18, the base layer 22, and/or the barrier layer 26. By providing the base layer 22 with the pigment additive 16, in the event of defects or deformations to the liner 10, the defects or deformations may be at least partially blended with the surrounding area such that the defect or deformation remains hidden or barely perceptible to the user.


One function of the barrier layer 26, is to protect the color capping layer 18 from defects and deformations that result from the foam layer 46 attacking or degrading the base layer 22. The foam layer 46, in some instances, can penetrate through the base layer 22 and interact directly with the barrier layer 26. In the bilayer examples disclosed herein, the barrier layer 26 is omitted. Accordingly, the foam layer 46 may pose a greater threat to the integrity of the color capping layer 18 if the foam layer 46 is allowed to interact with the color capping layer 18. Therefore, the formulation of the base layer 22 in its various aspects and examples has been designed as a hybrid composition that may be provided with characteristics of both the base layer 22 and the barrier layer 26 while remaining a uniform composition. By adjusting the composition of the base layer 22, the foam layer 46 is not permitted to reduce the thickness of the liner 10 prior to the progress of the foam layer 46 being halted by the barrier layer 26. Instead, the base layer 22 immediately resists the progress of the foam layer's 46 degradation of the liner 10. An additional advantage of the bilayer structure is that the color capping layer 18 and the base layer 22 are more suitable for regrinding of scrap material such that manufacturing costs are reduced. In addition to significant manufacturing cost savings by opening the possibility for regrinding of scrap material, the present disclosure significantly reduces the complexity of the production process by laminating the liner 10 as a bilayer. By laminating two layers together rather than three, fewer opportunities exist for defects, deformations, and imperfections in the liner 10. For example, laminating a third layer onto a bilayer can result in deformations in not only the junction between the third layer and the bilayer, but also can result in a disruption in the junction between first and second layers that have already been laminated into the bilayer. The use of the bilayer and the hybrid composition for the base layer 22 are able to decrease cost and waste while maintaining or improving a lifecycle of the liner 10, which ultimately can decrease costs associated with recalls and/or warranty repairs. The hybrid composition of the base layer 22 prevents deformation, defects, and general depolymerization or dissolving of the base layer 22 that can result from insulating foams that are often utilized in the appliance 14. Accordingly, the hybrid composition of the base layer 22 can reduce or eliminate the drawbacks of utilizing a separate barrier layer 26 while maintaining the benefits provided by the barrier layer 26.


Trilayer structures that employ the barrier layer 26 may be provided with compositions that include a mixture of polyethylene (PE) and polyethylene terephthalate (PET). For example, the barrier layer 26 may be provided with a composition of 90% PE (e.g., 1170 HIPS) and 10% PET. While the incorporation of the barrier layer 26 helps to protect against wrinkling and other deformations, the barrier layer 26 can introduce difficulties with manufacturing, costs, and performance of the liner 10. For example, the barrier layer 26 is often blended and produced as a separate layer for the trilayer structures, which increases costs, and the barrier layer 26 is often difficult or impossible to regrind when issues arise. When polyethylene terephthalate (PET) is present in the barrier layer 26, and the scrap barrier layer 26 is mixed with the color capping layer 18 and/or the base layer 22 for remanufacturing, then serious issues arise with thermoforming and color matching of the liner 10.


Referring to FIG. 5, the final liner 74 may be assembled with a wrapper 78 (e.g. the cabinet 42 as shown in FIG. 1) and a trim breaker 82 to form an insulation structure (step 120b). The insulation structure may then be filled with the foam layer 46 or other insulative material known in the art to form the fully insulated cabinet 42 structure.


The method 100 of making liners 10 and their corresponding bilayer or trilayer structures result in liners 10 having better surface properties to prevent scratching or other visible aberrations of the color and/or texture. For example, the barrier layer 26 in combination with the textured pattern 24 positioned on the outer surface 28 of the liner 10 hides visible scratches or markings on the color capping layer 18. The ability to position the pigment additive 16 and the color capping layer 18 on one side of the liner 10 with the textured pattern 24 positioned on the outer surface 28 of the liner 10 allows the imparted color, tinting, hue or the like from visibly showing damage during the manufacturing or end use of the appliance 14.


It is understood that the descriptions outlining and teaching the method of making the liner 10 previously discussed, which can be used in any combination, apply equally well to the liner 10 for the appliance 14. Accordingly, the liner 10 includes a polymeric liner having the bilayer or trilayer structure where the bilayer or trilayer structure includes: the color capping layer 18 including a high-impact polystyrene material and the pigment additive 16 wherein the outer surface 28 of the color capping layer 18 may include the textured pattern 24; the polymeric base layer 22 including a high-impact polystyrene material and optionally the pigment additive 16; and, in some examples, the barrier layer 26 including a polyethylene material wherein the barrier region 34 is disposed between the color capping layer 18 and the polymeric base layer 22. The color capping layer 18, barrier layer 26, and the polymeric base layer 22 are directly coupled with substantially no interfaces between them in the trilayer structure. The color capping layer 18 and the polymeric base layer 22 are directly coupled with substantially no interfaces between them in the bilayer structure.


