This application claims the benefit of European Patent Application Ser. No. 14200604.8, filed Dec. 30, 2014, and titled “Hybrid Receiver Module,” which is incorporated herein by reference in its entirety.
The present invention relates to a hybrid receiver comprising one or more moving armature receivers and a moving coil receiver. In particular, the present invention relates to a hybrid receiver where the moving armature and the moving coil based receivers are at least partly driven by the same magnetic circuit.
Different receiver principles have been applied over the years within the hearing aid industry. However, the principles relating to moving armature and moving coil arrangements appear to be the dominant.
It is well-established knowledge that moving armature arrangements are advantageous in the high frequency range, whereas moving coil arrangements are advantageous in the low frequency range.
Over the years attempts have been to combine the technologies upon which the moving armature and a moving coil arrangements are based. So far these attempts have fail in so far as the resulting receivers have been bulky and certainly not suitable for hearing aid related applications where the required space is often not available.
It may thus be seen as an object of embodiments of the present invention to take advantage of the acoustical properties being offered by a combination of at least one moving armature receiver and a moving coil receiver.
It may be seen as a further object of embodiments of the present invention to combine at least one moving armature receiver and a moving coil receiver in a very compact design.
The above-mentioned objects are complied with by providing, in a first aspect, a hybrid receiver comprising
Thus, the present invention relates to the hybrid receiver comprising a common magnetic circuit, said common magnetic circuit being adapted to support and/or form part of both the first and second magnetic flux paths. Each of the first and second flux paths may be arranged to guide both essentially static fluxes and dynamic, i.e. time varying, fluxes. The essentially static fluxes may be generated by for example permanent magnets, whereas the dynamic fluxes may be generated by coils when electrical audio signals are applied thereto.
The design of the hybrid receiver of the present invention has several advantages in that the design is very compact due to 1) the moving coil type receiver and the first moving armature type receiver in some embodiments share a diaphragm area and 2) the moving coil type receiver and the first moving armature type receiver share, at least partly, a common magnetic circuit.
At least part of the common magnetic circuit may be adapted to generate an essential static magnetic flux in each of the first and second magnetic flux paths. In the present content essentially static should be understood as essentially constant, i.e. essentially constant magnetic fluxes.
The essential static magnetic flux in each of the first and second magnetic flux paths may be generated by one or more permanent magnets, such as ring-shaped permanent magnets, radially magnetized permanent magnets, rod/bar permanent magnets etc.
In addition to the essential static fluxes, dynamic magnetic fluxes may be added thereto, said dynamic fluxes being generated by at least two coils. These at least two coils may include at least a moveable voice coil of the moving coil receiver and a static coil of the moving armature receiver.
The moving coil type receiver may comprise a first diaphragm and a voice coil attached thereto, the voice coil being adapted to generate a dynamic magnetic flux in order to move the first diaphragm in accordance therewith. The first moving armature type receiver may comprise a second diaphragm and a first static coil, the first static coil being adapted to generate a dynamic magnetic flux in order to move the second diaphragm in accordance therewith. In one embodiment the second diaphragm may be at least partly attached to the first diaphragm. Preferably, the second diaphragm may form an integral part of a centre portion of the first diaphragm.
The first diaphragm may be an injection moulded silicone diaphragm with integrated silicone suspension members. Alternatively, the first diaphragm may be made of a polymer-foil. The second diaphragm may be operatively connected to a moving armature attached to a moving armature suspension element, such as a polymer- or metal foil. The moving armature may be a soft iron material, an iron alloy or a permanent magnet.
In one embodiment the moving armature suspension element may be attached to and thereby suspended across a ring-shaped inner yoke of the common magnetic circuit. Moreover, the common magnetic circuit may further comprise one or more ring-shaped and radially magnetized permanent magnets and/or one or more cylindrically-shaped permanent magnet. The common magnetic circuit may further comprise a centre yoke being positioned along a centre axis of the one or more permanent magnets, and an outer ring-shaped yoke surrounding said one or more permanent magnets. The cylindrically-shaped permanent magnet may be magnetised in a direction being essentially parallel to a longitudinal cylinder axis.
A first air gap may be formed between the inner yoke and the outer ring-shaped yoke, whereas a second air gap may be formed between the centre yoke and the moving armature operatively connected to the second diaphragm.
