Hybrid power systems for different modes of flight

Information

  • Patent Grant
  • 11787537
  • Patent Number
    11,787,537
  • Date Filed
    Tuesday, July 20, 2021
    2 years ago
  • Date Issued
    Tuesday, October 17, 2023
    8 months ago
Abstract
A hybrid power system includes a first power source that includes an internal combustion engine, a second power source that includes a battery, and a power controller. The hybrid power system is included in a vertical takeoff and landing (VTOL) vehicle that flies in a transitional mode between a hovering mode and a forward flight mode. The power controller selects one or more of the first power source and the second power source to power a rotor included in the VTOL vehicle, including by: during a landing, the power controller determines when to have the second power source provide power to the rotor, in order to supplement power provided to the rotor by the first power source, based at least in part on one or more flight state variables associated with a flight computer.
Description
BACKGROUND OF THE INVENTION

New types of aircraft are being developed which are capable of taking off and landing in dense urban areas, opening up new transportation pathways and bypassing gridlock on the roads. For example, Kitty Hawk Corporation is developing a new electric vertical takeoff and landing (eVTOL) tiltrotor which can take off and land in a footprint of roughly 30 ft.×30 ft. An early prototype has been manufactured and tested and further improvements to the vehicle's performance (e.g., improving the range) would be desirable.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the following detailed description and the accompanying drawings.



FIG. 1A is a perspective view diagram illustrating an embodiment of a forward swept, fixed wing vehicle with tilt rotors.



FIG. 1B is a top view diagram illustrating an embodiment of a forward swept, fixed wing vehicle with tilt rotors.



FIG. 2A is a diagram illustrating a bottom view of an embodiment of boundary layer thicknesses with the motors off.



FIG. 2B is a diagram illustrating a bottom view of an embodiment of boundary layer thicknesses with motors on.



FIG. 3A is a diagram illustrating an example of a tilt wing configuration with corresponding lift vector, thrust vector, and drag.



FIG. 3B is a diagram illustrating an example of a fixed wing configuration with a leading edge mounted tilt rotor and corresponding lift vector, thrust vector, and drag.



FIG. 3C is a diagram illustrating an embodiment of a fixed wing configuration with a trailing edge mounted tilt rotor and corresponding lift vector, thrust vector, and drag.



FIG. 4 is a diagram illustrating an embodiment of airflow produced when trailing edge mounted tilt rotors on a main wing are off



FIG. 5 is a diagram illustrating an embodiment of a forward swept and tapered wing and a straight wing for comparison.



FIG. 6A is a diagram illustrating an embodiment of a takeoff tilt change from hover position to cruise position.



FIG. 6B is a diagram illustrating an embodiment of a landing tilt change from cruise position to hover position.



FIG. 7 is a diagram illustrating an embodiment of a velocity tilt diagram.



FIG. 8 is a diagram illustrating an embodiment of a vehicle with a hybrid power system comprising two battery sub-systems.



FIG. 9 is a diagram illustrating an embodiment of a vehicle with a hybrid power system comprising a battery sub-system and an internal combustion engine.



FIG. 10 is a diagram illustrating an embodiment of a vehicle with a cruise-only propeller and hover and transition-only tiltrotors and a hybrid power system comprising a battery sub-system and an internal combustion engine.





DETAILED DESCRIPTION

The invention can be implemented in numerous ways, including as a process; an apparatus; a system; a composition of matter; a computer program product embodied on a computer readable storage medium; and/or a processor, such as a processor configured to execute instructions stored on and/or provided by a memory coupled to the processor. In this specification, these implementations, or any other form that the invention may take, may be referred to as techniques. In general, the order of the steps of disclosed processes may be altered within the scope of the invention. Unless stated otherwise, a component such as a processor or a memory described as being configured to perform a task may be implemented as a general component that is temporarily configured to perform the task at a given time or a specific component that is manufactured to perform the task. As used herein, the term ‘processor’ refers to one or more devices, circuits, and/or processing cores configured to process data, such as computer program instructions.


A detailed description of one or more embodiments of the invention is provided below along with accompanying figures that illustrate the principles of the invention. The invention is described in connection with such embodiments, but the invention is not limited to any embodiment. The scope of the invention is limited only by the claims and the invention encompasses numerous alternatives, modifications and equivalents. Numerous specific details are set forth in the following description in order to provide a thorough understanding of the invention. These details are provided for the purpose of example and the invention may be practiced according to the claims without some or all of these specific details. For the purpose of clarity, technical material that is known in the technical fields related to the invention has not been described in detail so that the invention is not unnecessarily obscured.


Various embodiments of an electric vertical takeoff and landing (eVTOL) tiltrotor with a hybrid power system are described herein. For context and background, it may be helpful to first describe an earlier version of the vehicle which used a single type of cell and/or power train across all power systems (e.g., all batteries have the same design with the same type of cell). Then, various embodiments of the exemplary eVTOL tiltrotor with hybrid power systems and example applications and/or benefits are described. Naturally, the hybrid power systems described herein may be used in other vehicles.



FIG. 1A is a perspective view diagram illustrating an embodiment of a forward swept, fixed wing vehicle with tilt rotors. FIG. 1B is a top view diagram illustrating an embodiment of a forward swept, fixed wing vehicle with tilt rotors. In the example shown, the main wing (100a and 100b) is a fixed wing which is attached to the fuselage (102a and 102b) in a fixed manner or position. The main wing is not, in other words, a tilt wing which is capable of rotating. The main wing (100a and 100b) is also forward swept (e.g., relative to the pitch axis). For example, the forward-sweep angle may be on the order of θsweep between 14° and 16° for aircraft embodiments with a canard (as shown here) or as high as 35° for aircraft embodiments without a canard.


In this example, the main wing (100a and 100b) has six rotors (104a and 104b) which are attached to the trailing edge of the main wing. Rotors or propellers in this configuration are sometimes referred to as pusher propellers (e.g., because the propellers are behind the wing and “push” the vehicle forward, at least when they are in their forward flight position). Forward flight mode is sometimes referred to herein as cruise mode. For clarity, these rotors on the main wing are sometimes referred to as the main wing rotors (e.g., to differentiate them from the rotors which are attached to the canard). Naturally, the number of rotors shown here is merely exemplary and is not intended to be limiting.


In addition to the six main wing rotors, there are two rotors (106a and 106b) which are attached to the canard (108a and 108b). These rotors are sometimes referred to as the canard rotors. The canard is thinner than the main wing, so unlike the main wing rotors, the canard rotors are attached to the distal ends of the canard as opposed to the trailing edge of the canard.


All of the rotors in this example are tilt rotors, meaning that they are capable of tilting or otherwise rotating between two positions. In the drawings shown here, the rotors are in a cruise (e.g., forward flight, backward facing, etc.) position. In this position, the rotors are rotating about the (e.g., substantially) longitudinal axes of rotation so that they provide (substantially) backward thrust. When the rotors are in this position, the lift to keep the tiltrotor vehicle airborne comes from the airflow over the main wing (100a and 100b) and the canard (108a and 108b). In this particular example, the rotational range of a tilt rotor ranges has a minimum angular position of approximately 0°-5° and a maximum angular position of approximately 90°-95°. This range is design and/or implementation specific.


The rotors can also be tilted down to be in a hover (e.g., vertical takeoff and landing, downward facing, etc.) position (not shown). In this second position, the rotors are rotating about (e.g., substantially) vertical axes of rotation so that they provide (substantially) downward thrust. In this configuration, the lift to keep the tiltrotor vehicle airborne comes from the downward airflow of the rotors.


Generally speaking, the tilt rotors, when oriented to output thrust substantially downward, permit the aircraft to perform vertical takeoff and landings (VTOL). This mode or configuration (e.g., with respect to the manner in which the aircraft as a whole is flown and/or with respect to the position of the tilt rotors specifically) is sometimes referred to as hovering. The ability to perform vertical takeoffs and landings permits the aircraft to take off and land in areas where there are no airports and/or runways. Once airborne, the tilt rotors (if desired) change position to output thrust (substantially) backwards instead of downwards. This permits the aircraft to fly in a manner that is more efficient for forward flight; this mode or configuration is sometimes referred to as cruising.


A canard is useful because it can stall first (e.g., before the main wing), creating a lot of pitching moments and not much loss of lift at stall whereas a main wing stall loses a lot of lift per change in pitching moment (e.g., causing the entire aircraft to drop or fall). Stalls are thus potentially more benign with a canard compared to without a canard. The canard stall behavior is particularly beneficial in combination with a swept forward wing, as the stall of the main wing can create an adverse pitching moment if at the wing root and can create large and dangerous rolling moments if at the wing tip. Furthermore, a canard can create lift at low airspeeds and increase CLmax (i.e., maximum lift coefficient) and provides a strut to hold or otherwise attach the canard motors to.