It will be understood by one having ordinary skill in the art that construction of the described device and other components is not limited to any specific material. Other exemplary embodiments of the device disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.


For purposes of this disclosure, the term “coupled” (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.


It is also important to note that the construction and arrangement of the elements of the device as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.


It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present device. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.


It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present device, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.


The above description is considered that of the illustrated embodiments only. Modifications of the device will occur to those skilled in the art and to those who make or use the device. Therefore, it is understood that the embodiments shown in the drawings and described above are merely for illustrative purposes and not intended to limit the scope of the device, which is defined by the following claims as interpreted according to the principles of patent law, including the Doctrine of Equivalents.

Claims
  • 1. A method of making a liner for an appliance, the method comprising: mixing a polymeric capping layer precursor and a pigment additive to form a color capping layer such that a pigment concentration in the color capping layer is at least about 10% by weight;extruding a polymeric base resin to form a polymeric base layer at a base layer formation temperature, wherein the polymeric base layer comprises from about 1% to about 30% of the pigment additive by weight; andlaminating the polymeric base layer and the color capping layer to form the liner at about the base layer formation temperature.
  • 2. The method according to claim 1, wherein the color capping layer and the polymeric base layer are each formed using at least one of a high-impact polystyrene (HIPS), polymethylmethacrylate (PMMS), polystyrene (PS), acrylonitrile butadiene styrene (ABS), polyurethane (PU), polypropylene (PP), polyethylene (PE), or a combination thereof.
  • 3. The method according to claim 1, wherein the color capping layer comprises from about 70% to about 90% by weight polymeric capping layer precursor and from about 10% to about 30% pigment additive by weight.
  • 4. The method according to claim 1, wherein the base layer formation temperature is from about 120° C. to about 160° C.
  • 5. The method according to claim 1, wherein the mixing step is conducted with an extruder and the laminating step is conducted with one or more calendaring rollers.
  • 6. The method according to claim 1, further comprising: forming a textured pattern on an outer surface of the color capping layer.
  • 7. The method according to claim 1, wherein the mixing and the laminating steps are conducted such that the color capping layer exhibits a predetermined color.
  • 8. The method according to claim 1, further comprising: shaping the liner into a final liner at a shaping temperature wherein the final liner is suitable for assembly into a refrigeration appliance.
  • 9. The method according to claim 1, wherein a thickness of the color capping layer is between about 0.10 mm and less than 1.0 mm.
  • 10. The method according to claim 1, wherein the step of laminating the polymeric base layer and the color capping layer to form the liner at about the base layer formation temperature is performed as a hot lamination process.
  • 11. A method of making a liner for an appliance, the method comprising: mixing a polymeric capping layer precursor and a pigment additive to form a color capping layer such that a pigment concentration in the color capping layer is at least about 10% by weight, wherein a thickness of the color capping layer is between about 0.10 mm and less than 1.0 mm;extruding a polymeric base resin to form a polymeric base layer at a base layer formation temperature, wherein the polymeric base layer comprises from about 1% to about 30% of the pigment additive by weight; andlaminating the polymeric base layer and the color capping layer to form the liner at about the base layer formation temperature.
  • 12. The method according to claim 11, wherein the color capping layer comprises from about 70% to about 90% by weight polymeric capping layer precursor and from about 10% to about 30% pigment additive by weight.
  • 13. The method according to claim 11, wherein the step of laminating the polymeric base layer and the color capping layer to form the liner at about the base layer formation temperature is performed as a hot lamination process.
  • 14. The method according to claim 11, wherein the base layer formation temperature is from about 120° C. to about 160° C.
  • 15. A method of making a liner for an appliance, the method comprising: mixing a polymeric capping layer precursor and a pigment additive to form a color capping layer such that a pigment concentration in the color capping layer is at least about 10% by weight, wherein a thickness of the color capping layer is between about 0.10 mm and less than 1.0 mm;extruding a polymeric base resin to form a polymeric base layer at a base layer formation temperature, wherein the polymeric base layer comprises from about 1% to about 30% of the pigment additive by weight; andlaminating the polymeric base layer and the color capping layer to form the liner at about the base layer formation temperature, wherein the laminating is performed as a hot lamination process.
  • 16. The method according to claim 15, wherein the color capping layer comprises from about 70% to about 90% by weight polymeric capping layer precursor and from about 10% to about 30% pigment additive by weight.
  • 17. The method according to claim 15, wherein the base layer formation temperature is from about 120° C. to about 160° C.
