Claims
- 1. A hybrid powertrain for an automotive vehicle comprising a diesel engine, a multiple ratio transmission and an electric motor, said transmission having a torque input side connected to said diesel engine and a torque output side connection to said electric motor;
- said diesel engine having an accelerator pedal and a fuel scheduling means for regulating fuel delivery in response to accelerator pedal movement:
- an electronic controller including memory registers, said memory registers having stored therein a first functional relationship of power desired and accelerator pedal movement, a second functional relationship between diesel engine speed and rate of fuel delivery by said fuel scheduling means for each of a family of accelerator positions and a third functional relationship between electric motor speed and electric motor current:
- said controller including output driver circuit means connected to said diesel engine fuel scheduling means and said electric motor and being responsive to said accelerator pedal movement and feedback speed information from said diesel engine, said fuel scheduling means and said electric motor to effect an overall diesel engine power and diesel engine speed relationship for each accelerator pedal position that is characterized by best specific fuel consumption: and
- final drive gearing having torque output shafts connected to vehicle traction wheels and two final drive input shafts, one final drive torque input shaft being connected to torque output portions of said transmission and the other final drive torque input shaft being connected to said electric motor.
- 2. The hybrid powertrain as set forth in claim 1 wherein said diesel engine is characterized by engine torque and engine speed relationships with a maximum engine torque envelope for each engine speed value within a given operating engine speed range;
- said electric controller including means for detecting whether total torque desired for a given diesel engine speed is within said envelope whereby a demand for torque in excess of the diesel engine torque for a given diesel engine speed is established by adding electric motor torque at that speed to maximum diesel engine torque available thus effecting a splitting of the total torque developed.
- 3. A hybrid powertrain for an automotive vehicle comprising a diesel engine, a multiple ratio transmission and an electric motor, said transmission having a torque input side connected to said diesel engine and a torque output side connection to said electric motor;
- said diesel engine having an accelerator pedal and a fuel scheduling means for regulating fuel delivery in response to accelerator pedal movement;
- an electronic controller including memory registers, said memory registers having stored therein a first functional relationship of power desired and accelerator pedal movement, a second functional relationship between diesel engine speed and rate of fuel delivery by said fuel scheduling means for each of a family of accelerator positions;
- said controller including output driver circuit means connected to said diesel engine fuel scheduling means and said electric motor and being responsive to said accelerator pedal movement and feedback speed information from said diesel engine, said fuel scheduling means and said electric motor to effect an overall diesel engine power and diesel engine speed relationship for each accelerator pedal position that is characterized by best specific fuel consumption;
- said transmission including a ratio changing control system that responds to accelerator pedal movement, said control system responding to a request for total torque that exceeds the sum of the diesel engine torque and the electric motor torque available at a given diesel engine speed by downshifting said transmission from an existing gear ratio to a lower gear ratio thereby maintaining the operation of said diesel engine in a low-speed/high-torque region; and
- final drive gearing having torque output shafts connected to vehicle traction wheels and two final drive input shafts, one final drive torque input shaft being connected to torque output portions of said transmission and the other final drive torque input shaft being connected to said electric motor.
STATEMENT OF GOVERNMENT INTEREST
This invention was made with United States Government support under Prime Contract No. DE-AC-36-83CH10093, Subcontract No. ZCB-4-13032-02, awarded by the Department of Energy. The Government has certain rights in this invention.
US Referenced Citations (18)
Foreign Referenced Citations (1)
Number |
Date |
Country |
4324010 A1 |
Jan 1995 |
DEX |