HYBRID SEGMENTED ENDOPROSTHESIS

Information

  • Patent Application
  • 20100010622
  • Publication Number
    20100010622
  • Date Filed
    August 26, 2009
    15 years ago
  • Date Published
    January 14, 2010
    14 years ago
Abstract
Generally, the present disclosure includes a hybrid segmented endoprosthesis for delivery into a lumen of a body. The hybrid segmented endoprosthesis has different types of segments that are joined together. The segments are typically distinct and distinguishable from each other by each segment having a unique configuration different from at least one other segment. Additionally, the segments can be coupled together by various processes well known for interconnecting the materials of endoprostheses. The segmented endoprosthesis can provide improved deliverability, strength, flexibility, and/or functionality during and after deployment. The use of a segmented endoprosthesis can combine the configurations of multiple small endoprostheses into a standard- or regular-sized endoprosthesis.
Description
BACKGROUND OF THE INVENTION

1. The Field of the Invention


The present invention relates to an endoprosthesis deliverable and deployable within a body vessel of a human or animal. More particularly, the invention relates to an interconnected, segmented endoprosthesis.


2. The Relevant Technology


Stents, grafts, and a variety of other endoprostheses are well known and used in interventional procedures, such as for treating aneurysms, for lining or repairing vessel walls, for filtering or controlling fluid flow, and for expanding or scaffolding occluded or collapsed vessels. Such endoprostheses can be delivered and used in virtually any accessible body lumen of a human or animal, and can be deployed by any of a variety of recognized means. One recognized indication of an endoprosthesis, such as a stent, is for the treatment of atherosclerotic stenosis in blood vessels. For example, after a patient undergoes a percutaneous transluminal coronary angioplasty or similar interventional procedure; a stent is often deployed at the treatment site to improve the results of the medical procedure and reduce the likelihood of restenosis. The stent is configured to scaffold or support the treated blood vessel; if desired, it can also be loaded with a beneficial agent so as to act as a delivery platform to reduce restenosis or the like. Other suitable examples of medical conditions for which endoprostheses are an appropriate treatment include, but are not limited to, arterial aneurysms, venous aneurysms, coronary artery disease, peripheral artery disease, peripheral venous disease, chronic limb ischemia, blockage or occlusion of the bile duct, esophageal disease or blockage, defects or disease of the colon, tracheal disease or defect, blockage of the large bronchi, blockage or occlusion of the ureter, or blockage or occlusion of the urethra.


An endoprosthesis, such as a stent, is typically delivered by a catheter delivery system to a desired location or deployment site inside a body lumen of a vessel or other tubular organ. The intended deployment site may be difficult to access by a physician and often involves traversing the delivery system through a tortuous luminal pathway. Thus, it can be desirable to provide the endoprosthesis with a sufficient degree of flexibility during delivery to allow advancement through the anatomy to the deployment site. Moreover, it may be desirable for the endoprosthesis to retain structural integrity while flexing and bending during delivery so that cracks do not form.


Current stent design, typically are composed of a series of repeated rings that are connected in series. The stent in a Superficial Femoral Artery (SFA) application undergoes longitudinal, bending, torsional, tensional and radial cyclical loading that can lead to fatigue failures. The stent connection sections or connection elements that join the rings also transmit stress from ring to ring under longitudinal, bending, or torsional loading. In addition, when the stent goes around a curve the connecting elements or sections require the portions of the ring apposed to the outside of the curve to lengthen and the portions of the ring apposed to the inside of the curve to shorten. Lengthening and shortening portions of the ring increase the maximum stress because the ring cannot expand evenly promoting fatigue failures. Current endoprosthesis designs which are subjected to these forces often fail. Failure can result in crack formation and possible stent fracture. In the event of stent fracture, the sharp edges may puncture the vessel, muscle tissue or cause bleeding. Consequently, the fractured stent may cause thrombus formation or blockage within the vessel.


SUMMARY OF THE INVENTION

Generally, the present invention includes a segmented endoprosthesis having joined segments. The segments are typically distinct and distinguishable from each other by each segment having a unique configuration different from at least one other segment. Additionally, the segments can be coupled together by various processes well known for interconnecting the materials of endoprostheses.


In one embodiment, the present invention includes a segmented endoprosthesis that has first and second annular elements jointed together via a plurality of couplings. The first annular element can have a plurality of first integrating members on a first longitudinal end. Also, the first annular element can be defined as having a first characterization as described herein. The second annular element can have a plurality of second integrating members on a second longitudinal end. The second integrating members of the second longitudinal side of the second annular element can be disposed adjacent to corresponding first integrating members of the first longitudinal side of the first annular element. Also, the second annular element can be defined as having a second characterization that is the same or different from the first characterization of the first annular element. The plurality of couplings are disposed between and coupling the plurality of first integrating members of the first annular element together with the plurality of second integrating members of the second annular element so as to form the segmented endoprosthesis.


In one aspect, the above-described endoprosthesis can have the first and second characterization types being at least one of material composition, length, diameter, wall thickness, flexibility, shape, structure, drug loading, drug type, shape memory, austenite finish temperature, radial force, or strut elements, and combinations thereof. Such characterization types being the same or different between the first annular element and the second annular element. In another aspect, the couplings can include at least one of a brazing, metallurgical bond, weld, sleeve, mechanical bond (e.g., swaging and/or crimping), or an adhesive. In another aspect, the first and second integrating members include at least one of blunt joinery elements, overlay joinery elements, complementary male and female joinery elements, or complementary finger joinery elements.


In another aspect, the endoprosthesis can be defined by the following: first integrating members each having a first coating; the second integrating members each having a second coating; and the plurality of couplings each comprising the first coating and the second coating. In another aspect, the first coatings and second coatings are comprised of a polymer and each coupling is an adhesive. In another aspect, first coatings and second coatings are comprised of the same polymer and form a sleeve coupling. In another aspect, the first coatings and second coatings can include a metal or a metallic coating. In yet another aspect the metal or metallic coatings can include a radiopaque metal such as gold, tantalum, platinum, rhenium, palladium, or another radiopaque metal or combination of metals.


In one embodiment, the present invention includes a segmented endoprosthesis having a primary annular element coupled to a first end annular element and a second end annular element. The primary annular element can be defined by a primary length and have a plurality of primary integrating members on both first and second longitudinal ends. The primary annular element can have a primary characterization. The first end annular element can be defined by a first length and have a plurality of first integrating members on an integrating longitudinal side. The first integrating members of the first end annular element can be disposed adjacent to corresponding primary integrating members of the first longitudinal side of the primary annular element. The first end annular element can have a first characterization that is the same or different from the primary characterization of the primary annular element. The second end annular element can be defined by a second length and have a plurality of second integrating members on an integrating longitudinal side. The second integrating members of the integrating longitudinal side of the second end annular element can be disposed adjacent to corresponding primary integrating members of the second longitudinal side of the primary annular element. The second end annular element can have a second characterization that is the same or different from the primary characterization of the primary annular element. A first plurality of first couplings can be disposed between and couple the plurality of primary integrating members of the primary annular element on the first longitudinal side with the plurality of first integrating members of the first end annular element. A second plurality of second couplings can be disposed between and couple the plurality of primary integrating members of the primary annular element on the second longitudinal side with the plurality of second integrating members of the second end annular element. As such, the first plurality of first couplings and second plurality of second couplings can form the primary annular element into a segmented endoprosthesis with the first end annular element and second end annular element.


In one aspect, the above-described endoprosthesis can have the first and second characterization types being at least one of material composition, length, diameter, wall thickness, flexibility, shape, structure, drug loading, drug type, shape memory, austenite finish temperature, radial force, or strut elements. In another aspect, any of the couplings can include at least one of a brazing, metallurgical bond, weld, sleeve, mechanical bond (e.g., swaging and/or crimping), or an adhesive. In another aspect, the first and second integrating members include at least one of blunt joinery elements, overlay joinery elements, complementary male and female joinery elements, or complementary finger joinery elements.