In some embodiments, the pylons (110a and 110b) which are used to attach the rotors to the canard and/or main wing include some hinge and/or rotating mechanism so that the tilt rotors can rotate between the two positions shown. Any appropriate hinge mechanism may be used. For example, with ultralight aircraft, there are very stringent weight requirements and so a lightweight solution may be desirable. Alternatively, a fixed-tilt solution may also be used to meet very stringent weight requirements.


In some embodiments, the aircraft is designed so that the main wing (100a and 100b) and canard (108a and 108b) are able to provide sufficient lift to perform a glider-like landing if needed during an emergency. For example, some ultralight standards or specifications require the ability to land safely if one or more rotors fail and the ability to perform a glider-like landing would satisfy that requirement. One benefit to using a fixed wing for the main wing (e.g., as opposed to a tilt wing) is that there is no danger of the wing being stuck in the wrong position (e.g., a hover position) where a glider-like landing is not possible because of the wing position which is unsuitable for a glider-like landing.


Another benefit to a fixed wing with trailing edge mounted tilt rotors is stall behavior (or lack thereof) during a transition from hover position to cruise position or vice versa. With a tilt wing, during transition, the tilt wing's angle of attack changes which makes stalling an increased risk. A fixed wing with trailing edge mounted tilt rotors does not change the wing angle of attack (e.g., even if rotors are turned off/on or the tilt rotors are shifted). Also, this configuration both adds dynamic pressure and circulation over the main wing, which substantially improves the behavior during a transition (e.g., from hover position to cruise position or vice versa). In other words, the transition can be performed faster and/or more efficiently with a fixed wing with trailing edge mounted tilt rotors compared to a tilt wing (as an example).


Another benefit associated with a fixed wing vehicle with tilt rotors (e.g., as opposed to a tilt wing) is that a smaller mass fraction is used for the tilt actuator(s). That is, multiple actuators for multiple tilt rotors (still) comprise a smaller mass fraction than a single, heavy actuator for a tilt wing. There are also fewer points of failure with tilt rotors since there are multiple actuators as opposed to a single (and heavy) actuator for the tilt wing. Another benefit is that a fixed wing makes the transition (e.g., between a cruising mode or position and a hovering mode or position) more stable and/or faster compared to a tilt wing design.


In some embodiments, the rotors are variable pitch propellers which have different blade pitches when the rotors are in the hovering position versus the cruising position. For example, different (ranges of) blade pitches may enable more efficient operation or flight when in the cruise position versus the hovering position. When the rotors are in a cruise position, putting the blade pitches into “cruising pitch” (e.g., on the order of)26° enables low frontal area which is good for cruising (e.g., lower drag). When the rotors are in a hovering position, putting the blade pitches into a “hovering pitch” (e.g., on the order of)6° enables high disc area which is good for hovering. To put it another way, one blade pitch may be well suited for cruising mode but not for hovering mode and vice versa. The use of variable pitch propellers enables better (e.g., overall) efficiency, resulting in less power consumption and/or increased flight range.


The following figures illustrate various benefits associated with the exemplary aircraft shown in FIGS. 1A and 1B.



FIG. 2A is a diagram illustrating a bottom view of an embodiment of boundary layer thicknesses with the motors off. In this example, laminar run lines 200a, 202a, and 204a illustrate laminar runs at various regions of the main wing. In this example, it is assumed that the aircraft is cruising (e.g., flying in a substantially forward direction). As in FIGS. 1A and 1B, the main wing rotors (206) are attached to the trailing edge of the main wing (208) in this embodiment. The next figure shows the boundary layer thicknesses with the rotors turned on.



FIG. 2B is a diagram illustrating a bottom view of an embodiment of boundary layer thicknesses with motors on. In this example, the motors are on and the rotors have an exit airflow velocity of 30 m/s. With the motors on, a low pressure region is created towards the aft of the wing which increases the laminar run on the main wing. See, for example, laminar run lines 200b, 202b, and 204b which correspond to laminar run lines 200a, 202a, and 204a from FIG. 2A. A comparison of the two sets illustrates that the laminar runs have increased for the first two locations (i.e., at 200a/200b and 202a/202b). The last location (i.e., 204a/204b) has only a slightly longer laminar run length due to interference from the canard rotors (210).


The drag from the main wing rotors (more specifically, the drag from the pylons which are used to attach the main wing rotors to the main wing) is hidden in the wake of the airflow coming off the main wing. See, for example FIG. 2A which more clearly shows that the pylons (220) are connected or otherwise attached behind most of the extent of laminar run (222). With the embodiment shown here, the pylons also get to keep some of the boundary layer thickness from the main wing, which means the pylons have lower drag per surface area. This improves the drag compared to some other alternate designs or configurations. The following figures describe this in more detail.



FIG. 3A is a diagram illustrating an example of a tilt wing configuration with corresponding lift vector, thrust vector, and drag. In this example, a fixed rotor (300) is attached to a tilt wing (302) at a fixed position or angle. This is one alternate arrangement to the aircraft embodiment(s) described above. To direct the airflow produced by the fixed rotor (300) either backwards or downwards, the tilt wing (302) is rotated. As shown here, with this configuration, there is drag (304) at the trailing edge of the tilt wing, which is undesirable.


The lift (306) and thrust (308) for this configuration are also shown here, where the tilt wing is shown in the middle of a transition (e.g., between a cruising position and a hovering position). As shown here, the lift (306) and thrust (308) are substantially orthogonal to each other, which is inefficient. In other words, a tilt wing is inefficient during its transition.



FIG. 3B is a diagram illustrating an example of a fixed wing configuration with a leading edge mounted tilt rotor and corresponding lift vector, thrust vector, and drag. In this example, a tilt rotor (320) is attached to the leading edge of a fixed wing (322). This is another alternate arrangement to the aircraft embodiment(s) described above. The corresponding drag (324) and thrust (326) for this arrangement are also shown. There is no useful lift produced with this configuration and therefore no lift vector is shown here.



FIG. 3C is a diagram illustrating an embodiment of a fixed wing configuration with a trailing edge mounted tilt rotor and corresponding lift vector, thrust vector, and drag. In this example, the tilt rotor (340) is attached to the trailing edge of the fixed wing (342). In this configuration, the drag due to the trailing edge mounted tilt rotor (e.g., mostly due to its pylon, not shown) is hidden in the wake of the airflow coming off the main wing. As such, there is no drag (at least due to the tilt rotor (340)).


The position of the trailing edge mounted tilt rotor (340) relative to the fixed wing (342) also sucks air (344) over the fixed wing, after which the air turns or bends through the rotor and downwards. This flow turning over the wing generates a relatively large induced lift (346) which is shown here. The thrust vector (348) due to the rotors is also shown here. It is noted that the induced lift (346) and thrust (348) are substantially in the same direction (i.e., both are pointing substantially upwards) which is a more efficient arrangement, including during a transition. In other words, using a fixed wing with trailing edge mounted tilt rotors produces less drag and improved efficiency during a transition (e.g., due to the lift and thrust vectors which now point in substantially the same direction) compared to other rotor and wing arrangements. Note for example, drag 304 and drag 324 in FIG. 3A and FIG. 3B, respectively, and the orthogonal positions of lift 306 and thrust 308 in FIG. 3A.


The following figure illustrates an embodiment of flow turning in more detail.



FIG. 4 is a diagram illustrating an embodiment of airflow produced when trailing edge mounted tilt rotors on a main wing are off In this example, a tiltrotor (400) is shown but with the main wing rotors turned off for comparison purposes. With the rotors off, the airflow in (402) and the airflow out (404) are moving in substantially the same direction. That is, the airflow does not turn (e.g., downwards) as it passes through the rotors.


Tiltrotor 420 shows the same vehicle as tiltrotor 400 except the rotors are turned on. In this example, the airflow in (422) and the airflow out (424) have noticeable different directions and there is noticeable turning or bending of the airflow as it passes through the rotors of the exemplary tiltrotor shown. As described above, this induces a noticeable lift, which is desirable because less power is consumed and/or the range of the tiltrotor increases.


