High levels of current and short-circuits in printed circuit boards can destroy the printed circuit boards and even lead to fires. Network switches, line cards and other electronic circuits drawing tens of amperes of current, or even hundreds of amperes, are vulnerable to small defects in circuit board construction or materials. Printed circuit boards need thicker sheets of copper, more layers, or more exotic and expensive materials to safely handle these high current levels. Large amperage fuses may be bulky, unavailable, or fail to protect from fires caused by the large current levels experienced by the printed circuit board even prior to the current reaching the fuse. Printed circuit boards are burdened with having to have enough copper layers to carry the complete current, which can consume many layers of copper that increase cost and increase routing complexity. In addition current levels are so high, there is increased risk of the PCB failing causing a short and a fire.
In some embodiments, a busbar and connector assembly is provided. The busbar and connector assembly includes a printed circuit board having an attached connector arranged to couple to a first busbar and a second busbar coupled to the connector. The busbar and connector assembly includes the connector arranged to distribute a first portion of current from the first busbar to the printed circuit board and distribute a second portion of the current from the first busbar to the second busbar. It should be appreciated that the embodiments enable the complete or partial bypass of the printed circuit board to connect to a secondary or external busbar, thereby reducing or removing the need for the printed circuit board to carry part or all of the current.
In some embodiments, a busbar and connector assembly is provided. The busbar and connector assembly includes a first busbar, arranged to carry a first current, a printed circuit board, and a second busbar. The connector is arranged to deliver a second current from the first busbar to the printed circuit board and deliver a third current from the first busbar to the second busbar.
In some embodiments, a method of distributing current through a printed circuit board, busbar and connector assembly is provided. The method includes passing the current through a first busbar and distributing a first portion of the current from the first busbar through a connector, to a printed circuit board. The method includes distributing a second portion of the current from the first busbar through the connector, to a second busbar.
Other aspects and advantages of the embodiments will become apparent from the following detailed description taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the described embodiments.
The described embodiments and the advantages thereof may best be understood by reference to the following description taken in conjunction with the accompanying drawings. These drawings in no way limit any changes in form and detail that may be made to the described embodiments by one skilled in the art without departing from the spirit and scope of the described embodiments.
A printed circuit board, busbar and connector assembly described herein solves multiple problems for current distribution in an electronic system. Embodiments of the electronic system may include network switches, but are readily devised for other types of electronic equipment. A connector couples two different busbars and a printed circuit board, and distributes current from one busbar to the printed circuit board and the other busbar. In a rack-mounted or modular system, multiple examples of printed circuit boards with such connectors can plug into busbars in a backplane or mid-plane, and distribute current to the printed circuit boards and busbars for use by various components of the electronic system. This improves upon the use of printed circuit boards to distribute all of the current from a backplane or mid-plane to all of the components of the electronic system, and allows the connectors to drop current down to the printed circuit boards as needed while allowing additional current to travel through busbars bypassing the circuit boards on the way to other components. Also, with the connector delivering just the correct amount of current used locally by the printed circuit board, rather than all of the current for the printed circuit board and further downstream components, fewer holes need be drilled through the printed circuit board for connector pins, reducing the “Swiss cheese” effect on printed circuit board power (and other) layers. The embodiments reduce the number of feeds inside the printed circuit board and move at least a portion of the feeds to busbars, thereby reducing the amount of “unfused copper” to improving safety and recover printed circuit board resources. In addition, the embodiments have fuses that can now be correctly sized for the current used by the components on the printed circuit board near the connector, instead of being oversized for that area of the printed circuit board plus the downstream component current.
Still referring to
Continuing with
An opposed current is passed through a third busbar, in an action 510 of
Detailed illustrative embodiments are disclosed herein. However, specific functional details disclosed herein are merely representative for purposes of describing embodiments. Embodiments may, however, be embodied in many alternate forms and should not be construed as limited to only the embodiments set forth herein. It should be appreciated that descriptions of direction and orientation are for convenience of interpretation, and the apparatus is not limited as to orientation with respect to gravity. In other words, the apparatus could be mounted upside down, right side up, diagonally, vertically, horizontally, etc., and the descriptions of direction and orientation are relative to portions of the apparatus itself, and not absolute.
It should be understood that although the terms first, second, etc. may be used herein to describe various steps or calculations, these steps or calculations should not be limited by these terms. These terms are only used to distinguish one step or calculation from another. For example, a first calculation could be termed a second calculation, and, similarly, a second step could be termed a first step, without departing from the scope of this disclosure. As used herein, the term “and/or” and the “I” symbol includes any and all combinations of one or more of the associated listed items.
As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises”, “comprising”, “includes”, and/or “including”, when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. Therefore, the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting.
It should also be noted that in some alternative implementations, the functions/acts noted may occur out of the order noted in the figures. For example, two figures shown in succession may in fact be executed substantially concurrently or may sometimes be executed in the reverse order, depending upon the functionality/acts involved.
Although the method operations were described in a specific order, it should be understood that other operations may be performed in between described operations, described operations may be adjusted so that they occur at slightly different times or the described operations may be distributed in a system which allows the occurrence of the processing operations at various intervals associated with the processing.
Various units, circuits, or other components may be described or claimed as “configured to” perform a task or tasks. In such contexts, the phrase “configured to” is used to connote structure by indicating that the units/circuits/components include structure (e.g., circuitry or mechanical features) that performs the task or tasks during operation. As such, the unit/circuit/component can be said to be configured to perform the task even when the specified unit/circuit/component is not currently operational (e.g., is not on). The units/circuits/components used with the “configured to” language include hardware--for example, circuits, memory storing program instructions executable to implement the operation, etc. Reciting that a unit/circuit/component is “configured to” perform one or more tasks is expressly intended not to invoke 35 U.S.C. 112, sixth paragraph, for that unit/circuit/component. Additionally, “configured to” can include generic structure (e.g., generic circuitry) that is manipulated by software and/or firmware (e.g., an FPGA or a general-purpose processor executing software) to operate in manner that is capable of performing the task(s) at issue. “Configured to” may also include adapting a manufacturing process (e.g., a semiconductor fabrication facility) to fabricate devices (e.g., integrated circuits or manufactured articles) that are adapted to implement or perform one or more tasks, or designing an article or apparatus to have certain features or capabilities.
The foregoing description, for the purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and
ID described in order to best explain the principles of the embodiments and its practical applications, to thereby enable others skilled in the art to best utilize the embodiments and various modifications as may be suited to the particular use contemplated. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.