In another aspect, the endoprosthesis can be defined by the following: the primary integrating members each having a primary coating; the first integrating members each having a first coating; the second integrating members each having a second coating; the first plurality of first couplings each including the first coating and the primary coating; and the second plurality of second couplings each including the primary coating and the second coating. In another aspect, the primary coatings, first coatings, and/or second coatings can include a polymer and each of the first couplings and second couplings can be a compatible adhesive. In another aspect, the primary coatings, first coatings, and second coatings can include the same polymer and form the first and second couplings as sleeves. In another aspect, the primary coatings, first coatings, and second coatings can include a metal or a metallic coating. In yet another aspect the metal or metallic coatings can include a radiopaque metal such as gold, tantalum, platinum, rhenium, palladium, or another radiopaque metal or combination of metals.


In one embodiment, the present invention includes a method of manufacturing a segmented endoprosthesis. Such a method can include the following: providing a first annular element as described herein; providing a second annular element as described herein; adjacently disposing said plurality of first integrating members with said plurality of second integrating members; and coupling the first annular element with the second annular element by forming a plurality of couplings between the plurality of first integrating members of the first annular element with the plurality of second integrating members of the second annular element so as to form the segmented endoprosthesis.


In one aspect, the method can include at least one of the following: brazing the first integrating members to the second integrating members in order to form the plurality of couplings; metallurgically bonding the first integrating members to the second integrating members in order to form the plurality of couplings; welding the first integrating members to the second integrating members in order to form a weld; mechanically bonding (e.g., swaging and/or crimping) the first integrating members to the second integrating members in order to form the plurality of couplings; adhering the first integrating members to the second integrating members with an adhesive; preparing the first annular element by a process different from preparing the second annular element; finishing the first annular element by a first process and separately finishing the second annular element by a second process prior to coupling the first annular element with the second annular element; coating the entire endoprosthesis with a substantially uniform coating; loading the endoprosthesis with a substantially uniform drug distribution. In another aspect, the method can include the following: coating the first integrating members a first coating; coating the second integrating members with a second coating; and attaching the first coatings and the second coatings so as to form the plurality of couplings. In another aspect, the first coatings and second coatings can include a polymer and each coupling can be an adhesive. In another aspect, the first coatings and second coatings can include the same polymer and form the couplings as sleeves. In another aspect, the first coatings and second coatings can include a metal or a metallic coating. In yet another aspect the metal or metallic coatings can include a radiopaque metal such as gold, tantalum, platinum, rhenium, palladium, or another radiopaque metal or combination of metals.


In one embodiment, the present invention includes a method of manufacturing another embodiment of a segmented endoprosthesis. Such a method can include the following: providing a primary annular element as described herein; providing a first end annular element as described herein; providing a second end annular element as described herein; coupling the primary annular element with the first end annular element by forming a first plurality of first couplings disposed between and coupling a plurality of primary integrating members of the primary annular element on a first longitudinal side with a plurality of first integrating members of a first end annular element; and coupling the primary annular element with the second end annular element by forming a second plurality of second couplings disposed between and coupling a plurality of primary integrating members of the primary annular element on a second longitudinal side with a plurality of second integrating members of a second end annular element such that the primary annular element is formed into a segmented endoprosthesis with the first end annular element and second end annular element.


In one aspect, the method can include at least one of the following: brazing the primary integrating members to at least one of the first integrating members or the second integrating members in order to form at least the first plurality of first couplings or the second plurality of second couplings; metallurgically bonding the primary integrating members to at least one of the first integrating members or the second integrating members in order to form at least the first plurality of first couplings or the second plurality of second couplings; welding the primary integrating members to at least one of the first integrating members or the second integrating members in order to form at least the first plurality of first couplings or the second plurality of second couplings as welds; mechanically bonding (e.g., swaging and/or crimping) the primary integrating members to at least one of the first integrating members or the second integrating members in order to form at least the first plurality of first couplings or the second plurality of second couplings; adhering the primary integrating members to at least one of the first integrating members or the second integrating members with an adhesive in order to form at least the first plurality of first couplings or the second plurality of second couplings; preparing the primary annular element by a process different from preparing at least one of the first annular end element or the second annular end element; finishing the primary annular element by a first process and separately finishing at least one of the first annular end element the second annular end element by a second process prior to coupling the primary annular element to at least one of the first annular end element or the second annular end element; coating the entire endoprosthesis with a substantially uniform coating; or loading the endoprosthesis with a substantially uniform drug distribution. In another aspect, the method can include the following: coating the primary integrating members with a primary coating; coating the first integrating members with a first coating; coating the second integrating members with a second coating; and attaching the primary coating to both the first coatings and the second coatings so as to form the first plurality of first couplings and second plurality of second couplings. In another aspect, the first coatings and second coatings can include a polymer and each coupling can be an adhesive. In another aspect, the first coatings and second coatings can include the same polymer and form the couplings as sleeves. In another aspect, the first coatings and second coatings can include a metal or a metallic coating. In yet another aspect the metal or metallic coatings can include a radiopaque metal such as gold, tantalum, platinum, rhenium, palladium, or another radiopaque metal or combination of metals.


In one embodiment, the present invention includes a method for manufacturing a custom segmented endoprosthesis. The method includes steps of (1) designing a custom segmented endoprosthesis based on at least one medical condition and/or at least one anatomical characteristic of the site of placement, wherein the designing includes steps of (a) selecting design criteria from the group consisting of material composition, length, diameter, wall thickness, flexibility, shape, structure, drug loading, drug type, shape memory, austenite finish temperature, radial force, or strut elements, and combinations thereof, and (b) selecting a plurality of segments based on the selected design criteria for assembly into the custom segmented endoprosthesis, the segments including annular elements having a plurality of first integrating members on a first longitudinal end and a plurality of second integrating members on a second longitudinal end, (2) adjacently disposing the plurality of first integrating members with the plurality of second integrating members; and (3) coupling the plurality of annular elements by bonding the plurality of first integrating members to the plurality of second integrating members so as to form the custom segmented endoprosthesis.


Examples of suitable medical conditions upon which the design criteria may be selected include, but are not limited to, coronary angioplasty, arterial stenosis, venous stenosis, arterial aneurysm, venous aneurysm, coronary artery disease, peripheral artery disease, peripheral venous disease, chronic limb ischemia, blockage or occlusion of the bile duct, esophageal disease or blockage, defects or disease of the colon, tracheal disease or defect, blockage of the large bronchi, blockage or occlusion of the ureter, or blockage or occlusion of the urethra. Suitable examples of anatomical characteristics of the site of placement include, but are not limited to, a tortuous luminal pathway, longitudinal movement at the site, bending, torsional movement, and tensional and radial cyclical loading.


In one aspect, the first and second integrating members include at least one of the following blunt joinery elements, overlay joinery elements, complementary male and female joinery elements, or complementary finger joinery elements. In another aspect, the bonding includes least one of a brazing, metallurgical bonding, welding, sleeve, mechanical bonding (e.g., swaging and/or crimping) or an adhesive, and combinations thereof. In one aspect, bonding between adjacent joinery elements having a variety of bonding means can be formed by applying localized heat to abutting joinery elements (e.g., indirectly via laser or hot air or directly via contacting heating elements). Such heating can be used, for example, to promote softening, melt flow, and/or cross-linking of polymers and/or metal coatings.


These and other embodiments and features of the present invention will become more fully apparent from the following description, drawings, and/or appended claims, or may be learned by the practice of the invention as set forth hereinafter.