A second coil adapted to drive the second diaphragm may be arranged at least partly around the centre yoke, i.e. around the end of the centre yoke that is closest to the moving armature. The first and second coils may be operated independently thereby forming a 2-way receiver. Alternatively, they may be operated in parallel.
It is advantageous of the hybrid receiver of the present invention that the moving coil type receiver is adapted to generate sound in a first frequency range, whereas the first moving armature type receiver is adapted to generate sound in a second a frequency range. The first frequency range may at least partly overlap with the second frequency range so that a combination of the two frequency ranges (first and second) may result in a larger overall bandwidth. The first frequency range may be a lower frequency range, whereas the second frequency range may be a higher frequency range. In this way a 2-way hybrid receiver is provided.
The first diaphragm of the moving coil type receiver may be suspended in a high compliance suspension member, wherein the second diaphragm of the first moving armature type receiver may be suspended in a low compliance suspension member.
The hybrid receiver of the present invention may further comprise a second moving armature type receiver comprising a third magnetic flux path, wherein the first, second and third magnetic flux paths, at least partly, share the common magnetic circuit. The second moving armature type receiver may comprise a third diaphragm and a second static coil, the second static coil being adapted to generate a dynamic magnetic flux in order to move the third diaphragm in accordance therewith.
The second and third diaphragms of the respective first and second moving armature receivers may be discrete diaphragms. Such discrete diaphragm may be arranged in a substantial parallel manner. In one embodiment the second and third diaphragms may be arranged on opposite sides of the common magnetic circuit, i.e. the common magnetic circuit may be sandwiched between the second and third diaphragms of the respective first and second moving armature receivers.
The second moving armature type receiver may be adapted to generate sound in a third frequency range. This third frequency range may at least partly overlaps with the first and/or second frequency ranges. In this way a 3-way hybrid receiver is provided.
In a second aspect, the present invention relates to a hybrid receiver comprising a diaphragm having a first and a second portion, wherein the first portion is suspended in a high compliance suspension member, and wherein the second portion is suspended in a low compliance suspension member. The first portion of the diaphragm may be driven by a moving coil attached thereto, whereas the second portion of the diaphragm may be driven by a moving armature attached thereto. The moving coil and the moving armature may be adapted to reproduce sound at different, but still overlapping, frequency ranges. Preferably, the moving coil generates sound at a lower frequency compared to the moving armature.
In a third aspect the present invention relates to a hearing aid comprising a hybrid receiver according to the first or second aspects.
In a fourth and final aspect the present invention relates to a mobile device comprising a hybrid receiver according to the first and second aspects, said mobile device being selected from the group consisting of: personal communication devices, such as mobile phones, tablets, laptops etc., or personal sound amplifiers.
The present invention will now be explained in further details with reference to the accompanying figures where
While the invention is susceptible to various modifications and alternative forms specific embodiments have been shown by way of examples in the drawings and will be described in detail herein. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
In its most general aspect the present invention relates to a hybrid receiver combining the advantages of at least one moving armature arrangement and a moving coil arrangement. In particular, the hybrid receiver of the present invention takes advantage of the high frequency response of the moving armature arrangement in combination with the low frequency response of the moving coil arrangement. As a result the hybrid receiver according to the present invention will provide an improved low- and high frequency performance resulting in a larger bandwidth. Depending on the number of applied moving armature arrangements the hybrid receiver of the present invention may be operated at least as a 2-way or 3-way receiver arrangement.
The hybrid receiver of the present invention forms a compact and robust unit in that the at least one moving armature arrangement and the moving coil arrangement at least partly share the same magnetic circuit.
Referring now to
The moving armature suspension 107 can be a polymer foil or a metal foil (steel, aluminium etc.). The thickness of the armature suspension 107 will vary in accordance with the selected material. However, typical thicknesses are in 5-100 μm range. The moving armature 106 can be made of a soft iron, such as an iron-cobalt alloy where the cobalt content equals for example 17%. Alternatively, the moving armature can include a permanent magnet.
The permanent coil 104 drives the moving armature 106 in accordance with an electrical audio signal applied thereto. A wounded cupper wire or a cupper clattered aluminium wire may form the permanent magnet coil 104. The moving armature 106 is secured to the centre portion 112 of the diaphragm. Similarly, the moving coil arrangement is designed around the voice coil 105 which is suspended in suspension members 108, 113. The voice coil 105 may also be formed by a wounded cupper wire or a cupper clattered aluminium wire.