US Referenced Citations (449)
Number Name Date Kind
948541 Coleman Feb 1910 A
1275511 Welch Aug 1918 A
1849369 Frost Mar 1932 A
1921576 Muffly Aug 1933 A
2108212 Schellens Feb 1938 A
2128336 Torstensson Aug 1938 A
2164143 Munters Jun 1939 A
2191659 Hintze Feb 1940 A
2318744 Brown May 1943 A
2356827 Coss Aug 1944 A
2432042 Richard Dec 1947 A
2439602 Heritage Apr 1948 A
2439603 Heritage Apr 1948 A
2451884 Stelzer Oct 1948 A
2538780 Hazard Jan 1951 A
2559356 Hedges Jul 1951 A
2729863 Kurtz Jan 1956 A
2768046 Evans Oct 1956 A
2817123 Jacobs Dec 1957 A
2942438 Schmeling Jun 1960 A
2985075 Knutsson-Hall May 1961 A
3086830 Malia Apr 1963 A
3125388 Costantini et al. Mar 1964 A
3137900 Carbary Jun 1964 A
3218111 Steiner Nov 1965 A
3258883 Louis et al. Jul 1966 A
3290893 Haldopoulos Dec 1966 A
3338451 Kesling Aug 1967 A
3353301 Heilweil et al. Nov 1967 A
3353321 Heilweil et al. Nov 1967 A
3358059 Snyder Dec 1967 A
3379481 Fisher Apr 1968 A
3408316 Mueller et al. Oct 1968 A
3471416 Fijal Oct 1969 A
3597850 Jenkins Aug 1971 A
3607169 Coxe Sep 1971 A
3632012 Kitson Jan 1972 A
3633783 Aue Jan 1972 A
3634971 Kesling Jan 1972 A
3635536 Lackey et al. Jan 1972 A
3670521 Dodge, III et al. Jun 1972 A
3688384 Mizushima et al. Sep 1972 A
3769770 Deschamps et al. Nov 1973 A
3862880 Feldman Jan 1975 A
3868829 Mann et al. Mar 1975 A
3875683 Waters Apr 1975 A
3910658 Lindenschmidt Oct 1975 A
3933398 Haag Jan 1976 A
3935787 Fisher Feb 1976 A
4005919 Hoge et al. Feb 1977 A
4006947 Haag et al. Feb 1977 A
4043624 Lindenschmidt Aug 1977 A
4050145 Benford Sep 1977 A
4067628 Sherburn Jan 1978 A
4170391 Bottger Oct 1979 A
4242241 Rosen et al. Dec 1980 A
4260876 Hochheiser Apr 1981 A
4303730 Torobin Dec 1981 A
4303732 Torobin Dec 1981 A
4325734 Burrage et al. Apr 1982 A
4330310 Tate, Jr. et al. May 1982 A
4332429 Frick Jun 1982 A
4396362 Thompson et al. Aug 1983 A
4417382 Schilf Nov 1983 A
4492368 DeLeeuw et al. Jan 1985 A
4529368 Makansi Jul 1985 A
4548196 Torobin Oct 1985 A
4583796 Nakajima et al. Apr 1986 A
4660271 Lenhardt Apr 1987 A
4671909 Torobin Jun 1987 A
4671985 Rodrigues et al. Jun 1987 A
4681788 Barito et al. Jul 1987 A
4745015 Cheng et al. May 1988 A
4777154 Torobin Oct 1988 A
4781968 Kellerman Nov 1988 A
4805293 Buchser Feb 1989 A
4865875 Kellerman Sep 1989 A
4870735 Jahr et al. Oct 1989 A
4914341 Weaver et al. Apr 1990 A
4917841 Jenkins Apr 1990 A
5007226 Nelson Apr 1991 A
5018328 Cur et al. May 1991 A
5033636 Jenkins Jul 1991 A
5066437 Barito et al. Nov 1991 A
5082335 Cur et al. Jan 1992 A
5084320 Barito et al. Jan 1992 A
5094899 Rusek, Jr. Mar 1992 A
5118174 Benford et al. Jun 1992 A
5121593 Forslund Jun 1992 A
5157893 Benson et al. Oct 1992 A
5168674 Molthen Dec 1992 A
5171346 Hallett Dec 1992 A
5175975 Benson et al. Jan 1993 A
5212143 Torobin May 1993 A
5221136 Hauck et al. Jun 1993 A
5227245 Brands et al. Jul 1993 A
5231811 Andrepont et al. Aug 1993 A
5248196 Lynn et al. Sep 1993 A
5251455 Cur et al. Oct 1993 A
5252408 Bridges et al. Oct 1993 A
5263773 Gable et al. Nov 1993 A
5269601 Williams Dec 1993 A
5273801 Barry et al. Dec 1993 A
5318108 Benson et al. Jun 1994 A
5340208 Hauck et al. Aug 1994 A
5353868 Abbott Oct 1994 A
5359795 Mawby et al. Nov 1994 A
5375428 LeClear et al. Dec 1994 A
5397759 Torobin Mar 1995 A
5418055 Chen et al. May 1995 A
5433056 Benson et al. Jul 1995 A
5477676 Benson et al. Dec 1995 A