BRIEF DESCRIPTION OF THE DRAWINGS

To further clarify the above and other advantages and features of the present invention, a more particular description of the invention will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. The invention will be described and explained with additional specificity and detail through the use of the accompanying drawings, in which:



FIG. 1 is a planar side view of a portion of an embodiment of an exemplary endoprosthesis in accordance with the present invention;



FIG. 2A is a side view illustrating a portion of an embodiment of an endoprosthesis in a deployed orientation;



FIG. 2B is a side view illustrating a portion of an embodiment of an endoprosthesis in a delivery orientation;



FIG. 3A is a perspective view of an embodiment of an annular element in a delivery orientation;



FIG. 3B is a perspective view of an embodiment of a tubular endoprosthesis in a delivery orientation and having a series of annular elements in accordance with FIG. 3A;



FIG. 3C is a perspective view of an embodiment of the annular element of FIG. 3A in a deployed orientation;



FIG. 3D is a perspective view of an embodiment of a series of annular elements in accordance with FIG. 3A, wherein the series of annular elements are in a deployed orientation;



FIG. 3E is a perspective view of an embodiment of a tubular endoprosthesis in a deployed orientation and having a series of annular elements in accordance with FIG. 3A;



FIG. 4A is a perspective view of an embodiment of an annular element in a delivery orientation;



FIG. 4B is a perspective view of an embodiment of a series of annular elements in a deployed orientation, the series of annular elements are in accordance with FIG. 4A;



FIG. 4C is a perspective view of an embodiment of a tubular endoprosthesis in a delivery orientation and having a series of annular elements in accordance with FIG. 4A;



FIGS. 5A-5D are side views of embodiments of decouplable inter-connecters;



FIGS. 6A-6D are side views of embodiments of annular element bumpers;



FIG. 7A is a side view illustrating a portion of another embodiment of an endoprosthesis in a collapsed or delivery orientation;



FIG. 7B is a side view illustrating a portion of the endoprosthesis of FIG. 7A in a collapsed orientation;



FIG. 7C-7D are perspective views of the endoprosthesis of FIG. 7A in a tubular, delivery orientation, prior to expansion, and having a series of annular elements;



FIG. 7E-7F are side views of the endoprosthesis of FIG. 7A in an expanded or delivered orientation;



FIGS. 7G-7H are perspective views of the endoprosthesis of FIG. 7A in a tubular, expanded orientation;



FIG. 8A is a side view illustrating a portion of another embodiment of an endoprosthesis in a collapsed orientation;



FIG. 8B is a side view illustrating a portion of the endoprosthesis of FIG. 8A in an expanded or delivered orientation;



FIG. 8C is a perspective view of the endoprosthesis of FIG. 8A in a tubular, expanded or delivered orientation, and having a series of annular elements; and



FIGS. 9A-9B are side views of another embodiment of an endoprosthesis, the endoprosthesis having a coiled and offset configuration.



FIGS. 10A-10C are side views illustrating embodiments of annular elements and methods of joining such annular elements into a hybrid segmented endoprosthesis in accordance with the present invention.



FIGS. 11A-11C are side views illustrating embodiments of annular elements and methods of joining such annular elements into a hybrid segmented endoprosthesis in accordance with the present invention.



FIGS. 12A-12C are side views illustrating embodiments of annular elements and methods of joining such annular elements into a hybrid segmented endoprosthesis in accordance with the present invention.



FIGS. 13A-13B are side views illustrating embodiments of annular elements and methods of joining such annular elements into a hybrid segmented endoprosthesis in accordance with the present invention.



FIGS. 14A-14G depict views annular element integrating elements in accordance with the present invention.



FIGS. 15A-15G depict views annular element integrating elements in accordance with the present invention.



FIGS. 16A-16G depict views annular element integrating elements in accordance with the present invention.



FIGS. 17A-17B are side views illustrating an embodiment of a hybrid segmented endoprosthesis and methods of deploying such a hybrid segmented endoprosthesis into a body lumen in accordance with the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention includes various embodiments of endoprostheses for delivery into a lumen of a body. The endoprostheses can be configured to have improved functionality by being segmented so that adjacent annular elements may have different configurations. As such, the segmented endoprosthesis can have improved functionality and even be multifunctional depending on the configuration of the different annular elements. For example, the different annular elements can be configured to improve delivery and placement of the segmented endoprosthesis within a tortuous luminal pathway.


The use of a segmented endoprosthesis that is sectioned into multiple annular elements or multiple sub-endoprosthesis can enable delivery around tight corners. For example, one annular element or sub-endoprosthesis can be pushed through a tight corner in such a manner that a flexible interconnection allows each annular element or sub-endoprosthesis to move independently. Alternatively, selected annular elements of the segmented endoprosthesis can be more or less flexible so also enhance deployment through tight corners in a body lumen.


In another example, a detachable interconnection can allow the adjacent annular elements to separate from each other in order to avoid generating undue stress at a corner, and then rejoin at a straight section. In still another example, the interconnection can be prepared in such a manner that the different annular elements or sub-endoprosthesis are selectively held together by contact. As such, the interconnection is not unduly stressed and is less susceptible to cracking. Thus, the segmented endoprostheses having multiple annular elements or sub-endoprosthesis can increase the ability for easy deployment and retain substantial structural integrity of the endoprosthesis after deployment.


In another example, fabricating endoprostheses using a plurality of annular rings is more efficient and cost effective. The current trend in medicine is to use longer and longer endoprostheses for applications such as treating chronic limb ischemia below the knee. Typically, endoprostheses of all lengths have been fabricated as unitary structures using techniques such as laser cutting to cut an endoprosthesis out of a single piece of material. Nevertheless, as manufacturers have attempted to fabricate longer endoprostheses using typical methods the scrap rate or the rate at which endoprostheses have to be disposed of because manufacturing defects or mistakes has increased disproportionately. This is undesirable because of the high cost of the alloys typically used to fabricate endoprostheses and because of the cost associated with manufacturing and testing endoprostheses.


In contrast, segmented endoprostheses fabricated from multiple annular elements have a markedly lower scrap rate. That is, when a defect is detected in a singe ring only that ring has to be disposed of as opposed to disposing of the whole endoprosthesis. Moreover, multiple annular elements can be used to efficiently and cost effectively manufacture endoprostheses having almost any length that is practically necessary for treating a patients in need endoprosthetic treatment.


In another example, a custom endoprosthesis designed for a particular medical condition or an anatomical placement can be designed and fabricated using a plurality of annular rings. For example, endoprostheses can be designed having regions with different flexibility. This can be useful for installing an endoprosthesis in a body lumen with particularly tortuous anatomy. Endoprostheses can also be designed and fabricated where different regions that expand to different diameters. This can be useful for endoprosthetic treatment in a region where the body lumen has an inconsistent diameter.


I. Segmented Endoprosthesis

In accordance with the present invention, a segmented endoprosthesis can be provided for improved delivery within a body lumen of a human or other animal. Examples of segmented endoprostheses can include stents, filters, grafts, valves, occlusive devices, trocars, aneurysm treatment devices, or the like. Additionally, a segmented endoprosthesis can be configured for a variety of intralumenal applications, including vascular, coronary, biliary, esophageal, urological, gastrointestinal, or the like. The segmented endoprostheses can be prepared from multiple annular elements or sub-endoprosthesis that are interconnected by interconnectors that are flexible, degradable, bumpers, decouplable, detachable, brazings, metallurgical bonds, mechanical bonds, welds, sleeves, adhesives, or the like. As such, the interconnectors can inhibit stresses or strains from being transmitted between adjacent annular elements or sub-endoprosthesis. Also, the interconnectors inhibit excessive or destructive stresses or strains from being generated at the junctions between the adjacent annular elements or sub-endoprosthesis. Additionally, the interconnectors can be couplings that interconnect different types of annular elements together to form the endoprosthesis. Thus, adjacent annular elements or sub-endoprosthesis can be separated by interconnectors or couplings that inhibit crack formation and failure of the endoprosthesis, and also allow for different types of annular elements or sub-endoprostheses to be joined into a segmented endoprosthesis.


Generally, an endoprosthesis of the present invention can include at least a first set of interconnected strut elements that cooperatively define an annular element or sub-endoprosthesis. A strut element can be more generally described as an endoprosthetic element, wherein all well-known endoprosthetic elements can be referred to here as a “strut element” for simplicity. Usually, each strut element can be defined by a cross-sectional profile as having a width and a thickness, and including a first end and a second end bounding a length. The stent element can be substantially linear, arced, rounded, squared, combinations thereof, or other configurations. The strut element can include a bumper, crossbar, connector, interconnector, intersection, elbow, foot, ankle, toe, heel, medial segment, lateral segment, coupling, sleeve, combinations thereof, or the like, as described in more detail below. The strut element can have improved structural integrity by including crack-inhibiting features, which are described in detail in the incorporated references.


Usually, the annular elements or sub-endoprosthesis can include a plurality of circumferentially-adjacent crossbars that are interconnected end-to-end by an elbow connection, intersection, or a foot extension. As such, at least one annular element or sub-endoprosthesis can include an elbow, intersection, or a foot extension (“foot”) extending between at least one pair of circumferentially-adjacent crossbars. The elbow or foot can thus define an apex between the pair of circumferentially-adjacent crossbars of the annular element or sub-endoprosthesis. Also, an intersection can have a shape similar to a crossbar or interlinked crossbars so as to provide a junction between two coupled pairs of circumferentially-adjacent crossbars.