In this example, the main wing rotors (426) are in the hovering position. As shown here, these rotors are slightly pitched or otherwise angled (e.g., with the tops of the main wing rotors pointing slightly forward and the bottoms pointing slightly backward). In this diagram, the amount of tilting is shown as θpitch (428) and in some embodiments is on the order of 90° of rotational range or movement (e.g., ˜3° up from horizontal when in a cruise position (e.g., for minimum drag) and ˜93° degrees down from horizontal when in a hover position which produces a rotational range of ˜96°. Although this angling or pitching of the rotors is not absolutely necessary for flow turning to occur, in some embodiments the main wing rotors are angled or otherwise pitched to some degree in order to increase or otherwise optimize the amount of flow turning. In some embodiments, the canard rotors are similarly pitched. It is noted that tiltrotor 420 is shown in a nose up position and therefore the vertical axis (e.g., relative to the tiltrotor) is not perpendicular to the ground and/or frame of reference.


In some embodiments, the rotors (e.g., the main wing rotors and/or canard rotors) are rolled or otherwise angled slightly outward, away from the fuselage, when the rotors are in hovering position. In some embodiments, this roll (e.g., outward) is on the order of 10° for greater yaw authority.


In some embodiments, the main wing is tapered (e.g., the wing narrows going outward towards the tip) in addition to being forward swept. The following figures describe various wing and/or tail embodiments.



FIG. 5 is a diagram illustrating an embodiment of a forward swept and tapered wing and a straight wing for comparison. In the example shown, wing 500 is a straight wing with no tapering (e.g., the wing is the same width from the center to the tip of the wing). Exemplary rotors (502) are shown at the trailing edge of the straight wing (500).


The center of thrust (504), indicated by a dashed and dotted line, is dictated by the placement or arrangement of the rotors and runs through the centers of the main wing rotors (502). For simplicity, the canard rotors are ignored in this example. The center of lift is based on the shape of the wing. For a rectangular wing such as wing 500, the center of lift (506), indicated by a solid line, runs down the center of the wing. Calculation of the aerodynamic center is more complicated (e.g., the aerodynamic center depends upon the cross section of the wing, etc.) and aerodynamic center 508, indicated by a dashed line, is exemplary and/or typical for this type of wing.


As shown here, the straight wing (500) and its corresponding arrangement of main wing rotors (502) produce a center of thrust (504) which is relatively far from both the center of lift (506) as well as the aerodynamic center. This separation is undesirable. More specifically, when the main wing rotors (502) are in hover position, if the center of thrust (504) is far from the center of lift (506), then the transition (e.g., in the context of the movement of the aircraft as a whole, such as switching from flying substantially upwards to substantially forwards or vice versa) would create very large moments and could overturn the vehicle or prevent acceleration or stability and/or require a massive and/or non-optimal propulsion system. In cruise, if the center of thrust (504) is far from the center of lift (506), it is not as important (e.g., since the thrust moments are both smaller and more easily balanced by aerodynamic moments), but it is still undesirable.


In contrast, the forward swept and tapered wing (520) and its corresponding arrangement of rotors (522) along the trailing edge produce a center of thrust (524), center of lift (526), and aerodynamic center (528) which are closer to each other. For example, the forward sweep of the wing brings the rotors forward to varying degrees. This causes the center of thrust to move forward (e.g., towards the leading edge and towards the other centers). The tapering of the wings prevents the aerodynamic center and center of lift from creeping forward too much (and more importantly, away from the center of thrust) as a result of the forward sweep. For example, with a forward swept wing with no tapering (not shown), the center of thrust would move forward approximately the same amount as the aerodynamic center and center of lift and would result in more separation between the three centers than is shown here with wing 520.


Some other benefits to a forward swept and tapered wing include better pilot visibility, and a better fuselage junction location with the main wing (e.g., so that the main wing spar can pass behind the pilot seat, not through the pilot). Furthermore, the taper reduces wing moments and puts the center of the thrust of the motors closer to the wing attachment to the fuselage, as referenced about the direction of flight, so there are less moments carried from wing to fuselage, a shorter tail boom (e.g., which reduces the weight of the aircraft), and improved pitch stability.


The following figures describe exemplary tilt transitions of the rotors between cruise position and hover position.



FIG. 6A is a diagram illustrating an embodiment of a takeoff tilt change from hover position to cruise position. In some embodiments, the exemplary tiltrotor performs this transition soon after taking off (e.g., substantially vertically). It is noted that this tilt transition is optional and the aircraft may fly entirely with the rotors in the hovering position (albeit with less than optimal performance). For example, this could be done if there is risk in the tilting action, and it would be better to take the action at a higher altitude.


Tiltrotor 600 shows the exemplary aircraft after it has performed a vertical takeoff. In this state shown here, the main wing rotors and canard rotors are in hover position (e.g., rotating about a substantially vertical axis of rotation so that the rotors generate substantially downward thrust).


The tiltrotor then transitions from an entirely upward direction of movement to a direction of movement with at least some forward motion with the rotors remaining in the hover position until the tiltrotor reaches some desired altitude at which to begin the transition (602). In other words, the vehicle transitions first, and then changes the tilt of the rotors. In one example, the altitude at which the tiltrotor begins the rotor tilt change from hover position to cruise position is an altitude which is sufficiently high enough for there to be recovery time in case something goes wrong during the transition. Switching the rotors between hover position and cruise position is a riskier time where the likelihood of something going wrong (e.g., a rotor failing, a rotor getting stuck, etc.) is higher. Although the tiltrotor may have systems and/or techniques in place for recovery (e.g., compensating for a rotor being out by having the remaining rotors output more thrust, deploy a parachute, etc.), these systems and/or techniques take time (i.e., sufficient altitude) to work.


From position 602, the tiltrotor flies substantially forward and moves the tilt rotors from a hover position (e.g., where thrust is output substantially downward) to a cruise position. Once in the cruise position 604, the rotors rotate about a substantially longitudinal axis so that they output backward thrust.



FIG. 6B is a diagram illustrating an embodiment of a landing tilt change from cruise position to hover position. For example, the exemplary tiltrotor may perform this transition before landing vertically. As with the previous transition, this transition is optional. For example, the exemplary tiltrotor can keep the tilt rotors in cruise position and perform a glider-like landing as opposed to a vertical landing if desired.


Tiltrotor 610 shows the rotors in a cruise position. While flying in a substantially forward direction, the tilt rotors are moved from the cruise position shown at 610 to the hover position shown at 612. With the tilt rotors in the hover position (612), the tiltrotor descends with some forward movement (at least in this example) so as to keep power use low(er) and retain better options in the case of a failure of a motor or other component (e.g., the tiltrotor can power up the rotors and pull out of the landing process or path) to position 614 until it finally lands on the ground.



FIG. 7 is a diagram illustrating an embodiment of a velocity tilt diagram. In the diagram shown, the x-axis shows the forward speed of the aircraft and the y-axis shows the tilt (e.g., position or angle of the tilt wing or tilt rotors) which ranges from a (e.g., minimal) cruise position (700) to a (e.g., maximal) hover position (702).


The first operating envelope (704), shown with a solid border and filled with a grid pattern, is associated with a tilt wing aircraft. See, for example, tiltrotor 400 in FIG. 4 and tilt wing 302 and fixed rotor 300 in FIG. 3A. The second operating envelope (706), shown with a dashed border and gray fill, is associated with an (e.g., comparable) aircraft with a forward swept and fixed wing with trailing edge mounted tilt rotors. See, for example, the embodiments described above.


In the diagram shown here, the tilt rotor operating envelope (706) is a superset of the tilt wing operating envelope (704) which indicates that the former aircraft configuration is safer and/or more airworthy than the latter and is also able to fly both faster and slower at comparable tilt positions. With a fixed wing, the wing is already (and/or always) pointed in the direction of (forward) travel. When the tilt rotors are at or near the (e.g., maximal) hover position (702), the vehicle can fly pretty much all the way up to the stall speed (e.g., V2) without having to tilt the motors up to cruise position. Note, for example, that the tilt rotor operating envelope (706) can stay at the (e.g., maximal) hover position (702) all the way up to V2. This greatly increases the operating regime of the tilt rotor operating envelope (706) compared to the tilt wing operating envelope (704). Note for example, all of the gray area above the tilt wing operating envelope (704).


Another effect which can contribute to the expanded operating envelope for the tilt rotor configuration at or near hover position includes flow turning (see, e.g., FIG. 4). The flow turning over the main wing induces some extra lift. In some embodiments, this flow turning and its resulting lift are amplified or optimized by tilting the main wing rotors at a slight backward angle from directly down when in a normal hover (e.g., at minimal tilt position 700).