5500287 Henderson Mar 1996 A
5500305 Bridges et al. Mar 1996 A
5505810 Kirby et al. Apr 1996 A
5507999 Cospey et al. Apr 1996 A
5509248 Dellby et al. Apr 1996 A
5512345 Tsutsumi et al. Apr 1996 A
5532034 Kirby et al. Jul 1996 A
5533311 Tirrell et al. Jul 1996 A
5562154 Benson et al. Oct 1996 A
5586680 Dellby et al. Dec 1996 A
5599081 Revlett et al. Feb 1997 A
5600966 Valence et al. Feb 1997 A
5632543 McGrath et al. May 1997 A
5640828 Reeves et al. Jun 1997 A
5643485 Potter et al. Jul 1997 A
5652039 Tremain et al. Jul 1997 A
5716581 Tirrell Feb 1998 A
5768837 Sjoholm Jun 1998 A
5792801 Tsuda et al. Aug 1998 A
5813454 Potter Sep 1998 A
5826780 Messer et al. Oct 1998 A
5827385 Meyer et al. Oct 1998 A
5834126 Sheu Nov 1998 A
5843353 De Vos et al. Dec 1998 A
5866228 Awata Feb 1999 A
5866247 Klatt et al. Feb 1999 A
5868890 Fredrick Feb 1999 A
5900299 Wynne May 1999 A
5918478 Bostic et al. Jul 1999 A
5924295 Park Jul 1999 A
5950395 Takemasa et al. Sep 1999 A
5952404 Simpson et al. Sep 1999 A
5966963 Kovalaske Oct 1999 A
5985189 Lynn et al. Nov 1999 A
6013700 Asano et al. Jan 2000 A
6063471 Dietrich et al. May 2000 A
6094922 Ziegler Aug 2000 A
6109712 Haworth et al. Aug 2000 A
6128914 Tamaoki et al. Oct 2000 A
6132837 Boes et al. Oct 2000 A
6158233 Cohen et al. Dec 2000 A
6163976 Tada et al. Dec 2000 A
6164030 Dietrich Dec 2000 A
6164739 Schulz et al. Dec 2000 A
6187256 Asian et al. Feb 2001 B1
6209342 Banicevic et al. Apr 2001 B1
6210625 Matsushita et al. Apr 2001 B1
6220473 Lehman et al. Apr 2001 B1
6221456 Pogorski et al. Apr 2001 B1
6224179 Wenning et al. May 2001 B1
6244458 Frysinger et al. Jun 2001 B1
6260377 Tamaoki et al. Jul 2001 B1
6266970 Nam et al. Jul 2001 B1
6294595 Tyagi et al. Sep 2001 B1
6305768 Nishimoto Oct 2001 B1
6485122 Wolf et al. Jan 2002 B2
6390378 Briscoe, Jr. et al. May 2002 B1
6406449 Moore et al. Jun 2002 B1
6408841 Hirath et al. Jun 2002 B1
6415623 Jennings et al. Jul 2002 B1
6428130 Banicevic et al. Aug 2002 B1
6430780 Kim et al. Aug 2002 B1
6460955 Vaughan et al. Oct 2002 B1
6519919 Takenouchi et al. Feb 2003 B1
6623413 Wynne Sep 2003 B1
6629429 Kawamura et al. Oct 2003 B1
6655766 Hodges Dec 2003 B2
6689840 Eustace et al. Feb 2004 B1
6716501 Kovalchuk et al. Apr 2004 B2
6736472 Banicevic May 2004 B2
6749780 Tobias Jun 2004 B2
6773082 Lee Aug 2004 B2
6858280 Allen et al. Feb 2005 B2
6860082 Yamamoto et al. Mar 2005 B1
6938968 Tanimoto et al. Sep 2005 B2
7008032 Chekal et al. Mar 2006 B2
7026054 Ikegawa et al. Apr 2006 B2
7197792 Moon Apr 2007 B2
7197888 LeClear et al. Apr 2007 B2
7207181 Murray et al. Apr 2007 B2
7210308 Tanimoto et al. May 2007 B2
7234247 Maguire Jun 2007 B2
7263744 Kim et al. Sep 2007 B2
7284390 Van Meter et al. Oct 2007 B2
7296423 Müller et al. Nov 2007 B2
7316125 Uekado et al. Jan 2008 B2
7343757 Egan et al. Mar 2008 B2
7360371 Feinauer et al. Apr 2008 B2
7449227 Echigoya et al. Nov 2008 B2
7475562 Jackovin Jan 2009 B2
7517031 Laible Apr 2009 B2
7614244 Venkatakrishnan et al. Nov 2009 B2
7625622 Teckoe et al. Dec 2009 B2
7641298 Hirath et al. Jan 2010 B2
7665326 LeClear et al. Feb 2010 B2
7703217 Tada et al. Apr 2010 B2
7703824 Kittelson et al. Apr 2010 B2
7757511 LeClear et al. Jul 2010 B2
7762634 Tenra et al. Jul 2010 B2
7794805 Aumaugher et al. Sep 2010 B2
7815269 Wenning et al. Oct 2010 B2
7842269 Schachtely et al. Nov 2010 B2
7845745 Gorz et al. Dec 2010 B2