The elbow can be configured in any shape that connects adjacent ends of circumferentially-adjacent crossbars, and can be described as having a U-shape, V-shape, L-shape, X-shape, Y-shape, H-shape, K-shape, or the like. The elbow and/or intersection can be configured in any shape that connects longitudinal and circumferentially adjacent crossbars, and can be described as having a cross shape, X-shape, Y-shape, H-shape, K-shape, or the like. The foot can have a foot shape having a first foot portion extending circumferentially from an end of one of the adjacent strut members and a second foot portion extending circumferentially from a corresponding end of the other of the circumferentially-adjacent strut members. In combination, the first and second foot portions generally define an ankle portion connected to a toe portion through a medial segment and the toe portion connected to a heel portion through a lateral segment.


As described herein, an endoprosthesis, in one configuration, can include two or more interconnected annular elements or sub-endoprosthesis. Each annular element or sub-endoprosthesis can generally define a ring-like structure extending circumferentially about a longitudinal or central axis. The cross-sectional profile of each annular element or sub-endoprosthesis can be at least arcuate, circular, helical, or spiral, although alternative cross-sectional profiles, such as oval, oblong, rectilinear or the like, can be used. The different annular elements can be defined as having the same characterization or different characterizations.


When the endoprosthesis can include multiple spaced apart annular elements or sub-endoprostheses, a first annular element can be aligned longitudinally adjacent to a second annular element along the longitudinal axis. The first and second annular elements can be interconnected by flexible, degradable, bumper, decouplable, detachable, brazings, metallurgical bonds, mechanical bonds, welds, sleeves, adhesives, and like interconnectors. The interconnectors can be considered as strut elements for the purposes of the invention. For example, the interconnectors can be strut elements that interconnect adjacent annular elements or sub-endoprostheses so as to improve the structural integrity of the endoprosthesis by inhibiting the buildup of stresses or strains at the interconnection or inhibiting propagation of stresses or strains between adjacent annular elements or sub-endoprostheses. In another example, the interconnectors allow for different types of adjacent annular elements or sub-endoprostheses to be interconnected into an endoprosthesis.


The first and second annular elements or sub-endoprostheses generally define a tubular structure. For example, each annular element or sub-endoprosthesis can define a continuous closed ring such that the longitudinally-aligned annular elements or sub-endoprostheses form a closed tubular structure having a central longitudinal axis. Alternatively, each annular element or sub-endoprosthesis can define an open ring shape such that a rolled sheet, open tubular, or “C-shape” type structure is defined by the annular elements. That is, the annular element or sub-endoprosthesis is not required to be closed. Furthermore, each annular element or sub-endoprosthesis can define substantially a 360-degree turn of a helical pattern or spiral, such that the end of one annular element or sub-endoprosthesis can be joined with the corresponding end of a longitudinally-adjacent annular element or sub-endoprosthesis to define a continuous helical pattern along the length of the endoprosthesis.


A. Shock Resistant/Absorbing Endoprosthesis

One configuration of the present invention can include an endoprosthesis configured to flex during deployment and after being set. FIGS. 1-2B illustrate embodiments of endoprostheses that can include a plurality of annular elements that are interconnected by shock resistant or absorbing members or shock absorbers. The shock absorbers, or means for reducing force transmission between adjacent annular elements, allow the individual annular elements to flex, move longitudinally, and/or bend with respect to each other while in a collapsed or deployed configuration. Additionally, the shock absorbers can allow the individual annular elements to flex radially, circumferentially, axially, and longitudinally while deployed.



FIG. 1 is a side view of a flattened portion of an embodiment of an endoprosthesis 1a. The illustrated endoprosthesis is a stent, but it will be understood that the benefits and features of the present invention are also applicable to other types of endoprosthesis or other medical devices known to those skilled in the art.


For purposes of clarity and not limitation, the endoprosthesis 1a is illustrated in a planar format. As shown, the endoprosthesis 1a can include a plurality of annular elements 10 aligned longitudinally adjacent to each other along a longitudinal axis 15 extending from a first end 16 to a second end 18. Although only two interconnected annular elements need to be provided for the endoprosthesis, it is possible that an endoprosthesis include one or a plurality of annular elements 10. As depicted in FIG. 1, at least a first annular element 10a and a second annular element 10b are identified.


Each annular element 10 can include a set of interconnected strut elements, shown as strut crossbars 20, which are disposed circumferentially about the longitudinal axis 15; the circumferential direction is represented by arrow 17. Each crossbar 20 can have a first end 22a and a second end 22b, referenced generally as end 22. The first end 22a of selected circumferentially-adjacent crossbars 20a-b can be interconnected at elbows 30 that are proximate to a first longitudinal side 12 of each annular element 10, and the second end 22b of selected circumferentially-adjacent crossbars 20b-c can be interconnected to define elbows 30 that are proximate to a second longitudinal side 14 of the annular element.


Each annular element 10 can be expanded to a deployed configuration as shown in FIG. 1 by altering or opening the angle of the elbows 30 interconnecting the circumferentially-adjacent crossbars 20, or can be collapsed into a deployable configuration by closing the angle of the elbows 30. Also, circumferentially-adjacent elbows 30 on each side 12, 14 of the annular element 10 can be spaced apart by a circumferential distance D, such that each annular element 10 is expanded by increasing the distance D and collapsed by decreasing the distance D. At any given condition between the delivery configuration and the deployed configuration, the distance D can be balanced or constant from one set of circumferentially-adjacent elbows to the next, or it can be varied if desired.


Selected elbows 30 on each side 12, 14 of the annular element 10 can be defined by interconnecting corresponding ends 22 of circumferentially-adjacent crossbars 20a-b directly together to form a zigzag pattern of alternating U-shapes, V-shapes, L-shapes, combinations thereof, or the like when deployed. Alternatively, an elbow 30 can be provided between the corresponding ends of adjacent crossbars to form another contoured shape, such as by using a straight elbow member to form a flat connection configuration.



FIG. 1 also depicts an embodiment of a foot extension 40 that can extend between a pair 24 of circumferentially-adjacent crossbars 20d-e of each annular element 10. As depicted, the foot extension 40 can include an ankle 41 that circumferentially couples an end 22 of one of the adjacent crossbars 20d to a medial segment 44. The medial segment 44 extends from the ankle 41 to a toe 48 that circumferentially couples the medial segment to a lateral segment 46. The lateral segment 46 can extend from the toe 48 to a heel 42 that circumferentially couples the lateral segment to the next circumferentially-adjacent crossbar 20e. Accordingly, the juncture of the crossbar 20d and the medial segment 44 can define a circumferentially-extending toe portion 48 of the foot extension 40; the juncture of the medial segment 44 and the lateral segment 46 defines a circumferentially-extending toe portion 48 of the foot extension 40; and the juncture of the lateral segment 46 and crossbar 20e defines a circumferentially-extending toe portion 48 of the foot extension 40. Each portion of the foot extension 40, as well as each of the circumferentially-adjacent crossbars 20, can have a substantially uniform cross-sectional profile illustrated by a substantially uniform width W and thickness (not shown).


For purposes of discussion and not limitation, FIG. 1 shows that a toe portion 48 can extend in a first circumferential direction a distance greater than the distance the heel portion 42 of the foot extension 40 extends in an opposite circumferential direction. As such, the entirety of the foot extension 40 can extend in the circumferential direction of the toe portion 48. Furthermore, at least one of the medial segment 44 or lateral segment 46 can open foot region 49.


The adjacent annular elements 10a-10b or 10c-10d can be interconnected with an interconnector 50 as described herein. For example, the interconnector 50 can have a form of a means for reducing force transmission between adjacent annular elements. Stated another way, the interconnector 50, optionally referred to as a shock absorber or shock absorbing connector, can include one or more shock absorbing members that allow limited movement of adjacent annular elements, while reducing the possibility of cracking and fatigue failure due to the movement of adjacent annular elements. As such, the endoprosthesis 1a can include a plurality of interconnectors 50 to connect adjacent annular elements 10a-10b or 10c-10d. Each interconnector 50 can include a first bending member or shock 52 and a second bending member or shock 54, which can bend toward each other to separate the adjacent annular elements 10a-10b or 10c-10d or bend away from each other to being adjacent annular elements closer together. Accordingly, the interconnector 50 can include a first bending point 60 opposite of a second bending point 64. The first bending member or shock 52 can have at least a first arm 66 and a second arm 67. The second bending member or shock 54 can have at least a first arm 68 and a second arm 69. The interconnector 50 can couple with a first crossbar 20 of a first annular element 10c at a first coupling 62a, and couple with a second crossbar of a second annular element 10d at a second coupling 62b.