Preferably, the suspension members 108, 113 and the centre portion 112 form an integrated silicone or polymer-foil component. The thickness and the hardness of the suspension members 108, 113 may be 50-70 μm and shore A50-A70, respectively.
The magnetic system driving both the moving armature and the moving coils arrangements comprises a radially magnetized Neodynium (N45) magnet 111, a centre yoke 102, an outer yoke 101 and an inner yoke 103. The yokes 101, 102, 103 are all soft iron yokes. A flux path involving the centre yoke 102, the moving armature 106, the inner yoke 103 and part of the magnet 111 is responsive for driving the moving armature 106 in response to an audio signal being applied to the permanent coil 104. Similarly, a flux path involving the outer yoke 101, the inner yoke 103 and part of the magnet 111 is responsive for driving the moving coil 105 in response to an audio signal being applied thereto.
The permanent coil 104 and the voice coil 105 may be operated completely independently or they may alternatively be operated in parallel set-up.
To facilitate improved low- and high frequency performance the moving coil suspension members 108, 113 are a high compliance, and thereby soft, silicone- or polymer-foil based suspension members, whereas the moving armature suspension member 107 is a low compliance, and thereby stiff, foil-based suspension member.
As furthermore depicted in
A printed circuit board (PCB) 109 is attached to the lower part of the magnetic circuit. The PCB may house appropriate electronic circuits, such as for example amplifiers and drivers for operating the coils 104 and 105.
Exploded views of the hybrid receiver are shown in
As previously mentioned the diaphragm 201 including suspension members 202, 203 and optionally the fixation element 205, may be manufactured as an injection moulded integrated silicone or polymer-foil component, i.e. a one piece component. In case of a silicone component the process involved for manufacturing at least the suspension members 202, 203 may for example involve liquid silicone resin (LSR) moulding.
Referring now to
In
In
In
In
Typically, the diameter of the centre magnet 500 is in the range of around 5 mm. The diameter of the through going hole 501, 505 is typically around 1 mm.
Referring now to
The moving coil diaphragm comprises a centre portion 616 being suspended in a high compliance suspension arrangement comprising an inner suspension member 609 and an outer suspension member 608. A voice coil 610, 611 is secured to the diaphragm in a region between the suspension members 608 and 609. The moving coil diaphragm is secured to the outer pole piece 601, 602 in an indentation 617, 618 formed therein.
In terms of applied soft iron materials, permanent magnets, coil materials, air gap distances, frequency response curves etc. the embodiment shown in
Referring now to
Referring now to
The first moving armature receiver comprises a diaphragm 802 being hinged at point 806 and suspended via a low compliance suspension member 807. The diaphragm 802 is driven by the mechanical connection 811 which connection is secured to armature 828. Permanent magnets 824, 825 define an air gap into which air gap the armature 828 extend. A static coil 822 is provided around the armature 828 in order move the armature 828 in accordance with a generated dynamic magnetic flux. The dynamic magnetic flux is generated in response to an electrical audio signal being applied to the static coil 822.
Similarly, the second moving armature receiver comprises a diaphragm 803 being hinged at point 809 and suspended via a low compliance suspension member 810. The diaphragm 803 is driven by the mechanical connection 812 which connection is secured to armature 829. Permanent magnets 826, 827 define an air gap into which air gap the armature 829 extend. A static coil 823 is provided around the armature 829 in order move the armature 829 in accordance with a generated dynamic magnetic flux. Again, the dynamic magnetic flux is generated in response to an electrical audio signal being applied to the static coil 823.
The centre pole piece 819 and the outer pole pieces 820, 821 closes the magnetic flux return paths of both the moving coil receiver and the moving armature receivers.
The moving coil receiver and the moving armature receivers may be operated independently. Thus, the hybrid receiver of
Typically, the moving coil receiver will cover the lowest frequency range, whereas the two moving armature receivers cover the higher frequency ranges. In case the two moving armature receiver cover the same high frequency range the hybrid receiver becomes a 2-way receiver. In case the two moving armature receivers cover different high frequency ranges the hybrid receiver becomes a 3-way receiver. The two moving armature receivers may be configured to cover different frequency ranges by applying different electrical audio signals to the respective static coils 822, 823, or by providing structural differences to the two moving armature receivers.