7861538 Welle et al. Jan 2011 B2
7886559 Hell et al. Feb 2011 B2
7893123 Luisi Feb 2011 B2
7908873 Cur et al. Mar 2011 B1
7930892 Vonderhaar Apr 2011 B1
7938148 Carlier et al. May 2011 B2
7992257 Kim Aug 2011 B2
8049518 Wern et al. Nov 2011 B2
8074469 Hamel et al. Dec 2011 B2
8079652 Laible et al. Dec 2011 B2
8108972 Bae et al. Feb 2012 B2
8113604 Olson et al. Feb 2012 B2
8117865 Allard et al. Feb 2012 B2
8157338 Seo et al. Apr 2012 B2
8162415 Hagele et al. Apr 2012 B2
8163080 Meyer et al. Apr 2012 B2
8176746 Allard et al. May 2012 B2
8182051 Laible et al. May 2012 B2
8197019 Kim Jun 2012 B2
8202599 Henn Jun 2012 B2
8211523 Fujimori et al. Jul 2012 B2
8266923 Bauer et al. Sep 2012 B2
8281558 Hiemeyer et al. Oct 2012 B2
8299656 Allard et al. Oct 2012 B2
8343395 Hu et al. Jan 2013 B2
8353177 Adamski et al. Jan 2013 B2
8382219 Hoffmann et al. Feb 2013 B2
8434317 Besore May 2013 B2
8439460 Laible et al. May 2013 B2
8456040 Allard et al. Jun 2013 B2
8491070 Davis et al. Jul 2013 B2
8516845 Wuesthoff et al. Aug 2013 B2
8528284 Aspenson et al. Sep 2013 B2
8590992 Lim et al. Nov 2013 B2
8717029 Chae et al. May 2014 B2
8739568 Allard et al. Jun 2014 B2
8752918 Kang Jun 2014 B2
8752921 Gorz et al. Jun 2014 B2
8763847 Mortarotti Jul 2014 B2
8764133 Park et al. Jul 2014 B2
8770682 Lee et al. Jul 2014 B2
8776390 Hanaoka et al. Jul 2014 B2
8840204 Bauer et al. Sep 2014 B2
8852708 Kim et al. Oct 2014 B2
8881398 Hanley et al. Nov 2014 B2
8905503 Sahasrabudhe et al. Dec 2014 B2
8943770 Sanders et al. Feb 2015 B2
8944541 Allard et al. Feb 2015 B2
9009969 Choi et al. Apr 2015 B2
RE45501 Maguire May 2015 E
9056952 Eilbracht et al. Jun 2015 B2
9074811 Korkmaz Jul 2015 B2
9080808 Choi et al. Jul 2015 B2
9102076 Doshi et al. Aug 2015 B2
9103482 Fujimori et al. Aug 2015 B2
9125546 Kleemann et al. Sep 2015 B2
9140480 Kuehl et al. Sep 2015 B2
9140481 Cur et al. Sep 2015 B2
9170045 Oh et al. Oct 2015 B2
9170046 Jung et al. Oct 2015 B2
9188382 Kim et al. Nov 2015 B2
8955352 Lee et al. Dec 2015 B2
9221210 Wu et al. Dec 2015 B2
9228386 Thielmann et al. Jan 2016 B2
9267727 Lim et al. Feb 2016 B2
9303915 Kim et al. Apr 2016 B2
9328951 Shin et al. May 2016 B2
9353984 Kim et al. May 2016 B2
9410732 Choi et al. Aug 2016 B2
9423171 Betto et al. Aug 2016 B2
9429356 Kim et al. Aug 2016 B2
9448004 Kim et al. Sep 2016 B2
9463917 Wu et al. Oct 2016 B2
9482463 Choi et al. Nov 2016 B2
9506689 Carbajal et al. Nov 2016 B2
9518777 Lee et al. Dec 2016 B2
9568238 Kim et al. Feb 2017 B2
D781641 Incukur Mar 2017 S
D781642 Incukur Mar 2017 S
9605891 Lee et al. Mar 2017 B2
9696085 Seo et al. Jul 2017 B2
9702621 Cho et al. Jul 2017 B2
9759479 Ramm et al. Sep 2017 B2
9777958 Choi et al. Oct 2017 B2
9791204 Kim et al. Oct 2017 B2
9833942 Wu et al. Dec 2017 B2
20020004111 Matsubara et al. Jan 2002 A1
20020114937 Albert et al. Aug 2002 A1
20020144482 Henson et al. Oct 2002 A1
20020168496 Morimoto et al. Nov 2002 A1
20030008100 Horn Jan 2003 A1
20030041612 Piloni et al. Mar 2003 A1
20030056334 Finkelstein Mar 2003 A1
20030157284 Tanimoto et al. Aug 2003 A1
20030167789 Tanimoto et al. Sep 2003 A1
20030173883 Koons Sep 2003 A1
20040144130 Jung Jul 2004 A1
20040178707 Avendano et al. Sep 2004 A1
20040180176 Rusek Sep 2004 A1
20040226141 Yates et al. Nov 2004 A1
20040253406 Hayashi et al. Dec 2004 A1
20050042247 Gomoll et al. Feb 2005 A1