The endoprosthesis 1a can be easily deployed because of the improved flexibility provided within each annular element 10 or between adjacent annular elements 10a-10b. As such, the resiliently-flexible bending members or shocks 52, 54 can cooperate so as to enable the endoprosthesis 1a to bend around a tight corner by the bending members or shocks on one side of the annular element contracting while bending members or shocks on an opposite side expanding. Also, the combination of elbows 30, foot extensions 40, and/or resiliently flexible interconnectors 50 can allow for radial, longitudinal, torsional, or bending loading to be absorbed without cracking, fracturing or damage occurring to the endoprosthesis 1a. Moreover, the resiliently-flexible interconnectors 50 can allow adjacent annular elements to move independently with respect to each other in radial, longitudinal, and cross directions.



FIGS. 2A-2B provide side views of an embodiment of another endoprosthesis 100a in a deployed orientation (e.g., FIG. 2A) and a delivery orientation (e.g., FIG. 2B. The discussions related to endoprosthesis 1a can also apply to endoprosthesis 100. Accordingly, the endoprosthesis 100a can include a plurality of annular elements 110 that can have a plurality of crossbars 120 that are connected together by elbows 130 and intersections 140. More particularly, circumferentially-adjacent crossbars 120 can be coupled at an elbow 130 and four or more circumferentially-adjacent crossbars 120 can be coupled together at an intersection 140. With this configuration, crossbars 120, intersections 140, and elbows 130 can cooperate so as to form a structure 170 that allows for flexibility as the structure can expand or collapse. In the illustrated configuration, the structure 170 has a generally diamond shape that can provides the identified flexibility to the endoprosthesis 100. Thus, each annular element 110 can have a series of circumferentially-interconnected flexible structures 170, such as, but not limited to, diamond structures, that can expand or collapse under the influence of a balloon or change of temperature.


It will be understood that structure 170 can have other configurations while providing flexibility to the endoprosthesis 100. For instance, structure 170 could be replaced with a repeating “V”, a repeating “U”, or other structures such as those shown in U.S. Pat. No. 6,602,285, issued Aug. 5, 2003, and entitled “COMPACT STENT” and U.S. Pat. No. 7,128,756, issued Oct. 31, 2006, and entitled “ENDOPROSTHESIS HAVING FOOT EXTENSIONS”, the entireties of which are incorporated herein by specific reference.



FIG. 2A shows the endoprosthesis in an expanded orientation so that the annular elements 110 extended away from each other. The adjacent annular elements 110a-110b can be separated by members 150, having a generally diamond-shaped configuration in the illustrated configuration, which aid in reducing the forces applied between adjacent annular elements 110. In one sense, the members 150 function as shock absorbing members to aid in and enable movement of adjacent annular elements 110 one with another. In another sense, the members 150 can be couplings that couple different types of annular elements 100 together. The particular configuration of member 150 can allow for the annular elements to flex with respect to each other in the longitudinal, radial, and circumferential directions. In part, this can be accomplished with the diamond shape configuration having at least two flexing points 160, 164 and at least two couplings 156, 158, although other configurations of the members 150 can also achieve the desired functionality. The two couplings 156, 158 can couple two bending member or shocks 152, 154 between adjacent annular elements 110a-110b. The first bending member or shock 152 can have a first arm 166 coupled to a second arm 167 through the first flexing point 160, and the second bending member or shock 154 can have a first arm 168 coupled to a second arm 169 through the second flexing point 164. The first flexing point 160 can cooperate with the second flexing point 164 and the couplings 156, 158 to allow the first annular element 110a to flex and/or move with respect to the second annular element 110b. Moreover, the members 150 can cooperate with the elements or structures defining the structure 170 of the annular elements 110 so that the endoprosthesis 100 can bend and flex in any direction.



FIG. 2B shows the endoprosthesis 100a in a collapsed orientation so that the annular elements 110 are contracted toward each other for deployment. Accordingly, the adjacent annular elements 110a-110b can be pulled together by the member 150. In the contracted position, the member 150 enables the annular elements 110a-110b to flex with respect to each other in the longitudinal, and cross directions; however, the member 150 can inhibit the collapsed endoprosthesis 100a from flexing in the radial or circumferential directions. This allows the collapsed orientation to enable the endoprosthesis 100a to flex and bend without causing the annular elements 110 to expand or open. In part, this is because the two couplings 156, 158 allow the members 150 to flex independently of the annular elements 110a-110b. Thus, each group of members 150 having the diamond shape can open and close independently during delivery so that the annular elements 110a-110b can move independently around tight corners without incurring undue stress. A further advantage of the member 150 is that member 150 collapses longitudinally during crimping and when disposed within a delivery system, thereby providing column stiffness to push the stent out of the delivery system upon deployment.


B. Decouplable Endoprosthesis

Turning to FIGS. 3A-3E, illustrated is another configuration of an endoprosthesis that can flex during deployment. In addition, the endoprosthesis, identified by reference numeral 200, can separate into individual sub-endoprostheses after being deployed. These sub-endoprostheses can be considered as individual annular elements that can be interconnected by a plurality of decouplable interconnectors. The interconnectors can allow the individual sub-endoprostheses or annular elements to flex, move longitudinally, and/or bend with respect to each other while in a collapsed configuration. Additionally, the interconnectors can allow the individual sub-endoprostheses to separate away from each other when the primary endoprosthesis is being expanded radially. Thus, the primary endoprosthesis, i.e., the collection of one or more sub-endoprosthesis, can decouple when delivered into a plurality of sub-endoprostheses when at the deployment site within a body lumen.



FIGS. 3A-3E provide various views of the endoprosthesis 200. For instance, FIGS. 3A-3B illustrate one configuration of the endoprosthesis 200 in a delivery orientation 200a, while FIGS. 3C-3E illustrate one configuration of the endoprosthesis in a deployed orientation 200b, 200c. As such, all elements described in connection with FIGS. 3A-3E are intended to be included in each of FIGS. 3A-3E. The endoprosthesis 200 can include a plurality of annular elements 210 that can each include a plurality of crossbars 220 that are connected together by elbows 230 and intersections 240. Also, the annular elements can be configured as described herein or skilled in the art in light of the teaching contained herein


In the illustrated configuration, circumferentially-adjacent crossbars 220 can be coupled at an elbow 230 and four or more circumferentially- and longitudinally-adjacent crossbars can be coupled together at an intersection 240. The intersection 240 and elbows 230 that connect four crossbars 220a-d can cooperate so as to form a structure 270 that allows for flexibility as the structure can expand or collapse. As illustrated, the structure 270 has a diamond shape, but it will be understood that other configurations are possible so long as they provide the desired flexibility to the endoprosthesis. For instance, structure 270 could be replaced with a repeating “V”, repeating “U”, “W”, “Z”, wave, or combination thereof, or other structures such as those shown in U.S. Pat. Nos. 6,602,285 and 7,128,756. Thus, each annular element 210 can be a sub-endoprosthesis that can have a series of circumferentially-interconnected flexible structure 270 that can flex radially or circumferentially.



FIG. 3A shows a configuration of a sub-endoprosthesis 210 in a collapsed orientation so that the crossbars 220 are collapsed toward each other so as to collapse each structure 270. The elbows 230 and intersections 240 flex or bend to collapse each structure 270. Additionally, the sub-endoprosthesis 210 can include one or more decouplable interconnectors 250. Each interconnector 250 can be coupled to an elbow 230 or other portion of the sub-endoprosthesis 210 through a neck 252 that longitudinally extends the interconnector 250. The interconnector 250 can have a first arm 254 and a second arm 256 so as to form a T-shape with the neck 252. The first arm 254 and second arm 256 can combine to form a bumper surface 258. The first arm 254 and second arm 256 can also have a first surface 260 and a second surface 262, respectively, which can engage the corresponding surfaces 260 and 262 of an adjacently positioned one or more interconnectors 250. This engagement can be achieved through friction fit, mechanical engagement, or other techniques known to those skilled in the art in light of the teaching contained herein.