In contrast, a tilt wing presents a large frontal area when the tilt wing is tilted up in (e.g., maximal) hover position (702). As a result, tilt wings are unable to fly forward at any kind of decent speed until at or near the full (e.g., minimal) cruise position (700) or nearly so.


Returning briefly to FIGS. 1A and 1B, early prototypes of the tiltrotor vehicle used a battery system with a single type of battery cell for design simplicity. For example, Lithium battery cells tend to be either high discharge rate (i.e., capable of outputting high current levels) or high energy, but not both (e.g., because typically as discharge rate capacity increases, energy capacity decreases). For example, batteries and/or cells with an energy density less than or equal to 190 Wh/kg are usually able to support high current draws and are accordingly considered or classified as high discharge rate and those with an energy density greater than or equal to 235 Wh/kg are considered or classified as high energy. Early prototypes used battery cells that were a compromise between the two in order to use a single type of cell which reduces design complexity. Since the rest of the vehicle was more of a departure from existing vehicles, it was desirable to maintain design simplicity where possible in early prototypes.


With subsequent versions and/or prototypes of the vehicle, increasing the range of the vehicle is a desirable performance improvement. Hybrid power systems (e.g., comprising two or more different power systems which are used at various times or modes during a flight) are more complex than using a battery system with a single type of cell (e.g., because the vehicle with the hybrid power system would need to switch various power systems on and off in a safe manner during flight, as well as other design considerations), but the range increase makes the tradeoff worthwhile.


The following figures describe various embodiments of hybrid power systems which may be used in the tiltrotor vehicle described above. First, an embodiment of a hybrid power system with two types of batteries is described. Then, an embodiment of a hybrid power system with a battery and a combustion engine is described. It is noted that the hybrid power systems described herein may be suitable for use in other types of vehicles, not just the exemplary tiltrotor vehicle described herein.



FIG. 8 is a diagram illustrating an embodiment of a vehicle with a hybrid power system comprising two battery sub-systems. In the example shown, the tiltrotor vehicle includes one high discharge rate battery (800) and five high energy batteries (802). In this example, the high discharge rate battery (800) has an energy density of ˜180 Wh/kg and takes up ˜15% of the total battery weight while the high energy batteries (802) has an energy density of ˜270 Wh/kg. The high energy batteries are more limited in their discharge rate, but are suitable for the power needs of cruise flight.


For example, consider the flight sequence shown in FIG. 6A. A relatively high discharge rate is needed for the hover regime (600 in FIG. 6A) and transition regime (602 in FIG. 6A) since more thrust is required from the rotors during those modes of flight (e.g., since there is little or no lift force on the wing so that all or most of the lift comes from the rotors). In contrast, during cruise (604 in FIG. 6A), the power needed is much lower, approximately 30% of the power required during hover. To that end, during the vertical takeoff (i.e., hover mode 600 in FIG. 6A) and while the vehicle is transitioning from hovering mode to forward flight (602 in FIG. 6A), the high discharge rate battery (800) is used to supply power to the tilt rotors. In the forward flight or cruise regime (604 in FIG. 6A), the high energy batteries (802) are used to supply power.


A benefit to the exemplary hybrid power system shown here is that it increases the (e.g., cruise) range compared to an earlier, non-hybrid power system (e.g., with a single type of battery cell) initially used for early prototypes. For example, the initial battery system used a single type of cell with an energy density of ˜200 Wh/kg, which is a compromise value. As a result of this comprise, more cells are needed to be able to draw the overall level of current required for the power-hungry hover and transitional phases of flight. The end result of this compromise strategy is that the (e.g., cruise) range is lower than that offered by the exemplary hybrid power systems. For example, the exemplary hybrid power system shown here may yield a cruise battery capacity and cruise range increase of ˜15% over the earlier, non-hybrid power system.


As shown in this example, in some embodiments, a first power source (e.g., in a hybrid power system) includes a high discharge rate battery with an energy density less than or equal to 190 Wh/kg and a second power source (e.g., in the hybrid power system) includes a high energy battery with an energy density greater than or equal to 235 Wh/kg. In some embodiments, during the transitional mode, the power controller is configured to select the high discharge rate battery to power a rotor in the vehicle and to select the high energy battery to power the rotor. In some embodiments, the weight of the high discharge rate battery is less than or equal to 20% of a total battery weight.


One consideration when using a hybrid power system is deciding when to change the power sub-systems supplying power to the tilt rotors. In one example, after taking off vertically, a current sensor monitors bus current and when the aircraft is in cruise mode, as the current draw from the motors falls off and stabilizes, the power source is switched from high discharge (800) to the high energy (802) batteries. That is, the test for switching during the takeoff sequence may be based on which flight mode or state the vehicle is in (e.g., a flight computer or controller may have a flight state variable with values of HOVER_ST, TRANS_ST, or FF_ST) and whether or not an average current draw (e.g., within a moving window of time) is less than or equal to some threshold.


In some cases, the threshold or state which triggers a change in the power sub-systems used to power the tilt rotors is different for the takeoff sequence (e.g., the hovering, transition, and forward flight sequence) versus the landing sequence (e.g., the forward flight, transition, and hovering sequence). For example, a current sensor as described above can be used to determine when to switch from high discharge to high energy during takeoff. However, during landings, especially in the final approach phase, current draws can stay low as the vehicle is descending even though the rotors are tilted into hover mode. As the vehicle approaches the ground, power draw can increase suddenly, necessitating a power source switch very close to the ground and not leaving any room in case of a switch gear failure. In such cases, it may be desirable to switch power sources at the beginning of the detransition phase (e.g., with a flight state variable transitions from FF_ST to TRANS_ST) regardless of the current draw rather than wait till power needs increase close to the ground.


An important consideration in hybrid power systems for aircraft is how to safely switch between the different power sources. In one example, for safety, the switch is performed by using more than one electronically activated mechanical or semiconductor based switch, sized such that the system will work even if any one switch fails. Further, for safety, switches may be chosen such that they fail in the open circuit position for one source but closed for the other source, thereby preventing a situation where either both packs are simultaneously connected to the bus or neither pack is connected to the bus.


In some embodiments, a hybrid power system includes a battery and an internal combustion engine. The following figures describe various examples of this. As will be described in more detail below, in some embodiments there is/are one or more cruise-only (i.e., fixed) propellers that are used for forward flight mode (and possibly to some degree during the transition mode) but are not used for hover mode.



FIG. 9 is a diagram illustrating an embodiment of a vehicle with a hybrid power system comprising a battery sub-system and an internal combustion engine. In the example shown, during cruise mode, an internal combustion engine (e.g., including a fuel tank (900) and engine with gear-box (902)) drives a generator (904) via the engine-generator shaft (906) with power electronics (908) controlling the generation of electrical power by the internal combustion engine for the electric tilt rotors. During hover mode, the electrical power supplied by the internal combustion engine is supplemented by the batteries (910).


In some embodiments, the generator (904) is used to (e.g., slowly) charge the batteries (910) during the cruise phase. For example, since the batteries are only used during the hover mode (e.g., for takeoff and landing), the batteries may be charged during cruise mode since they are not discharging during that time. This may increase the vehicle's available hover time during landing (which may be attractive if a landing zone is occupied and the vehicle needs to hover while the landing zone is cleared) and/or permit a smaller-capacity (and therefore lighter) battery to be used.


For the purposes of comparison, suppose that an early prototype of the vehicle is equipped with 100kg of battery packs (e.g., a non-hybrid battery system with a single type of cell). For the example hybrid system shown here, suppose that the high discharge rate batteries from FIG. 8 are used for the batteries (910). If so, the battery portion (910) in this hybrid example would weight ˜16 kg. The internal combustion engine portion of the hybrid (e.g., including fuel tank (900) and engine with gear-box (902)) takes up ˜38 kg of weight along with its fluids and support systems. The electric generator (904) and power electronics (908) take up ˜16 kg. This leaves ˜30 kg for fuel, which translates to a 50% increase in cruise range compared to the comparison, non-hybrid battery configuration. Although there is an increase in complexity, safety challenges (e.g., due to flammable liquid), noise and vibration issues, the increased range may make this tradeoff worthwhile for longer-range applications. Also, unlike the hybrid example shown in FIG. 8, one of the power sub-systems (the internal combustion engine) is always on in this embodiment. This may be attractive for safety reasons since there is no chance of a first power sub-system switching off and a second power sub-system failing to switch on.


As shown in this example, in some embodiments, the first power source (e.g., in a hybrid system) includes an internal combustion engine, the second power source includes a (e.g., high discharge rate) battery; during the transitional mode, the power controller is configured to select the internal combustion engine to power the rotor and to de-select the battery so that the battery does not power the rotor; during a hover mode, the power controller is configured to select the internal combustion engine to power the rotor and to select the battery to power the rotor. In some embodiments, the internal combustion engine is used to recharge the battery at least some of the time when the battery is de-selected and not powering the rotor.



