This application relates to an energy storage device protection circuit for use in a hybrid electrical system supplying power to an active dynamic DC load, such as an electric vehicle. The circuit prevents over-discharge of the battery or other energy storage device and ensures that the system will be capable of delivering a minimum acceptable level of power to the load, even when the energy storage device is in a low state of charge or other fault condition.
Hybrid power supply systems are well known in the prior art for supplying power to loads having fluctuating power requirements. For example, a hybrid power supply system for use in non-road electric vehicles, such as lift trucks and the like, is described in applicant's co-pending U.S. patent application Ser. No. 10/684,622 which is hereby incorporated by reference in its entirety. Lift trucks have a duty cycle that is characterized by loads which fluctuate substantially during the course of a work shift. For example, although the average load across an entire seven hour work shift may be less than 1 kW, power requirements on the order of 8-10 kW for short durations are required to meet operational demands, often at irregular intervals. Even though the average power requirement of the lift truck is relatively low, the power supply system must nonetheless be capable of responding to high current requests from the lift truck. This type of load profile is sometimes referred to as an active dynamic load.
The Applicant has developed a hybrid architecture specifically adapted for lift trucks and other low power applications which integrates fuel cell technology with conventional battery systems. According to this architecture the fuel cell is sized to meet the average load requirements of the vehicle, while the batteries or other energy storage devices and power control hardware are capable of responding to very high instantaneous load demands. Preferably the state of charge of the energy storage device(s) is maintained at a level sufficient to meet the peak power requirements. Problems may potentially arise, however, in the case of malfunction of power system components. For example, if a battery becomes low in residual charge or is over-discharged, intervention is required to protect the battery before a critical point is reached beyond which damage to the battery or a severe loss of system performance will occur. In such circumstances it is desirable to operate the hybrid power supply system in a de-rated mode sufficient to return the energy storage system to its useful state or to return the vehicle to a service location. It is also desirable to employ a system which cannot be overridden by operators wishing to continue to operate the vehicle in other than the de-rated mode (such as by ignoring warning signals). Further, it is particularly desirable to avoid operating the hybrid power generator (i.e. fuel cell) in a load-following mode while at the same time permitting recharging of the battery by means of the hybrid power generator and regenerative braking or the like.
Different circuits and methods have been proposed in the prior art to protect batteries if voltage exceeds predetermined safe levels, an over-temperature threshold is reached or over-discharge occurs. Many of these systems involve disconnecting the battery from the load or introducing some in-line impedance that will provide a limited power to the load. Typically, in the case of faulty battery operation in a vehicle, the operator is warned by an alarm signal. However, in many prior art applications if the load is increasing and demanding more current, the output voltage of the power supply system could drop below levels required for safe vehicle operation.
Some stand-alone systems are known in the prior art which do not permit the power supply system to continue to service the load in a de-rated mode. The need has arisen for a battery protection circuit adapted for use in hybrid systems supplying power to an active dynamic load which ensures ongoing operation of the system in a de-rated mode. In addition, while in this de-rated, the system ensures that the normal state of charge of the energy storage device can be restored and that the power generator output remains controllable by the system independent of the active dynamic load. The system continues to deliver power to the load while the battery is in a low state of charge condition by routing power from the power generator directly to the load and protecting the battery or other energy storage device at the same time, allowing the operator to continue operations with limited use of the vehicle until such a time where sufficient energy has been restored to the energy storage device and the power system returns to its normal mode of operation. The system also controls the output of the power generator so that the power generator is not required to operate in a load-following manner during either normal operation or in the de-rated mode.
In accordance with the invention, a hybrid power supply system for delivering power to a load is provided. The system includes a power generator and an energy storage device electrically connectable to the load and a protection circuit in series with the energy storage device, the circuit comprising a first switch adjustable between open and closed positions and a diode in parallel with the switch. A controller is provided for controlling the relative supply of power to the load from the power generator and the energy storage device. The system may also optionally include an impedance in parallel with the switch.
The system may be used as a power supply in an electric vehicle having an active dynamic load. The energy storage device may comprise, for example, one or more batteries, capacitors, supercapacitors or ultracapacitors. The power generator may comprise a fuel cell.
The system is operable in a normal operating mode and in a de-rated operating mode. The controller maintains the switch in a closed position in the normal operating mode and opens the switch in the de-rated operating mode. Preferably a sensor is also provided which is operatively coupled to the controller. The controller switches the system from the normal operating mode to the de-rated mode when the sensor detects a predetermined operating condition. For example, the sensor could monitor at least one parameter related to the state of charge of the energy storage device and detect the predetermined operating condition when a predetermined threshold value is reached. The at least one parameter could, for example, be voltage, current, temperature, internal resistance and chemistry change.
Preferably the power output of the power generator, such as a fuel cell, is maintained substantially constant in both the normal and de-rated operating modes independently of the power requirements of the load. Accordingly, the fuel cell is not required to operate in a load-following manner in either the normal or the de-rated mode.
A method of controllably delivering power to an active dynamic load having a peak power value and an average power value is also described. The method includes the steps of (a) providing a hybrid power supply system comprising a DC power generator capable of supplying at least the average power value to the load and an energy storage device capable of supplying at least the difference between the peak power value and the average power value to the load; (b) monitoring the operation of the energy storage device to determine whether the energy storage device is in a normal mode or a de-rated mode; and (c) controllably limiting the current discharged from the energy storage device when the sensor detects the de-rated mode. The current may be limited by preventing current discharge entirely or by limiting the amount of current discharged via an impedance.