FIG. 3B shows the endoprosthesis 200a in a collapsed orientation so that the sub-endoprostheses 210 are contracted and held together for deployment. In contrast, FIG. 3C illustrates the sub-endoprosthesis 202 in an expanded and deployed orientation, which illustrates the interconnectors 250 circumferentially separating away from each other. With continued reference to FIG. 3B, the adjacent annular elements 210a-210b can be held together by the decouplable interconnectors 250. An interconnector 250a of a first sub-endoprosthesis 210a can be releasably-coupled with two interconnector 250b-250c of a second sub-endoprosthesis 210b. As such, the arms 254, 256 of the first sub-endoprosthesis 210a interlock with the arms of the second sub-endoprosthesis 210b. The arms 254, 256 can be releasably-interlocked together by each having friction surfaces 260, 262 that can slide and separate from each other so that the sub-endoprostheses 210a-210b can move relative to each other.


When the endoprosthesis 200a is in the contracted position, the interconnectors 250 enable the sub-endoprostheses 210a-210b to be coupled together and to flex with respect to each other in longitudinal and cross directions. Also, this allows the collapsed orientation to enable the endoprosthesis 200a to flex and bend without causing any of the sub-endoprostheses 210 to expand or open. In part, this is because the interconnectors 250 allow the sub-endoprostheses 210 to move independently with respect to each other, thus bending forces generated during tracking or delivery in one of the segments will not be transmitted to adjacent segments. Thus, each interconnector 250 can move independently during deployment by the surfaces 260 and/or 262 sliding with respect to each other or separating so that the sub-endoprostheses 210a-210b can move independently around tight corners without incurring undue stress.



FIGS. 3D-3E illustrate portions of the endoprosthesis 200b of FIG. 3B in an expanded and deployed orientation. As such, the adjacent sub-endoprostheses 210a-210c can be separated by the decouplable interconnectors 250 decoupling from each other. More particularly, the interconnector 250a can decouple from interconnector 250b and interconnector 250c, and interconnector 250d can decouple from interconnector 250e and interconnector 250f so as to separate sub-endoprosthesis 210b from the longitudinally-adjacent sub-endoprostheses 210a and 210c. As such, the sub-endoprostheses 210a-210c can move with respect to each other in longitudinal, radial, cross, and circumferential directions. In essence, the endoprosthesis 200b is deployed into a plurality of separate and distinct sub endoprostheses 210a-210c.


C. Bumper Endoprosthesis

Another embodiment of the present invention includes an endoprosthesis configured to flex during deployment and separate into individual sub-endoprostheses after being set. FIGS. 4A-4C illustrate another configuration of an endoprosthesis 300 that can flex during deployment and separate into individual sub-endoprostheses after being set. These sub-endoprostheses can be positioned adjacent to and in contact with each other when in a collapsed orientation and separate from each other when opened or expanded into a deployed orientation. The sub-endoprostheses can include bumpers that allow longitudinal forces to be transmitted throughout a portion or the entire endoprosthesis, thereby allowing the sub-endoprostheses to flex, move longitudinally, and/or bend with respect to each other while in a collapsed configuration. The bumpers may also be configured to prevent transmission of rotational forces between the adjacent segments as will be described in detail below. Additionally, the bumpers can allow the individual sub-endoprostheses to separate away from each other when the primary endoprosthesis, i.e., the collection of one or more sub-endoprosthesis, is being expanded radially. Thus, the primary endoprosthesis can decouple into a plurality of sub-endoprostheses when at the deployment site within a body lumen.



FIGS. 4A-4C provide various views of a sub-endoprosthesis 300, including the endoprosthesis 300a in a delivery orientation. As such, all elements described in connection with FIGS. 4A-4C are intended to be included in each of FIGS. 4A-4C. The endoprosthesis 300 can include a plurality of annular elements 310 that can each have a plurality of crossbars 320 that are connected together by elbows 330 and intersections 340. Also, the annular elements 310 can be configured as described herein or as is well known in the art. In the illustrated configuration, circumferentially-adjacent crossbars 320 can be coupled at an elbow 330 and two or more circumferentially- and longitudinally-adjacent crossbars can be coupled together at an intersection 340. The intersection 340 and elbows 330 that connect four crossbars 320a-d can cooperate so as to form a structure 370 that can expand or collapse while providing sufficient scaffolding to the vessel wall. Thus, each annular element 310 is a sub-endoprosthesis that can have a series of circumferentially-interconnected flexible structures 370 that can flex radially or circumferentially. Although the illustrated structure 370 has a diamond configuration, one skilled in the art will appreciate that the structure 370 can have various other configurations so long as it is capable of providing the desired flexibility. For instance, and not by way of limitation, the structure 370 can have configurations similar to the repeating “V”, “U”, “W”, “Z”, wave, or combination thereof, or other structures such as those shown in U.S. Pat. Nos. 6,602,285 and 7,128,756.



FIG. 4A shows a sub-endoprosthesis 310 in a collapsed orientation so that the crossbars 320 are collapsed toward each other so as to collapse each of the structures 370. More particularly, the elbows 330 and intersections 340 flex or bend so as to collapse each structure 370. Additionally, the sub-endoprosthesis 310 can include one or more bumpers 350. Each bumper 350 can be coupled to an elbow 330 or other portion of the sub-endoprosthesis 310 through a neck 352 that longitudinally extends the bumper. The bumper 350 can have a first arm 354 and a second arm 356 so as to form a T-shape with the neck 352. Also, the first arm 354 and second arm 356 can combine to form a bumper surface 358. It should be noted that it is also possible to include a bumper that is not connect through a neck. For example, the bumper profile can overlap the stent elbow profile. Also, the elbow itself could be cropped to include a flattened section that operates as a bumper.



FIG. 4C shows the endoprosthesis 300a in a collapsed orientation so that the sub-endoprostheses 310 are contracted and held together for deployment. Accordingly, the adjacent annular elements 310a-310e can be in contact through the bumpers 350a-350e. The bumpers 350a-e allow the sub-endoprostheses 310a-310e to slide and separate from each other so that the sub-endoprostheses can move relative to each other during and after deployment. For instance, the bumpers 350a-e can provide desirably push transmission and axial stiffness while permitting relative motion and independence. Further, the configuration of the bumpers 350a-e can provide some limitation to the movement of adjacent annular elements, while permitting independent movement of the annular element during and after deployment.


When the endoprosthesis 310a is in the contracted position, the bumpers 350 enable the sub-endoprostheses 310a-310b to be held together by a delivery catheter (not shown) that substantially surrounds the endoprosthesis 300a and to move with respect to each other in longitudinal and cross directions. The sub-endoprostheses 310a-310b can also be held together by an external sleeve, which can be polymeric so as to be biocompatible and optionally biodegradable. Also, this allows the collapsed orientation to enable the endoprosthesis 300a to flex and bend without causing any of the sub-endoprostheses 310 to expand or open. In part, this is because the bumpers 350 allow the sub-endoprostheses 310 to move independently with respect to each other. Thus, each bumper 350 can move independently during deployment by the bumper surfaces 358 sliding with respect to each other or separating so that the sub-endoprostheses 310a-310e can move independently around tight corners without incurring undue stress.



FIG. 4B illustrates a portion of the endoprosthesis 300b of FIG. 4C in an expanded and deployed orientation. As such, the adjacent sub-endoprostheses 310a-310c can be separated by the bumpers 350. More particularly, the bumpers 350a of the first sub-endoprosthesis 310a can abut or separate from the bumpers 350b of the second endoprosthesis 310b, and the bumpers 350b can abut or separate from the bumpers 350c of the third endoprosthesis 310C. As such, the deployed sub-endoprostheses 310a-310c can move with respect to each other in the longitudinal, radial, cross, and circumferential directions. In essence, the endoprosthesis 300b is deployed into a plurality of separate and distinct sub-endoprostheses 310a-310c.