FIG. 10 is a diagram illustrating an embodiment of a vehicle with a cruise-only propeller and hover and transition-only tiltrotors and a hybrid power system comprising a battery sub-system and an internal combustion engine. In the example shown, a battery sub-system (1000) drives the (electric) tilt rotors (shown here in the tilted down position for hover) during hover and transition. In some embodiments, the battery sub-system (1000) includes multiple types of cells (e.g., a high energy battery as well as a high discharge rate battery) which are switched on and off during various flight modes as described above (see, e.g., FIG. 8).


The hybrid power system further includes an internal combustion engine which drives a cruise-only propeller (1002). In this example, the cruise-only propeller is mounted to the nose of the aircraft but such propellers may be located in a variety of places (e.g., a pusher propeller or rotor (1012) on the tail cone). During cruise (i.e., forward flight) mode, the engine (1004) turns the gearbox (1006) which in turn turns the cruise-only propeller (1002) via the propeller shaft (1008). Fuel is stored in the fuel tank (1010).


For the purposes of comparison, suppose that an early prototype of the vehicle is equipped with 100 kg of battery packs (e.g., a non-hybrid battery system with a single type of cell). In this comparison, suppose that the battery portion (1000) in this example uses high discharge batteries and that the battery portion weights ˜16 kg of weight in this hybrid example. The internal combustion engine takes up ˜45 kg of weight along with its fluids and support systems as well as a gearbox and the additional propeller (1002). This leaves ˜39 kg for fuel, which translates to an almost 100% increase in cruise range compared to the comparison configuration. In some long-range applications, the range increase offered makes the tradeoff in any complexity, safety issues (e.g., related to having a flammable liquid onboard), noise and vibration, and so on worthwhile.


As shown in this example, in some embodiments, a first power source (e.g., in a hybrid power system) includes an internal combustion engine and the second power source includes a battery where the rotor included in the vehicle includes a tilt rotor and the vehicle further includes a cruise-only rotor. A power controller is configured to: during a forward flight mode, select the internal combustion engine to power the cruise-only rotor and during a hover mode and a transitional mode, de-select the internal combustion engine so that the internal combustion engine does not power the cruise-only rotor.


In this example, the tilting propellers are used for hover and transition and are turned off during the cruise portion of the flight. In some embodiments, to reduce drag, the tilting propellers are foldable so that during cruise mode the propeller blades can be folded (e.g., back) to reduce drag during cruise.


In some embodiments, the cruise-only rotor includes a cruise-only, pusher rotor that is located behind a tail in the vehicle (e.g., so that the wake produced by the cruise-only rotor does not interfere with the airflow over the canard or main wing). In some embodiments, the second power source includes a high discharge rate battery with an energy density less than or equal to 190 Wh/kg and a high energy battery with an energy density greater than or equal to 235 Wh/kg (i.e., the battery sub-system is itself a hybrid system, such as the example shown in FIG. 8).


As described above, hybrid power systems may be useful in increasing range. in some embodiments, batteries provide additional thrust needed during a hover and/or transition mode, but an internal combustion engine and generator provide the lower power needed for cruise flight. This would increase range substantially for a given vehicle weight since liquid fuels are far more energy dense than batteries.


In another embodiment, the hybrid power system uses two electric (i.e., battery) systems, one with high power output cells for hover and/or transition mode and the other using high energy dense cells (e.g., which typically have lower current output capabilities) providing cruise power, thereby extending the range compared to a single electric system (i.e., with a single, compromise type of cell).


Although the foregoing embodiments have been described in some detail for purposes of clarity of understanding, the invention is not limited to the details provided. There are many alternative ways of implementing the invention. The disclosed embodiments are illustrative and not restrictive.

Claims
  • 1. A hybrid power system, including: a first power source that includes an internal combustion engine;a second power source that includes a battery; anda power controller, wherein: the hybrid power system is included in a vertical takeoff and landing (VTOL) vehicle that flies in a transitional mode that occurs: (1) after a hovering mode and before a forward flight mode during a vertical takeoff or (2) after the forward flight mode and before the hovering mode during a vertical landing; andthe power controller selects one or more of the first power source and the second power source to power a rotor included VTOL vehicle, including by: receiving a current draw associated with the VTOL vehicle;receiving one or more flight state variables associated with a flight computer that indicate whether the VTOL vehicle is in the hovering mode, the forward flight mode, or the transitional mode;during the vertical landing, the power controller performs a power source switch so that the second power source provides power to the rotor, including by supplementing power provided to the rotor by the first power source, independent of the current draw and in response to the one or more flight state variables associated with the flight computer being in the transitional mode that occurs after the forward flight mode and before the hovering mode during the vertical landing; andduring the vertical takeoff, the power controller selects, based at least in part on the current draw, one or more of the first power source and the second power source to power to the rotor.
  • 2. The hybrid power system recited in claim 1, wherein the VTOL vehicle further includes a plurality of pusher-style tilt rotors.
  • 3. The hybrid power system recited in claim 1, wherein the internal combustion engine charges the battery at least some of the time during the forward flight mode.
  • 4. The hybrid power system recited in claim 1, wherein the VTOL vehicle further includes a plurality of pusher-style tilt rotors and a cruise-only propeller.
  • 5. The hybrid power system recited in claim 1, wherein the VTOL vehicle further includes a plurality of pusher-style tilt rotors and a cruise-only propeller, wherein the plurality of pusher-style tilt rotors are for hover and transition only.
  • 6. The hybrid power system recited in claim 1, wherein in response to a change from a flight state variable associated with the forward flight mode to a flight state variable associated with the transitional mode, the power controller decides to have the second power source provide power to the rotor.
  • 7. A method for managing a hybrid power system, including: providing a first power source, including in a hybrid power system, that includes an internal combustion engine;providing a second power source, including in a hybrid power system, that includes a battery; andproviding a power controller, including in a hybrid power system, wherein: the hybrid power system is included in a vertical takeoff and landing (VTOL) vehicle that flies in a transitional mode that occurs: (1) after a hovering mode and before a forward flight mode during a vertical takeoff or (2) after the forward flight mode and before the hovering mode during a vertical landing; andthe power controller selects one or more of the first power source and the second power source to power a rotor included in the VTOL vehicle, including by: receiving a current draw associated with the VTOL vehicle;receiving one or more flight state variables associated with a flight computer that indicate whether the VTOL vehicle is in the hovering mode, the forward flight mode, or the transitional mode; andduring the vertical landing, the power controller performs a power source switch so that the second power source provides power to the rotor, including by supplementing power provided to the rotor by the first power source, independent of the current draw and in response to the one or more flight state variables associated with the flight computer being in the transitional mode that occurs after the forward flight mode and before the hovering mode during the vertical landing; andduring the vertical takeoff, the power controller selects, based at least in part on the current draw, one or more of the first power source and the second power source to power to the rotor.
  • 8. The method for managing the hybrid power system as recited in claim 7, wherein the VTOL vehicle further includes a plurality of pusher-style tilt rotors.
  • 9. The method for managing the hybrid power system as recited in claim 7, wherein the internal combustion engine charges the battery at least some of the time during the forward flight mode.
  • 10. The method for managing the hybrid power system as recited in claim 7, wherein the VTOL vehicle further includes a plurality of pusher-style tilt rotors and a cruise-only propeller.
  • 11. The method for managing the hybrid power system as recited in claim 7, wherein the VTOL vehicle further includes a plurality of pusher-style tilt rotors and a cruise-only propeller, wherein the plurality of pusher-style tilt rotors are for hover and transition only.
  • 12. The method for managing the hybrid power system as recited in claim 7, wherein in response to a change from a flight state variable associated with the forward flight mode to a flight state variable associated with the transitional mode, the power controller decides to have the second power source provide power to the rotor.
CROSS REFERENCE TO OTHER APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 17/066,050 entitled HYBRID POWER SYSTEMS FOR DIFFERENT MODES OF FLIGHT filed Oct. 8, 2020 which is incorporated herein by reference for all purposes, which claims priority to U.S. Provisional Patent Application No. 62/912,872 entitled FIXED WING AIRCRAFT WITH TILT ROTORS filed Oct. 9, 2019 which is incorporated herein by reference for all purposes.