20050229614 Ansted Oct 2005 A1
20050235682 Hirai et al. Oct 2005 A1
20060064846 Espindola et al. Mar 2006 A1
20060076863 Echigoya et al. Apr 2006 A1
20060201189 Adamski et al. Sep 2006 A1
20060261718 Miseki et al. Nov 2006 A1
20060263571 Tsunetsugu et al. Nov 2006 A1
20060266075 Itsuki et al. Nov 2006 A1
20070001563 Park et al. Jan 2007 A1
20070099502 Ferinauer et al. May 2007 A1
20070176526 Gomoll et al. Aug 2007 A1
20070264468 Boyd Nov 2007 A1
20070266654 Noale Nov 2007 A1
20080044488 Zimmer et al. Feb 2008 A1
20080048540 Kim Feb 2008 A1
20080138458 Ozasa et al. Jun 2008 A1
20080196441 Ferreira Aug 2008 A1
20080300356 Meyer et al. Dec 2008 A1
20080309210 Luisi et al. Dec 2008 A1
20090032541 Rogala et al. Feb 2009 A1
20090056367 Nuemann Mar 2009 A1
20090058244 Cho et al. Mar 2009 A1
20090113925 Korkmaz May 2009 A1
20090131571 Fraser et al. May 2009 A1
20090179541 Smith et al. Jul 2009 A1
20090205357 Lim et al. Aug 2009 A1
20090302728 Rotter et al. Dec 2009 A1
20090322470 Yoo et al. Dec 2009 A1
20090324871 Henn Dec 2009 A1
20100170279 Aoki Jul 2010 A1
20100206464 Heo et al. Aug 2010 A1
20100218543 Duchame Sep 2010 A1
20100231109 Matzke et al. Sep 2010 A1
20100287843 Oh Nov 2010 A1
20100287974 Cur et al. Nov 2010 A1
20100293984 Adamski et al. Nov 2010 A1
20100295435 Kendall et al. Nov 2010 A1
20110011119 Kuehl et al. Jan 2011 A1
20110023527 Kwon et al. Feb 2011 A1
20110030894 Tenra et al. Feb 2011 A1
20110095669 Moon et al. Apr 2011 A1
20110146325 Lee Jun 2011 A1
20110146335 Jung et al. Jun 2011 A1
20110165367 Kojima et al. Jul 2011 A1
20110215694 Fink et al. Sep 2011 A1
20110220662 Kim et al. Sep 2011 A1
20110241513 Nomura et al. Oct 2011 A1
20110241514 Nomura et al. Oct 2011 A1
20110260351 Corradi et al. Oct 2011 A1
20110290808 Bai et al. Dec 2011 A1
20110309732 Horil et al. Dec 2011 A1
20110315693 Cur et al. Dec 2011 A1
20120000234 Adamski et al. Jan 2012 A1
20120011879 Gu Jan 2012 A1
20120060544 Lee et al. Mar 2012 A1
20120099255 Lee et al. Apr 2012 A1
20120103006 Jung et al. May 2012 A1
20120104923 Jung et al. May 2012 A1
20120118002 Kim et al. May 2012 A1
20120137501 Allard et al. Jun 2012 A1
20120152151 Meyer et al. Jun 2012 A1
20120196059 Fujimori et al. Aug 2012 A1
20120231204 Jeon et al. Sep 2012 A1
20120237715 McCraken Sep 2012 A1
20120240612 Wusthoff et al. Sep 2012 A1
20120273111 Nomura et al. Nov 2012 A1
20120279247 Katu et al. Nov 2012 A1
20120280608 Park et al. Nov 2012 A1
20120285971 Junge et al. Nov 2012 A1
20120297813 Hanley et al. Nov 2012 A1
20120324937 Adamski et al. Dec 2012 A1
20130026900 Oh et al. Jan 2013 A1
20130033163 Kang Feb 2013 A1
20130043780 Ootsuka et al. Feb 2013 A1
20130068990 Eilbracht et al. Mar 2013 A1
20130111941 Yu et al. May 2013 A1
20130221819 Wing Aug 2013 A1
20130255304 Cur et al. Oct 2013 A1
20130256318 Kuehl et al. Oct 2013 A1
20130256319 Kuehl et al. Oct 2013 A1
20130257256 Allard et al. Oct 2013 A1
20130257257 Cur et al. Oct 2013 A1
20130264439 Allard et al. Oct 2013 A1
20130270732 Wu et al. Oct 2013 A1
20130285527 Choi et al. Oct 2013 A1
20130293080 Kim et al. Nov 2013 A1
20130305535 Cur et al. Nov 2013 A1
20130328472 Shim et al. Dec 2013 A1
20140009055 Cho et al. Jan 2014 A1
20140097733 Seo et al. Apr 2014 A1
20140132144 Kim et al. May 2014 A1
20140166926 Lee et al. Jun 2014 A1
20140171578 Meyer et al. Jun 2014 A1
20140190978 Bowman et al. Jul 2014 A1