II. Interconnectors

The use of interconnections in accordance with the present invention allow for improved overall structural integrity of an endoprosthesis. The improved interconnections can allow for adjacent annular elements of an endoprosthesis to be delivered together and to separate into distinct sub-endoprostheses during expansion into a deployed orientation. As such, the interconnections can inhibit the endoprosthesis from cracking at high stress areas through reducing the stress upon the high stress areas, thereby improving the performance and reliability of the endoprosthesis. The interconnections can be configured as decouplable interconnectors and/or bumpers, as described above.


The decouplable interconnectors described in FIGS. 3A-3E can be prepared in a variety of configurations as shown in FIGS. 5A-5D as well as others known to those skilled in the art in light of the teaching contained herein. As such, FIG. 5A depicts a configuration of an interconnection system 400a that releasably-couples a pair of longitudinally-adjacent sub-endoprostheses 402, 404. Accordingly, sub-endoprosthesis 402 includes a T-shaped decouplable interconnector 406a that cooperates and releasably-couples with the T-shaped decouplable interconnectors 406b, 406c of sub-endoprostheses 404a, 404b, respectively. FIG. 5B depicts a configuration of an interconnection system 400b that uses L-shaped decouplable interconnectors 410, 412. FIG. 5C depicts a configuration of an interconnection system 400c that uses V-shaped decouplable interconnectors 414, 416. FIG. 5D depicts a configuration of an interconnection system 400d that uses anchor-shaped decouplable interconnectors 418, 420, 422.


Additionally, the interconnectors illustrated in 5A-5D can be coupled together as described herein. This can include the interconnectors being coupled together by a brazing, metallurgical bond, weld, sleeve, polymer coating, mechanical bond (e.g., swaging and/or crimping), or an adhesive. The couplings may be placed at the points of contact between the adjacent interconnectors. In one aspect, bonding between adjacent joinery elements having a variety of bonding means can be formed by applying heat to abutting joinery elements (e.g., indirectly via laser or hot air or directly via contacting heating elements). Such heating can be used, for example, to promote softening, melt flow, and/or cross-linking of polymers and/or metal coatings. Also, a sleeve, such as a polymeric sleeve, or coating can be applied over the adjacent interconnectors so as to form a sleeve coupling.


B. Bumpers

The bumpers described in FIGS. 4A-4C can be prepared in a variety of configurations as shown in FIGS. 6A-6D as well as others. As such, FIG. 6A depicts a configuration of a bumper system 500a that allows a pair of longitudinally-adjacent sub-endoprostheses 502, 504 to come into contact during deployment without imparting unfavorable stress or strains. Accordingly, sub-endoprosthesis 502 can include a T-shaped bumper 506a that can abut or separate from the T-shaped bumper 506b of sub-endoprosthesis 404. FIG. 6B depicts a configuration of a bumper system 500b that uses L-shaped bumpers 510, 512. FIG. 6C depicts a configuration of a bumper system 500c that uses an extended element 514 and a receiver element 516; the extended element 514 selectively; releasably fitting into the receiver element 516. FIG. 6D depicts a configuration of a bumper system 500d that uses a rounded extended element 524 and a guide element 518; the rounded extended element 524 can slide against either guide arm 520, 522 so as to be received into the guide element 518. Through the use of bumper systems 500c and 500d, relative rotational motion of adjacent annular elements is controlled due to frictional contact between the extended or guide element with the receiver or rounded element.


Additionally, the bumpers illustrated in 6A-6D can be coupled together as described herein. This can include the bumpers being coupled together by a brazing, metallurgical bond, weld, sleeve, polymer coating, mechanical bond (e.g., swaging and/or crimping), or an adhesive. The couplings may be placed at the points of contact between the adjacent bumpers. In one aspect, bonding between adjacent joinery elements having a variety of bonding means can be formed by applying heat to abutting joinery elements (e.g., indirectly via laser or hot air or directly via contacting heating elements). Such heating can be used, for example, to promote softening, melt flow, and/or cross-linking of polymers and/or metal coatings. Also, a sleeve, such as a polymeric sleeve, or coating can be applied over the adjacent bumpers so as to form a sleeve coupling.


III. Compression Endoprosthesis

Additionally, an endoprosthesis in accordance with the present invention can be configured to have column stiffness during delivery and flexibility after being expanded or deployed. The stiffness can be achieved with compressible interconnectors that allow adjacent annular elements to collapse against each other. Optionally, an overlapping region can allow circumferentially-adjacent compressible interconnectors to overlap while in the delivery orientation so as to create a physical barrier between adjacent annular elements. Also, the overlapping region can release when the endoprosthesis expands so as to create space for the adjacent annular elements to flex or move longitudinally with respect to each other.


A compressible endoprosthesis can have interconnectors that compress or lengthen when bent, stretched, or shortened. The compressible interconnectors can absorb longitudinal or bending stresses to allow the rings to maintain uniformity, which improves their resistance to cracking or failure that may occur due to various loading conditions arising from stresses that occur during longitudinal, bending, and radial cyclical loading. Optionally, the compressible interconnectors can have a member that overlaps another member of a circumferentially adjacent compressible interconnector so as to create a rigid section between adjacent annular elements. The compressible interconnectors featuring the overlapping portions can be included in the described endoprostheses as well as other configurations well known in the art. For example, compressible interconnector can include a compressible arm having a V-shape that has one side connected to one annular element, and a second side that is connected to a second annular element through an extension arm. Additionally, each of the arms of the V-shape and extension arm can be long to increase flexibility. Moreover, the point of the V-shape can be cradled within the opening of an adjacent interconnector so as to form the overlapping configuration.


One configuration of the present invention can include an endoprosthesis configured to be compressed during deployment and be compressible after being expanded and set. FIGS. 7A-10B illustrate embodiments of endoprostheses that can include a plurality of annular elements that are interconnected by compression interconnectors that can function as shock absorbers. The compression interconnectors configured as shock absorbers, or means for reducing force transmission between adjacent annular elements, allow the individual annular elements to flex, move longitudinally, and/or bend with respect to each other while in a collapsed or deployed configuration. Additionally, the compression interconnectors can allow the individual annular elements to flex radially, circumferentially, axially, and longitudinally while deployed.


A. Compressible V-Shaped Interconnector


FIGS. 7A-7H provide different views of an embodiment of a collapsible endoprosthesis 600 in a delivery orientation (e.g., flat planar view shown in FIGS. 7A-7B; tubular shown in FIGS. 7C-7D) and a deployed orientation (e.g., flat planar shown in FIGS. 7E-7F; tubular shown in FIGS. 7G-7H). The discussions related to endoprosthesis 1a can also apply to endoprosthesis 600. Accordingly, the endoprosthesis 600 can include a plurality of annular elements 610 that can have a plurality of crossbars 620 that are connected together by elbows 630. More particularly, circumferentially-adjacent crossbars 620 can be coupled at an elbow 630 that can be configured as a repeating serpentine pattern. With this configuration, crossbars 620 and elbows 630 can cooperate so as to form a structure 612, such as a repeating serpentine pattern or other structure, that allows for flexibility as the structure can expand or collapse. In the illustrated configuration, the structure 612 has a generally serpentine shape that can provide the identified flexibility to the endoprosthesis 600; however, the structure 612 can be one of any other configurations, such as a diamond-shape, V-shape, U-shape, W-shape, O-shape, N-shape, M-shape, Z-shape, and the like. Thus, each annular element 610 can have a series of circumferentially-interconnected flexible structures 612 that can expand or collapse under the influence of a balloon or change of temperature.


It will be understood that structure 612 can have other configurations while providing flexibility to the endoprosthesis 600. For instance, structure 612 could be replaced with a repeating “V”, “U”, “W”, “Z”, wave, or combination thereof, or other structures such as those shown in U.S. Pat. Nos. 6,602,285 and 7,128,756. Additionally, FIGS. 7A-7H show different view of an endoprosthesis 600 that includes a plurality of the compression interconnectors 650 that couple adjacent annular elements 610a-610b. The compression interconnectors 650 are generally configured to include an extension arm 640 that extends a collapsing arm 652 from an elbow 630. As such, the extension arm 640 is coupled to the elbow 630 through an extension coupling 642, which can be flexible as in the other couplings described herein. The flexible extension coupling 642 and extension arm 640 can allow for the collapsing arm 652 to freely collapse within a space between adjacent annular elements 610a-610b.