The energy storage device may be controllably chargeable in the de-rated mode, for example through a diode. Both the power generator and the diode may be electrically connected to the load in the de-rated mode.
The method may comprise providing a protection circuit in series with the energy storage device, the circuit having a first switch adjustable between an open and a closed position. The step of controllably limiting the current may comprise adjusting the first switch between the closed and open positions. The method may also include the step of detecting when the energy storage device is in the de-rated mode, such as by monitoring at least one parameter related to the state of charge of the energy storage device.
In drawings which illustrate various embodiments of the invention but should not be construed as restricting the spirit or scope of the invention in any way,
By paralleling the output of power generator 14 and energy storage device 16, system 10 is capable of delivering the required power to active dynamic load 12 over the application period, namely:
P load=P power generator+P energy storage device
However, problems may arise if a fault condition arises and the energy storage device 16 is unable to safely meet the peak load requirements. For example, when the state of charge of energy storage device 16 is low or some other fault condition arises, such as current overloading, rapid discharge or under voltage, this may cause damage to storage device 16 or severely limit system performance if allowed to continue. In order to protect energy storage device 16 in the event of a fault condition, or some other predetermined operating condition, a protection circuit 20 is provided. As shown in FIGS. 3(a) and 3(b), circuit 20 is in series with energy storage device 16. In the simplest case, circuit 20 includes a switch 22 in parallel with a diode 26. In a further embodiment, circuit 20 also includes an impedance 24 in parallel with a switch 22. As described herein, protection circuit 20 controllably limits the current discharged by energy storage device 16. In the case where circuit 20 comprises switch 22 and diode 26 only, the discharge current may be limited to a zero value—i.e. no current may be discharged. In the case where impedance 24 is provided, the current discharged will be controllably limited via impedance 24.
Circuit 20 is configured to protect the integrity of both energy storage device 16 and power generator 14. In one embodiment of the invention, protection circuit 20 does not entirely disconnect energy storage device 16 from load 12 so that the entire load is not transferred to power generator 14 if a fault condition or some other predetermined operating condition arises.
In normal operation switch 22 is closed (
Thus in the de-rated mode the system maintains control of the output of power generator 14. When the demand of load 12 is high, it will draw from the available power of power generator 14 and when the power demand of load 12 is low, current will be delivered to the battery or other energy storage device 16. This enables power generator 14 to continue to operate in a controlled manner without having to respond to load 12 in a load following mode while the system is de-rated.
In the illustrated embodiment opening and closing of switch 22 is controlled by system controller 18. Controller 18 may, for example, comprise a microprocessor configured to receive state of charge, temperature or voltage data from energy storage device 16 and/or sensor 25. As will be appreciated by a person skilled in the art, a circuit having standard analog or digital components could be utilized instead of a microprocessor to provide the required switching controls.
As will also be appreciated by a person skilled in the art, impedance 24 could be a fixed or a variable impedance device (such as a PWM controlled resistor or a MOSFET in the linear portion of its characteristic) that is sized to protect against battery short circuit. Switch 22 may be actuated automatically or manually and could consist of field effect transistor (FET). Diode 26 could consist of any suitable device for conducting current only in the direction toward energy storage device 16.
In operation, system controller 18 will control the power available from power generator 14 by setting a current limit at the input of power converter 15. Power converter 15 will maintain the current from power generator 14 constant and is designed to handle a wide range of output voltages on the active dynamic load 12 without exceeding the current limit set for power generator 14 by system controller 18. Several possible operating states are possible. In a first instance, active dynamic load 12 may be disconnected from power supply system 10. In this case, output power converter 15 will charge energy storage device 16. Current in energy storage device 16 may be determined by the power available at the output of power converter 15 divided by the output voltage of power converter 15.
In another possible operating state, active dynamic load 12 may be receiving less power than is delivered by power converter 15. The difference between power delivered by power converter 15 and power consumed by active dynamic load 12 will be used to charge energy storage device 16. Output current of power converter 15 is determined by the ratio between the output power and voltage.
In another possible operating state, active dynamic load 12 may require more power than is delivered by power converter 15. In this case two possible scenarios are possible. In the first scenario, if the voltage on load 12 exceeds the protection limit of power converter 15, the current on the output of power converter 15 is determined by the ratio between its output power and voltage on load 12. The additional required current will be provided by energy storage device 16 through switch 22 (normal operation) or impedance 24 (abnormal, de-rated operation). In the second scenario, voltage on the load may be very low due to an overload or possible short circuit condition. In this case power converter 15 will limit output current. Current from energy storage device 16 will be limited by impedance 24 and power converter 15 will deliver constant current to load 12. It is possible that current from power generator 15 will drop under the prescribed value in this case. The voltage of energy storage device (VESD) and current of the energy storage device (IESD) will not drop under a safe limit that is specific to the electrochemistry of the battery or other energy storage device 16 in question.
When energy storage device 16 is in a faulty or de-rated mode as shown in
As will be apparent to those skilled in the art in the light of the foregoing disclosure, many alterations and modifications are possible in the practice of the invention without departing from the spirit or scope thereof. Accordingly, the scope of the invention is to be construed in accordance with the substance defined by the following claims.