US Referenced Citations (520)
Number Name Date Kind
1400032 Dickey Dec 1921 A
1868832 Henter Jul 1932 A
1919121 Oehmichen Jul 1933 A
2415710 Smith Feb 1947 A
2417896 Zimmerman Mar 1947 A
2427936 Wales, Jr. Sep 1947 A
2478847 Joseph Aug 1949 A
2539489 Smith Jan 1951 A
2540404 Neale Feb 1951 A
2563020 Gemeinhardt Aug 1951 A
2629567 Papadakos Feb 1953 A
2651480 Pullin Sep 1953 A
2722075 Abrassart Nov 1955 A
2738939 Johnson Mar 1956 A
2937823 Fletcher May 1960 A
2955780 Hulbert Oct 1960 A
3002712 Sterling Oct 1961 A
3029047 Jacobsen Apr 1962 A
3036315 Karnow May 1962 A
3053480 Vanderlip Sep 1962 A
3081964 Quenzler Mar 1963 A
3089666 Quenzler May 1963 A
3115317 Vernon Dec 1963 A
3121544 Alvarez-Calderon Feb 1964 A
3159361 Weiland Dec 1964 A
3179354 Alvarez-Calderon Apr 1965 A
3184183 Plasecki May 1965 A
3203649 Girard Aug 1965 A
3228044 Mattenson Jan 1966 A
3245476 Rodwick Apr 1966 A
3253806 Eickmann May 1966 A
3265329 Postelson Aug 1966 A
3273827 Girard Sep 1966 A
3284027 Mesniere Nov 1966 A
3539070 Dunlea, Jr. Nov 1970 A
3556438 Meditz Jan 1971 A
3666209 Taylor May 1972 A
3669564 Garfinkle Jun 1972 A
3904301 Schroeder Sep 1975 A
3914067 Leto Oct 1975 A
3934847 Bentivegna Jan 1976 A
3949957 Portier Apr 1976 A
3972386 Hayslip Aug 1976 A
3997131 Kling Dec 1976 A
4025860 Shibata May 1977 A
4037807 Johnston Jul 1977 A
4080922 Brubaker Mar 1978 A
4101070 Hoare Jul 1978 A
4115841 Alexander Sep 1978 A
4138077 Okumura Feb 1979 A
4161843 Hui Jul 1979 A
4450364 Benoit May 1984 A
4473199 Magill Sep 1984 A
4477228 Duffy Oct 1984 A
4613098 Eickmann Sep 1986 A
4746081 Mazzoni May 1988 A
4795111 Moller Jan 1989 A
4930725 Thompson Jun 1990 A
4963108 Koda Oct 1990 A
4979698 Lederman Dec 1990 A
4982914 Eickmann Jan 1991 A
5005083 Grage Apr 1991 A
5020742 Haslim Jun 1991 A
5064143 Bucher Nov 1991 A
5071383 Kinoshita Dec 1991 A
5077609 Manelphe Dec 1991 A
5118052 Alvarez Calderon F Jun 1992 A
5195702 Malvestuto, Jr. Mar 1993 A
5201679 Velte, Jr. Apr 1993 A
5244167 Turk Sep 1993 A
5247856 Cuypers Sep 1993 A
5419513 Flemming, Jr. May 1995 A
5419514 Ducan May 1995 A
5454531 Melkuti Oct 1995 A
5505407 Chiappetta Apr 1996 A
5581250 Khvilivitzky Dec 1996 A
5593265 Kizer Jan 1997 A
5593283 Scott Jan 1997 A
5601257 McKann Feb 1997 A
5653421 Ellzey Aug 1997 A
5791592 Nolan Aug 1998 A
5890441 Swinson Apr 1999 A
5934875 Head Aug 1999 A
6053192 Ellzey Apr 2000 A
6119976 Rogers Sep 2000 A
6231005 Costes May 2001 B1
6260796 Klingensmith Jul 2001 B1
6260797 Palmer Jul 2001 B1
6286783 Kuenkler Sep 2001 B1
6293491 Wobben Sep 2001 B1
6293492 Yanagisawa Sep 2001 B1
6343768 Muldoon Feb 2002 B1
6394016 Swartout May 2002 B2
6488232 Moshier Dec 2002 B2
6547180 Cassidy Apr 2003 B1
6561456 Devine May 2003 B1
6626398 Cox Sep 2003 B1
6666404 Wingert Dec 2003 B1
6672538 Millea Jan 2004 B2
6691949 Plump Feb 2004 B2
6719244 Gress Apr 2004 B1
6732972 Malvestuto, Jr. May 2004 B2
6745977 Long Jun 2004 B1
6773321 Urquiaga Aug 2004 B1
6824095 Mao Nov 2004 B2
6840480 Carroll Jan 2005 B2
6843447 Morgan Jan 2005 B2
6854686 Perlo Feb 2005 B2
6904838 Dindl Jun 2005 B1
6918723 Battig Jul 2005 B2
6923404 Liu Aug 2005 B1
6978970 Purcell, Jr. Dec 2005 B2
7011274 Hardoin Mar 2006 B1
7049792 King May 2006 B2
7077358 Quartarone Jul 2006 B1
7086843 Cheng Aug 2006 B2
7090164 Akaro Aug 2006 B2
7159817 VanderMey Jan 2007 B2
7168656 Pai Jan 2007 B2
7183663 Roberts Feb 2007 B2
7200982 Vandyke Apr 2007 B2
7264204 Portmann Sep 2007 B1
7302316 Beard Nov 2007 B2
7306186 Kusic Dec 2007 B2
7325772 Hanewinkel, III Feb 2008 B1
7328644 Vickroy Feb 2008 B2
7334755 Svoboda, Jr. Feb 2008 B2
7385528 Gomez Jun 2008 B2
7399554 Kejha Jul 2008 B2
7490572 Grober Feb 2009 B2
7540450 Brand Jun 2009 B2
7542828 Steele Jun 2009 B2
7575192 Kish Aug 2009 B1
7584925 Miller Sep 2009 B2
7585153 Schmaling Sep 2009 B1
7604198 Petersen Oct 2009 B2
7631834 Johnson Dec 2009 B1
7675189 Grenier Mar 2010 B2
7693617 Dockter Apr 2010 B2
7699260 Hughey Apr 2010 B2
7712701 Ehrmantraut May 2010 B1
7762776 Siegel Jul 2010 B2
7802755 Poltorak Sep 2010 B2
7866610 Bousfield Jan 2011 B2
7946530 Talmage, Jr. May 2011 B1
7959104 Kuntz Jun 2011 B2
8052081 Olm Nov 2011 B2
8083173 Arlton Dec 2011 B2
8089034 Hammerquist Jan 2012 B2
8118255 Monson Feb 2012 B1
8128019 Annati Mar 2012 B2
8157205 McWhirk Apr 2012 B2
8167233 Brody May 2012 B2
8170728 Roesch May 2012 B2
8205537 Dupont Jun 2012 B1
8256705 Smith Sep 2012 B2
8256715 Ballard Sep 2012 B2
8322647 Amraly Dec 2012 B2
8328130 Goossen Dec 2012 B2
8375837 Goossen Feb 2013 B2
8376279 Parks Feb 2013 B2
8434920 Jones May 2013 B2
8443727 Roemerman May 2013 B2
8464511 Ribarov Jun 2013 B1
8473125 Rischmuller Jun 2013 B2
8479883 Tkebuchava Jul 2013 B2
8492692 Fisher Jul 2013 B2
8505430 Miralles Aug 2013 B2
8543270 Kelty Sep 2013 B2
8552575 Teets Oct 2013 B2
8608103 Martin Dec 2013 B2
8622708 Kusters Jan 2014 B2
8646719 Morris Feb 2014 B2
8646720 Shaw Feb 2014 B2
8661980 Roemerman Mar 2014 B1
8662438 Savoye Mar 2014 B2
8676408 Suzuki Mar 2014 B2
8695916 Martin Apr 2014 B2
8695919 Shachor Apr 2014 B2
8708285 Carreiro Apr 2014 B1
8753155 Olm Jun 2014 B2
8774982 Oakley Jul 2014 B2
8794564 Hutson Aug 2014 B2
8794566 Hutson Aug 2014 B2
8876039 Lubenow Nov 2014 B2
8888035 Lind, Jr. Nov 2014 B2
8908573 Wang Dec 2014 B1
8910905 DeVaul Dec 2014 B2
8919691 Lindmark Dec 2014 B2
8931730 Wang Jan 2015 B2
8939056 Neal, III Jan 2015 B1
8956487 Gallet Feb 2015 B2
8979016 Hayden, III Mar 2015 B2
8985504 Tao Mar 2015 B2
9004396 Colin Apr 2015 B1
9051050 Achtelik Jun 2015 B2
9056679 Langston Jun 2015 B1
9057273 Wang Jun 2015 B2
9085362 Kilian Jul 2015 B1
9109575 Weddendorf Aug 2015 B2
9156562 Buono Oct 2015 B2