Otherwise, the hybrid receiver 900 depicted in
The first moving armature receiver comprises a diaphragm 902 being hinged at point 906 and suspended via a low compliance suspension member 907. The diaphragm 902 is driven by the mechanical connection 911 which connection is secured to armature 928. Permanent magnets portions 924, 925 define an air gap into which air gap the armature 928 extend. A static coil 922 is provided around the armature 928 in order move the armature 928 in accordance with a generated dynamic magnetic flux. The dynamic magnetic flux is generated in response to an electrical audio signal being applied to the static coil 922.
Similarly, the second moving armature receiver comprises a diaphragm 903 being hinged at point 909 and suspended via a low compliance suspension member 910. The diaphragm 903 is driven by the mechanical connection 912 which connection is secured to armature 929. Permanent magnets portion 926, 927 define an air gap into which air gap the armature 929 extend. A static coil 923 is provided around the armature 929 in order move the armature 929 in accordance with a generated dynamic magnetic flux. The dynamic magnetic flux is generated in response to an electrical audio signal being applied to the static coil 923.
The centre pole piece 919 and the outer pole pieces 920, 921 closes the magnetic flux return paths of both the moving coil receiver and the moving armature receivers.
The moving coil receiver and the moving armature receivers may be operated independently. Thus, the hybrid receiver of
Typically, the moving coil receiver will cover the lowest frequency range, whereas the two moving armature receivers cover the higher frequency ranges. In case the two moving armature receiver cover the same high frequency range the hybrid receiver becomes a 2-way receiver. In case the two moving armature receivers cover different high frequency ranges the hybrid receiver becomes a 3-way receiver. The two moving armature receivers may be configured to cover different frequency ranges by applying different electrical audio signals to the respective static coils 922, 923, or by providing structural differences to the two moving armature receivers.
In
In the hybrid receiver shown in
Turning now to
The hybrid receiver of
In terms of applied soft iron materials, permanent magnets, coil materials, air gap distances, frequency response curves etc. the embodiments shown in
Number | Date | Country | Kind |
---|---|---|---|
14200604 | Dec 2014 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
6788796 | Miles et al. | Sep 2004 | B1 |
6831577 | Furst | Dec 2004 | B1 |
6853290 | Jorgensen et al. | Feb 2005 | B2 |
6859542 | Johannsen et al. | Feb 2005 | B2 |
6888408 | Furst et al. | May 2005 | B2 |
6914992 | van Halteren et al. | Jul 2005 | B1 |
6919519 | Ravnkilde et al. | Jul 2005 | B2 |
6930259 | Jorgensen et al. | Aug 2005 | B1 |
6943308 | Ravnkilde et al. | Sep 2005 | B2 |
6974921 | Jorgensen et al. | Dec 2005 | B2 |
7008271 | Jorgensen | Mar 2006 | B2 |
7012200 | Moller | Mar 2006 | B2 |
7062058 | Steeman et al. | Jun 2006 | B2 |
7062063 | Hansen et al. | Jun 2006 | B2 |
7072482 | Van Doorn et al. | Jul 2006 | B2 |
7088839 | Geschiere et al. | Aug 2006 | B2 |
7110560 | Stenberg | Sep 2006 | B2 |
7136496 | van Halteren et al. | Nov 2006 | B2 |
7142682 | Mullenborn et al. | Nov 2006 | B2 |
7181035 | van Halteren et al. | Feb 2007 | B2 |
7190803 | van Halteren | Mar 2007 | B2 |
7206428 | Geschiere et al. | Apr 2007 | B2 |
7221767 | Mullenborn et al. | May 2007 | B2 |
7221769 | Jorgensen | May 2007 | B1 |
7227968 | van Heltren et al. | Jun 2007 | B2 |