20140196305 Smith Jul 2014 A1
20140216706 Melton et al. Aug 2014 A1
20140232250 Kim et al. Aug 2014 A1
20140260332 Wu Sep 2014 A1
20140346942 Kim et al. Nov 2014 A1
20140364527 Wintermantel et al. Dec 2014 A1
20150011668 Kolb et al. Jan 2015 A1
20150015133 Carbajal et al. Jan 2015 A1
20150017386 Kolb et al. Jan 2015 A1
20150027628 Cravens et al. Jan 2015 A1
20150059399 Hwang et al. Mar 2015 A1
20150115790 Ogg Apr 2015 A1
20150147514 Shinohara et al. May 2015 A1
20150159936 Oh et al. Jun 2015 A1
20150168050 Cur et al. Jun 2015 A1
20150176888 Cur et al. Jun 2015 A1
20150184923 Jeon Jul 2015 A1
20150190840 Mute et al. Jul 2015 A1
20150224685 Amstutz Aug 2015 A1
20150241115 Strauss et al. Aug 2015 A1
20150241118 Wu Aug 2015 A1
20150285551 Aiken et al. Oct 2015 A1
20160084567 Fernandez et al. Mar 2016 A1
20160116100 Thiery et al. Apr 2016 A1
20160123055 Ueyama May 2016 A1
20160161175 Benold et al. Jun 2016 A1
20160178267 Hao et al. Jun 2016 A1
20160178269 Hiemeyer et al. Jun 2016 A1
20160235201 Soot Aug 2016 A1
20160240839 Umeyama et al. Aug 2016 A1
20160258671 Allard et al. Sep 2016 A1
20160290702 Sexton et al. Oct 2016 A1
20160348957 Hitzelberger et al. Dec 2016 A1
20170038126 Lee et al. Feb 2017 A1
20170157809 Deka et al. Jun 2017 A1
20170176086 Kang Jun 2017 A1
20170184339 Liu et al. Jun 2017 A1
20170191746 Seo Jul 2017 A1
Foreign Referenced Citations (216)
Number Date Country
626838 May 1961 CA
1320631 Jul 1993 CA
2259665 Jan 1998 CA
2640006 Aug 2007 CA
1158509 Sep 1997 CN
1970185 May 2007 CN
100359272 Jan 2008 CN
101437756 May 2009 CN
201680116 Dec 2010 CN
201748744 Feb 2011 CN
102153829 Aug 2011 CN
102296714 Dec 2011 CN
102452522 May 2012 CN
102645071 Aug 2012 CN
102717578 Oct 2012 CN
102720277 Oct 2012 CN
103072321 May 2013 CN
202973713 Jun 2013 CN
103407228 Nov 2013 CN
203331442 Dec 2013 CN
104816478 Aug 2015 CN
105115221 Dec 2015 CN
2014963379 Jan 2016 CN
1150190 Jun 1963 DE
4110292 Oct 1992 DE
4409091 Sep 1995 DE
19818890 Nov 1999 DE
19914105 Sep 2000 DE
19915311 Oct 2000 DE
102008026528 Dec 2009 DE
102009046810 May 2011 DE
102010024951 Dec 2011 DE
102011051178 Dec 2012 DE
102012223536 Jun 2014 DE
102012223541 Jun 2014 DE
0480451 Apr 1992 EP
0645576 Mar 1995 EP
0691518 Jan 1996 EP
0260699 Mar 1998 EP
0860669 Aug 1998 EP
1087186 Mar 2001 EP
1200785 May 2002 EP
1243880 Sep 2002 EP
1484563 Dec 2004 EP
1496322 Jan 2005 EP
1505359 Feb 2005 EP
1602425 Dec 2005 EP
1624263 Aug 2006 EP
2342511 Jul 2011 EP
2543942 Jan 2013 EP
2607073 Jun 2013 EP
2789951 Oct 2014 EP
2878427 Jun 2015 EP
2980963 Apr 2013 FR
2991698 Dec 2013 FR
837929 Jun 1960 GB
1214548 Dec 1970 GB
S4828353 Aug 1973 JP
S5157777 May 1976 JP
S59191588 Dec 1984 JP
403013779 Jan 1991 JP
404165197 Jun 1992 JP
04165197 Oct 1992 JP
04309778 Nov 1992 JP
H06159922 Jun 1994 JP
H071479 Jan 1995 JP
H07167377 Jul 1995 JP
H08300052 Nov 1996 JP
H08303686 Nov 1996 JP
H09166271 Jun 1997 JP
H10113983 May 1998 JP
11159693 Jun 1999 JP
H11311395 Nov 1999 JP
H11336990 Dec 1999 JP
2000097390 Apr 2000 JP
20000117334 Apr 2000 JP
2000320958 Nov 2000 JP
2001038188 Feb 2001 JP
2001116437 Apr 2001 JP
2001336691 Dec 2001 JP
2001343176 Dec 2001 JP
2002068853 Mar 2002 JP
3438948 Aug 2003 JP
3478771 Dec 2003 JP
2004303695 Oct 2004 JP
2005069596 Mar 2005 JP
2005098637 Apr 2005 JP
2005114015 Apr 2005 JP
2005164193 Jun 2005 JP
2005256849 Sep 2005 JP
2006-77792 Mar 2006 JP