9171479 Martin Oct 2015 B2
9187174 Shaw Nov 2015 B2
9199729 Uebori Dec 2015 B1
9204104 Whelan Dec 2015 B1
9260184 Olm Feb 2016 B2
9260202 Shachor Feb 2016 B2
9356470 Yamamoto May 2016 B2
9359075 von Flotow Jun 2016 B1
9388794 Weddendorf Jul 2016 B2
9440736 Bitar Sep 2016 B2
9446845 Mintchev Sep 2016 B2
9457901 Bertrand Oct 2016 B2
9527588 Rollefstad Dec 2016 B1
9545991 Alley Jan 2017 B1
9550567 Erdozain, Jr. Jan 2017 B1
9573683 Martin Feb 2017 B2
9586683 Buchmueller Mar 2017 B1
9589448 Schneider Mar 2017 B1
9616994 Kereth Apr 2017 B2
9623969 Nelson Apr 2017 B2
9643722 Myslinski May 2017 B1
9656765 von Flotow May 2017 B2
9694906 Sadek Jul 2017 B1
9739881 Pavek Aug 2017 B1
9764829 Beckman Sep 2017 B1
D803328 Lee Nov 2017 S
9834305 Taylor Dec 2017 B2
9894158 Ranasinghe Feb 2018 B2
9957042 Vander Lind May 2018 B1
9975631 McLaren May 2018 B1
10144503 Vander Lind Dec 2018 B1
10153636 Vander Lind Dec 2018 B1
10501195 Wang Dec 2019 B2
10710741 Mikić Jul 2020 B2
D892710 Vander Lind Aug 2020 S
10773799 Thrun Sep 2020 B1
10778024 Gu Sep 2020 B2
10843807 Bevirt Nov 2020 B2
10845823 Burghardt Nov 2020 B2
11097839 Sinha Aug 2021 B2
20020014880 McAndrews Feb 2002 A1
20020104919 Geranio Aug 2002 A1
20020104921 Louvel Aug 2002 A1
20020104922 Nakamura Aug 2002 A1
20020106966 Jimenez Aug 2002 A1
20030094537 Austen-Brown May 2003 A1
20030218093 Millea Nov 2003 A1
20040007644 Phelps, III Jan 2004 A1
20040201365 Dasgupta Oct 2004 A1
20050040283 Frazer Feb 2005 A1
20050051667 Ariton Mar 2005 A1
20050061910 Wobben Mar 2005 A1
20050127238 Ballew Jun 2005 A1
20050133662 Magre Jun 2005 A1
20050166441 Mattox Aug 2005 A1
20050178879 Mao Aug 2005 A1
20060118675 Tidwell Jun 2006 A1
20060144992 Jha Jul 2006 A1
20060175429 Lanigan Aug 2006 A1
20060192046 Heath Aug 2006 A1
20060216585 Lee Sep 2006 A1
20060226281 Walton Oct 2006 A1
20060266881 Hughey Nov 2006 A1
20070018033 Fanucci Jan 2007 A1
20070057113 Parks Mar 2007 A1
20070158494 Burrage Jul 2007 A1
20070169616 Vickroy Jul 2007 A1
20070180983 Farinella Aug 2007 A1
20070261542 Chang Nov 2007 A1
20080006737 Wobben Jan 2008 A1
20080033684 Vian Feb 2008 A1
20080048065 Kuntz Feb 2008 A1
20080054121 Yoeli Mar 2008 A1
20080210809 Ariton Sep 2008 A1
20080245924 Ariton Oct 2008 A1
20090008499 Shaw Jan 2009 A1
20090076665 Hoisington Mar 2009 A1
20090102413 Hanlon Apr 2009 A1
20090146010 Cohen Jun 2009 A1
20090201380 Peaslee Aug 2009 A1
20090216392 Piasecki Aug 2009 A1
20090216394 Heppe Aug 2009 A1
20090227415 Buelna Sep 2009 A1
20090250549 Wiggerich Oct 2009 A1
20090283629 Kroetsch Nov 2009 A1
20090284644 McKaughan Nov 2009 A1
20100019098 Collette Jan 2010 A1
20100044499 Dragan Feb 2010 A1
20100051741 Ismailov Mar 2010 A1
20100051753 Yoeli Mar 2010 A1
20100108801 Olm May 2010 A1
20100120273 Lucero May 2010 A1
20100140415 Goossen Jun 2010 A1
20100181424 Goossen Jul 2010 A1
20100237183 Wilson Sep 2010 A1
20100243794 Jermyn Sep 2010 A1
20100243799 Al-Qaffas Sep 2010 A1
20100250022 Hines Sep 2010 A1
20100276549 Karem Nov 2010 A1
20100283854 McKaughan Nov 2010 A1
20100301168 Raposo Dec 2010 A1
20100320314 Balaskovic Dec 2010 A1
20110001016 Skillen Jan 2011 A1
20110001020 Forgac Jan 2011 A1
20110005373 Martinez Jan 2011 A1
20110017865 Achtelik Jan 2011 A1
20110031355 Alvarez Calderon F. Feb 2011 A1
20110042508 Bevirt Feb 2011 A1
20110056183 Sankrithi Mar 2011 A1
20110137498 Suzuki Jun 2011 A1
20110155859 Vetters Jun 2011 A1
20110163198 Leaver Jul 2011 A1
20110168835 Oliver Jul 2011 A1
20110174920 Yoeli Jul 2011 A1
20110185736 McKinney Aug 2011 A1
20110226174 Parks Sep 2011 A1
20110226892 Crowther Sep 2011 A1
20110260544 Imai Oct 2011 A1
20110267241 Grimm Nov 2011 A1
20110284684 Amraly Nov 2011 A1
20120011996 Glasson Jan 2012 A1
20120012692 Kroo Jan 2012 A1
20120038901 Mckaughan Feb 2012 A1
20120056041 Rhee Mar 2012 A1
20120083945 Oakley Apr 2012 A1
20120091259 Morris Apr 2012 A1
20120138732 Olm Jun 2012 A1
20120153074 Nannoni Jun 2012 A1
20120153087 Collette Jun 2012 A1
20120155714 Douglass Jun 2012 A1
20120187243 Goldie Jul 2012 A1
20120209456 Harmon Aug 2012 A1
20120210904 Merems Aug 2012 A1
20120234969 Savoye Sep 2012 A1
20120235473 Jiang Sep 2012 A1
20120237083 Lange Sep 2012 A1
20120237341 Simon Sep 2012 A1
20120241553 Wilke Sep 2012 A1
20120280080 Lubenow Nov 2012 A1
20120280091 Saiz Nov 2012 A1
20120286102 Sinha Nov 2012 A1
20120294719 Payne Nov 2012 A1
20120300070 Ohtomo Nov 2012 A1
20130020429 Kroo Jan 2013 A1
20130043353 Balaskovic Feb 2013 A1
20130068876 Radu Mar 2013 A1
20130068892 Bin Desa Mar 2013 A1
20130105635 Alzu'bi May 2013 A1
20130110325 Sapp, II May 2013 A1
20130134254 Moore May 2013 A1
20130146716 Gettinger Jun 2013 A1
20130147276 Yamamoto Jun 2013 A1
20130200207 Pongratz Aug 2013 A1
20130217439 Ulman Aug 2013 A1
20130221154 Vander Lind Aug 2013 A1
20130231208 Buono Sep 2013 A1
20130248656 Mohamadi Sep 2013 A1
20130251525 Saiz Sep 2013 A1
20130264412 Dyrla Oct 2013 A1
20130287577 Lin Oct 2013 A1
20130327890 Lyons Dec 2013 A1
20140008485 Lundgren Jan 2014 A1
20140011076 Kanemoto Jan 2014 A1
20140012732 Lindores Jan 2014 A1
20140018976 Goossen Jan 2014 A1
20140026802 Parks Jan 2014 A1
20140032034 Raptopoulos Jan 2014 A1
20140034776 Hutson Feb 2014 A1
20140055613 Ohtomo Feb 2014 A1
20140061362 Olm Mar 2014 A1
20140061376 Fisher Mar 2014 A1
20140062754 Mohamadi Mar 2014 A1
20140069666 Vetesnik Mar 2014 A1
20140099853 Condon Apr 2014 A1
20140111121 Wu Apr 2014 A1
20140111332 Przybylko Apr 2014 A1
20140117149 Zhou May 2014 A1
20140131507 Kalantari May 2014 A1
20140131510 Wang May 2014 A1
20140138476 Bystrom May 2014 A1
20140138477 Keennon May 2014 A1