7239714 | de Blok et al. | Jul 2007 | B2 |
7245734 | Niederdraenk | Jul 2007 | B2 |
7254248 | Johannsen et al. | Aug 2007 | B2 |
7286680 | Steeman et al. | Oct 2007 | B2 |
7292700 | Engbert et al. | Nov 2007 | B1 |
7292876 | Bosh et al. | Nov 2007 | B2 |
7336794 | Furst et al. | Feb 2008 | B2 |
7376240 | Hansen et al. | May 2008 | B2 |
7403630 | Jorgensen et al. | Jul 2008 | B2 |
7415121 | Mögelin et al. | Aug 2008 | B2 |
7425196 | Jorgensen et al. | Sep 2008 | B2 |
7460681 | Geschiere et al. | Dec 2008 | B2 |
7466835 | Stenberg et al. | Dec 2008 | B2 |
7492919 | Engbert et al. | Feb 2009 | B2 |
7548626 | Stenberg et al. | Jun 2009 | B2 |
7657048 | van Halteren et al. | Feb 2010 | B2 |
7684575 | van Halteren et al. | Mar 2010 | B2 |
7706561 | Wilmink et al. | Apr 2010 | B2 |
7715583 | Van Halteren et al. | May 2010 | B2 |
7728237 | Pedersen et al. | Jun 2010 | B2 |
7809151 | Van Halteren et al. | Oct 2010 | B2 |
7822218 | Van Halteren | Oct 2010 | B2 |
7899203 | Van Halteren et al. | Mar 2011 | B2 |
7912240 | Madaffari et al. | Mar 2011 | B2 |
7946890 | Bondo et al. | May 2011 | B1 |
7953241 | Jorgensen et al. | May 2011 | B2 |
7961899 | Van Halteren et al. | Jun 2011 | B2 |
7970161 | van Halteren | Jun 2011 | B2 |
8098854 | van Halteren et al. | Jan 2012 | B2 |
8101876 | Andreasen et al. | Jan 2012 | B2 |
8103039 | van Halteren et al. | Jan 2012 | B2 |
8160290 | Jorgensen et al. | Apr 2012 | B2 |
8170249 | Halteren | May 2012 | B2 |
8189804 | Hruza | May 2012 | B2 |
8189820 | Wang | May 2012 | B2 |
8223996 | Beekman et al. | Jul 2012 | B2 |
8233652 | Jorgensen et al. | Jul 2012 | B2 |
8259963 | Stenberg et al. | Sep 2012 | B2 |
8259976 | van Halteren | Sep 2012 | B2 |
8259977 | Jorgensen et al. | Sep 2012 | B2 |
8280082 | van Halteren et al. | Oct 2012 | B2 |
8284966 | Wilk et al. | Oct 2012 | B2 |
8313336 | Bondo et al. | Nov 2012 | B2 |
8315422 | van Halteren et al. | Nov 2012 | B2 |
8331595 | van Halteren | Dec 2012 | B2 |
8369552 | Engbert et al. | Feb 2013 | B2 |
8379899 | van Halteren et al. | Feb 2013 | B2 |
8509468 | van Halteren et al. | Aug 2013 | B2 |
8526651 | Lafort et al. | Sep 2013 | B2 |
8526652 | Ambrose et al. | Sep 2013 | B2 |
20030138125 | Yu | Jul 2003 | A1 |
20080159583 | Tanaka et al. | Jul 2008 | A1 |
20100046783 | Huang | Feb 2010 | A1 |
20110182453 | van Hal et al. | Jul 2011 | A1 |
20110189880 | Bondo et al. | Aug 2011 | A1 |
20110255715 | Doh | Oct 2011 | A1 |
20110299708 | Bondo et al. | Dec 2011 | A1 |
20110299712 | Bondo et al. | Dec 2011 | A1 |
20110311069 | Ambrose et al. | Dec 2011 | A1 |
20120014548 | van Halteren | Jan 2012 | A1 |
20120027245 | van Halteren et al. | Feb 2012 | A1 |
20120140966 | Mocking et al. | Jun 2012 | A1 |
20120155683 | van Halteren | Jun 2012 | A1 |
20120155694 | Reeuwijk et al. | Jun 2012 | A1 |
20120255805 | van Halteren et al. | Oct 2012 | A1 |
20130028451 | de Roo | Jan 2013 | A1 |
20130136284 | van Hal et al. | May 2013 | A1 |
20130142370 | Engbert et al. | Jun 2013 | A1 |
20130163799 | Van Halteren | Jun 2013 | A1 |
20130195295 | van Halteren et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
102009004496 | Jul 2010 | DE |
1194002 | Apr 2002 | EP |
1194002 | Jun 2003 | EP |
2023660 | Nov 2009 | EP |
311486 | May 1929 | GB |
56132095 | Oct 1981 | JP |
Entry |
---|
Partial European Search Report for Application No. EP 15201604.4, mailed May 25, 2016 (8 pages). |
European Search Report, corresponding to co-pending European Patent Application, European Patent Office, Dated Oct. 15, 2015; (4 pages). |
Number | Date | Country | |
---|---|---|---|
20160192087 A1 | Jun 2016 | US |