2006161834 Jun 2006 JP
2006161945 Jun 2006 JP
3792801 Jul 2006 JP
2006200685 Aug 2006 JP
2007263186 Oct 2007 JP
4111096 Jul 2008 JP
2008157431 Jul 2008 JP
2008190815 Aug 2008 JP
2009063064 Mar 2009 JP
2009162402 Jul 2009 JP
2009524570 Jul 2009 JP
2010017437 Jan 2010 JP
2010071565 Apr 2010 JP
2010108199 May 2010 JP
2010145002 Jul 2010 JP
4545126 Sep 2010 JP
2010236770 Oct 2010 JP
2010276309 Dec 2010 JP
2011002033 Jan 2011 JP
2011069612 Apr 2011 JP
4779684 Sep 2011 JP
2011196644 Oct 2011 JP
2012026493 Feb 2012 JP
4897473 Mar 2012 JP
2012063029 Mar 2012 JP
2012087993 May 2012 JP
2012163258 Aug 2012 JP
2012189114 Oct 2012 JP
2012242075 Dec 2012 JP
2013002484 Jan 2013 JP
2013050242 Mar 2013 JP
2013050267 Mar 2013 JP
2013076471 Apr 2013 JP
2013088036 May 2013 JP
2013195009 Sep 2013 JP
20020057547 Jul 2002 KR
20020080938 Oct 2002 KR
20030083812 Nov 2003 KR
20040000126 Jan 2004 KR
20050095357 Sep 2005 KR
100620025 Sep 2006 KR
20070044024 Apr 2007 KR
1020070065743 Jun 2007 KR
20080103845 Nov 2008 KR
20090026045 Mar 2009 KR
101017776 Feb 2011 KR
20120007241 Jan 2012 KR
20120046621 May 2012 KR
20120051305 May 2012 KR
20150089495 Aug 2015 KR
547614 May 1977 RU
2061925 Jun 1996 RU
2077411 Apr 1997 RU
2081858 Jun 1997 RU
2132522 Jun 1999 RU
2162576 Jan 2001 RU
2166158 Apr 2001 RU
2187433 Aug 2002 RU
2234645 Aug 2004 RU
2252377 May 2005 RU
2253792 Jun 2005 RU
2349618 Mar 2009 RU
2414288 Mar 2011 RU
2422598 Jun 2011 RU
142892 Jul 2014 RU
2529525 Sep 2014 RU
2571031 Dec 2015 RU
203707 Dec 1967 SU
00476407 Jul 1975 SU
648780 Feb 1979 SU
01307186 Apr 1987 SU
9721767 Jun 1997 WO
1998049506 Nov 1998 WO
02060576 Apr 1999 WO
9614207 Apr 1999 WO
9920961 Apr 1999 WO
9920964 Apr 1999 WO
199920964 Apr 1999 WO
200160598 Aug 2001 WO
200202987 Jan 2002 WO
2002052208 Apr 2002 WO
2003072684 Sep 2003 WO
2003089729 Oct 2003 WO
2004010042 Jan 2004 WO
2006045694 May 2006 WO
2006073540 Jul 2006 WO
2007033836 Mar 2007 WO
2007085511 Aug 2007 WO
2007106067 Sep 2007 WO
2008065453 Jun 2008 WO
2008077741 Jul 2008 WO
2008118536 Oct 2008 WO
2008122483 Oct 2008 WO
2009013106 Jan 2009 WO
2009112433 Sep 2009 WO
2009147106 Dec 2009 WO
2010007783 Jan 2010 WO
2010029730 Mar 2010 WO
2010043009 Apr 2010 WO
2010092627 Aug 2010 WO
2010127947 Nov 2010 WO
2010127947 Nov 2010 WO
2011003711 Jan 2011 WO
2011058678 May 2011 WO
2011058678 May 2011 WO
2011081498 Jul 2011 WO
2012023705 Feb 2012 WO
2012026715 Mar 2012 WO
2012031885 Mar 2012 WO
2012043990 Apr 2012 WO
2012044001 Apr 2012 WO
2012085212 Jun 2012 WO
2012119892 Sep 2012 WO
2012152646 Nov 2012 WO
2013116103 Aug 2013 WO
2013116302 Aug 2013 WO
2014038150 Mar 2014 WO
2014038150 Mar 2014 WO
2014095542 Jun 2014 WO
2014121893 Aug 2014 WO
2014184393 Nov 2014 WO
2014184393 Nov 2014 WO
2013140816 Aug 2015 WO
2016082907 Jun 2016 WO
2017029782 Feb 2017 WO
Non-Patent Literature Citations (6)
Entry
CN-103407228-A Machine Translation of Description.
CN-103407228-A Macine Translation of Claims.
CN-102645071-A Machine Translation of Description.
CN-102153829-A Machine Translation of Description.
Cai et al., “Generation of Metal Nanoparticles by Laser Ablation of Microspheres,” J. Aerosol Sci., vol. 29, No. 5/6 (1998), pp. 627-636.
Raszewski et al., “Methods for Producing Hollow Glass Microspheres,” Powerpoint, cached from Google, Jul. 2009, 6 pages.
Related Publications (1)
Number Date Country
20190390893 A1 Dec 2019 US