20140151495 Kuhn, Jr. Jun 2014 A1
20140158816 DeLorean Jun 2014 A1
20140175214 Lundgren Jun 2014 A1
20140186659 Dhar Jul 2014 A1
20140216290 Yee Aug 2014 A1
20140222246 Mohamadi Aug 2014 A1
20140231575 Shand Aug 2014 A1
20140240498 Ohtomo Aug 2014 A1
20140246545 Markov Sep 2014 A1
20140263823 Wang Sep 2014 A1
20140265554 Yang Sep 2014 A1
20140316243 Niedermeyer Oct 2014 A1
20140316608 Alber Oct 2014 A1
20140331984 Brahler, II Nov 2014 A1
20140339355 Olm Nov 2014 A1
20140353422 Westbrook, Sr. Dec 2014 A1
20140356174 Wang Dec 2014 A1
20150012154 Senkel Jan 2015 A1
20150028151 Bevirt Jan 2015 A1
20150122950 Markov May 2015 A1
20150136897 Seibel May 2015 A1
20150168107 Tseng Jun 2015 A1
20150202984 Wyatt Jul 2015 A1
20150225071 Tighe Aug 2015 A1
20150232178 Reiter Aug 2015 A1
20150241180 Pruett Aug 2015 A1
20150259066 Johannesson Sep 2015 A1
20150266571 Bevirt Sep 2015 A1
20150274286 Kereth Oct 2015 A1
20150286216 Miwa Oct 2015 A1
20150321755 Martin Nov 2015 A1
20150344134 Cruz Ayoroa Dec 2015 A1
20150354453 Hanrahan Dec 2015 A1
20150360797 Melish Dec 2015 A1
20160016652 Barrett Jan 2016 A1
20160031554 Eshkenazy Feb 2016 A1
20160046369 Watkins Feb 2016 A1
20160072107 Farha Mar 2016 A1
20160101853 Toppenberg Apr 2016 A1
20160129998 Welsh May 2016 A1
20160144954 Daigle May 2016 A1
20160152316 Wang Jun 2016 A1
20160176514 Lavagen Jun 2016 A1
20160194069 Taylor Jul 2016 A1
20160207619 Darrow, Jr. Jul 2016 A1
20160214712 Fisher Jul 2016 A1
20160221671 Fisher Aug 2016 A1
20160221683 Roberts Aug 2016 A1
20160229530 Welsh Aug 2016 A1
20160236775 Eshkenazy Aug 2016 A1
20160244157 Welsh Aug 2016 A1
20160251088 Melish Sep 2016 A1
20160272313 Chan Sep 2016 A1
20160288901 Fisher Oct 2016 A1
20160288903 Rothhaar Oct 2016 A1
20160291445 Fisher, Sr. Oct 2016 A1
20160307448 Salnikov Oct 2016 A1
20160332747 Bradlow Nov 2016 A1
20160340021 Zhang Nov 2016 A1
20160340035 Duru Nov 2016 A1
20160355261 Chin Dec 2016 A1
20160362173 Marion Dec 2016 A1
20160363422 Young Dec 2016 A1
20160364989 Speasl Dec 2016 A1
20160368596 Zhang Dec 2016 A1
20160376029 Sekiya Dec 2016 A1
20160380315 Weicker Dec 2016 A1
20170008627 de Soto Jan 2017 A1
20170012445 Takemura Jan 2017 A1
20170015417 Bishop Jan 2017 A1
20170030715 Song Feb 2017 A1
20170036760 Stan Feb 2017 A1
20170036762 Gamble Feb 2017 A1
20170057650 Walter-Robinson Mar 2017 A1
20170069214 Dupray Mar 2017 A1
20170072812 Von Novak Mar 2017 A1
20170096222 Spinelli Apr 2017 A1
20170121034 Fisher May 2017 A1
20170144756 Rastgaar Aagaah May 2017 A1
20170154536 Kreiner Jun 2017 A1
20170158340 von Flotow Jun 2017 A1
20170183074 Hutson Jun 2017 A1
20170197700 Wainfan Jul 2017 A1
20170203839 Giannini Jul 2017 A1
20170203840 Myslinski Jul 2017 A1
20170203841 Myslinski Jul 2017 A1
20170203850 Wang Jul 2017 A1
20170217585 Hulsman Aug 2017 A1
20170225573 Waltner Aug 2017 A1
20170225782 Kohstall Aug 2017 A1
20170225783 Fisher Aug 2017 A1
20170225784 Hayes Aug 2017 A1
20170233069 Apkarian Aug 2017 A1
20170240291 Kim Aug 2017 A1
20170247109 Buchmueller Aug 2017 A1
20170248969 Ham Aug 2017 A1
20170253348 Ashdown Sep 2017 A1
20170261292 Armstrong Sep 2017 A1
20170269594 Sydnor Sep 2017 A1
20170289480 Ochiai Oct 2017 A1
20170291697 Kornatowski Oct 2017 A1
20170293301 Myslinski Oct 2017 A1
20170297707 Rollefstad Oct 2017 A1
20170313418 Yoon Nov 2017 A1
20170322563 Kohstall Nov 2017 A1
20170329324 Bachrach Nov 2017 A1
20170330478 Zhang Nov 2017 A1
20170331323 Ehrmantraut Nov 2017 A1
20170351254 Listwin Dec 2017 A1
20170356726 Theiss Dec 2017 A1
20180002011 McCullough Jan 2018 A1
20180002012 McCullough Jan 2018 A1
20180009549 Sullivan Jan 2018 A1
20180027772 Gordon Feb 2018 A1
20180029693 Vander Lind Feb 2018 A1
20180035606 Burdoucci Feb 2018 A1
20180076646 Lindsay Mar 2018 A1
20180086447 Winston Mar 2018 A1
20180162530 Klein Jun 2018 A1
20180265193 Gibboney Sep 2018 A1
20190023203 Lages Jan 2019 A1
20190071172 Caldwell Mar 2019 A1
20190100322 Schank Apr 2019 A1
20190112028 Williams Apr 2019 A1
20190118943 Machin Apr 2019 A1
20190135425 Moore May 2019 A1
20190181479 Ichikawa Jun 2019 A1
20190329863 King Oct 2019 A1
20190352002 Schulte Nov 2019 A1
20190375495 Pfammatter Dec 2019 A1
20200130858 Julien Apr 2020 A1
20200272141 Chung Aug 2020 A1
20200274371 Kirleis Aug 2020 A1
20200381927 Feng Dec 2020 A1
20200406705 Vila Soler Dec 2020 A1
20210309207 Frederiksen Oct 2021 A1
20210339855 Sinha Nov 2021 A1
20220029431 McLean Jan 2022 A1
Foreign Referenced Citations (21)
Number Date Country
1265534 Sep 2000 CN
1864329 Nov 2006 CN
101320821 Jul 2010 CN
104853949 Aug 2015 CN
105981258 Sep 2016 CN
106170902 Aug 2018 CN
111614133 Sep 2020 CN
113682479 Nov 2021 CN
215753045 Feb 2022 CN
H11332023 Nov 1999 JP
2004111242 Apr 2004 JP
2006121874 May 2006 JP
2008260346 Oct 2008 JP
2015050041 Mar 2015 JP
2022063228 Apr 2022 JP
20160051690 May 2016 KR
102004227 Jul 2019 KR
2013090080 Jun 2013 WO
2014199942 Dec 2014 WO
2015137222 Sep 2015 WO
2017113338 Jul 2017 WO
Non-Patent Literature Citations (3)
Entry
Author Unknown, Aerial Ridesharing at Scale, Uber Elevate, Oct. 3, 2019, Retrieved from http://web.archive.org/web/20191003070118/https://www.uber.com/us/en/elevate/uberair/.
International Application No. PCT/US17/34950 International Search Report and Written Opinion, dated Aug. 17, 2017.
Mark Moore, Vehicle Collaboration Strategy and Common Reference Models, Uber Elevate Transformative VTOL Workshop, Jan. 2018.
Related Publications (1)
Number Date Country
20210339855 A1 Nov 2021 US
Provisional Applications (1)
Number Date Country
62912872 Oct 2019 US
Continuations (1)
Number Date Country
Parent 17066050 Oct 2020 US
Child 17380687 US