FIG. 7A-7B are flat planar views that show the endoprosthesis 600a in a collapsed orientation so that the annular elements 610 are contracted toward each other for delivery. Accordingly, the adjacent annular elements 610a-610b can be pulled together by the compression interconnectors 650. In the contracted position, the compression interconnectors 650 enable the annular elements 610a-610b to flex with respect to each other in the longitudinal, and cross directions; however, the compression interconnectors 650 can inhibit the collapsed endoprosthesis 600a from flexing in the radial or circumferential directions. This allows the collapsed orientation to enable the endoprosthesis 600a to flex and bend without causing the annular elements 610 to expand or open. In part, this is because the two couplings 656, 658 allow the compression interconnectors 650 to flex independently of the annular elements 610a-610b. Thus, each group of compression interconnectors 650 can open and close independently during deployment so that the annular elements 610a-610b can move independently around tight corners without incurring undue stress.


Generally, the compression interconnectors 650 can have a V-shape configuration having at least one flexing point 660 and at least two flexible couplings 656, 658, although other configurations of the compression interconnectors 650 can also achieve the desired functionality. The two couplings 656, 658 can couple a collapsing member or shock 652 between adjacent annular elements 610a-610b. The collapsing member or shock 652 can have a first arm 667 coupled to a second arm 668 through the flexing point 660. The flexing point 660 can cooperate with the two couplings 656, 658 to allow the first annular element 610a to flex and/or move with respect to the second annular element 610b. Moreover, the compression interconnectors 650 can cooperate with the annular elements 610 so that the endoprosthesis 100 can bend and flex in any direction. For example, the compression interconnectors 650 can be shaped as diamond-shape, V-shape, U-shape, W-shape, O-shape, N-shape, M-Shape, Z-shape, and the like.


Additionally, FIG. 7B shows the collapsed configuration of the endoprosthesis 600a to have an overlapping region 680 that allows circumferentially-adjacent compression interconnectors 650 to overlap. As such, the overlapping region 680, which is essentially a flexing point 660 overlapping the two coupling 656, 658, provides the segmented endoprosthesis 600a with additional strength when in the delivery configuration, especially when in a catheter.



FIGS. 7C-7D are perspective tubular views of the endoprosthesis 600a of FIGS. 7A-7B. These views show that a first arm 667 and second arm 668 of a first compression interconnector 650a can cooperate to form a space 670a,b. As such, the flexing point 660 of the second compression interconnector 650b, which is circumferentially-adjacent to the first compression interconnector 650a, can fit within the space 670a. Moreover, the second compression interconnector 650 can likewise form a second space 670b for the next sequentially-adjacent compression interconnector 650.



FIGS. 7E-7F are planar side views that show the endoprosthesis 600a in an expanded or deployed orientation so that the annular elements 610 are extended away from each other. The adjacent annular elements 610a-610b can be separated by compression interconnectors 650, having the V-shaped configuration with the extension arm 642 (or others) in the illustrated configuration, which aid in reducing the forces applied between adjacent expanded annular elements 610. In one sense, the compression interconnectors 650 function as shock absorbing members to aid in and enable movement of adjacent expanded annular elements 610 one with another. The particular configuration of compression interconnectors 650 can allow for the annular elements to flex with respect to each other in the longitudinal, radial, and circumferential directions. In part, this can be accomplished with the V-shape configuration having at least one flexing point 660 and at least two flexible couplings 656, 658, although other configurations of the compression interconnectors 650 can also o<<achieve the desired functionality. Thus, the two couplings 656, 658 that can couple a collapsing member or shock 652 between adjacent annular elements 610a-610b can allow expanded annular elements to move freely with respect to each other.



FIGS. 7G-7H are perspective tubular views of the expanded endoprosthesis 600b of FIGS. 7E-7F. More particularly, FIG. 7G shows the endoprosthesis 600b being expanded so as to achieve the diameter of a vessel or other lumen. FIG. 7H shows a magnified view of FIG. 7G, which allows the elements of the endoprosthesis 600b to be easily viewed while in a deployed orientation.


B. Compressible Z-Shaped Interconnector


FIGS. 8A-8C provide different views of an embodiment of a collapsible endoprosthesis 700 in a delivery orientation (e.g., FIG. 8A), and a deployed orientation (e.g., FIGS. 8B-8C). The discussions related to endoprosthesis 1a can also apply to endoprosthesis 700. Accordingly, the endoprosthesis 700 can include a plurality of annular elements 710 that can have a plurality of crossbars 720 that are connected together by elbows 730. More particularly, circumferentially-adjacent crossbars 720 can be coupled at an elbow 730 that can be configured as a repeating serpentine pattern. With this configuration, crossbars 720 and elbows 730 can cooperate so as to form a structure 712, such as a repeating serpentine pattern or other structure, that allows for flexibility as the structure can expand or collapse. In the illustrated configuration, the structure 712 has a generally serpentine shape that can provides the identified flexibility to the endoprosthesis 700; however, the structure 712 can be an other configurations, such as a diamond-shape, V-shape, U-shape, W-shape, O-shape, N-shape, M-shape, Z-shape, and the like. Thus, each annular element 710 can have a series of circumferentially-interconnected flexible structures 712 that can expand or collapse under the influence of a balloon or change of temperature.


It will be understood that structure 712 can have other configurations while providing flexibility to the endoprosthesis 700. For instance, structure 712 can have a configuration similar to those described herein and in U.S. Pat. Nos. 6,602,285 and 7,128,756.


Additionally, FIG. 8A shows an endoprosthesis 700 that includes a plurality of the compression interconnectors 750 that couple adjacent annular elements 710a-710b. The compression interconnectors 750 are generally configured to include an extension arm 740 that extends a pair of coupled collapsing arms 752a-752b and the linker portion 762 from an elbow 730. As such, the extension arm 740 is coupled to the elbow 730 through an extension coupling 742, which can be flexible as in the other couplings described herein. The flexible extension coupling 742 and extension arm 740 can allow for the collapsing arms 752a-752b to freely collapse within a space between adjacent annular elements 710a-710b.



FIG. 8A is a flat planar view that shows the endoprosthesis 700a in a collapsed orientation so that the annular elements 710 are contracted toward each other for deployment. Accordingly, the adjacent annular elements 710a-710b can be pulled together by the compression interconnectors 750. In the contracted position, the compression interconnectors 750 enable the annular elements 710a-710b to flex with respect to each other in the longitudinal, and cross directions; however, the compression interconnectors 750 can inhibit the collapsed endoprosthesis 700a from flexing in the radial or circumferential directions. This allows the collapsed orientation to enable the endoprosthesis 700a to flex and bend without causing the annular elements 710 to expand or open. In part, this is because the two couplings 756, 758 of a first collapsing arm 752a and the two couplings 764, 765 of a second collapsing arm 752b allow the compression interconnectors 750 to flex independently of the annular elements 710a-710b. Thus, each group of compression interconnectors 750 can open and close independently during deployment so that the annular elements 710a-710b can move independently around tight corners without incurring undue stress.


Generally, the compression interconnectors 750 can have substantially a Z-shape configuration having at least one flexing point 760 and at least two flexible couplings 756, 758 for a first collapsing arm 752a, and at least one flexing point 759 and at least two flexible couplings 764, 765 for a second collapsing arm 752b. Preferably, the first collapsing arm 752a is oriented oppositely from the second collapsing arm 752b so that the flexing points 760, 759 point away from each other. However, other configurations of the compression interconnectors 750 can also achieve the desired functionality. The first collapsing arm 752a can be comprised of a first arm 767 and a second arm 768 that are coupled together through a flexing point 760. The first arm 767 can be coupled to the extension arm 740 through a first coupling 756, and the second arm 768 can be coupled to the second collapsing arm 752b through a second coupling 758. The second collapsing arm 752b can be comprised of a first arm 766 and a second arm 769 that are coupled together through a flexing point 759. The first arm 766 of the second collapsing arm 752b can be coupled to the first collapsing arm 752a through a first coupling 764, and the second arm 769 of the second collapsing arm 752b can be coupled to the elbow 730 of an adjacent annular element 710. More particularly, the second coupling 758 of the first collapsing arm 752a and the first coupling 764 of the second collapsing arm 752b can be coupled together through a flexible transition coupling 762.


Additionally, FIG. 8B is a planar side view that shows the endoprosthesis 700b in an expanded or deployed orientation so that the annular elements 710 are extended away from each other, while FIG. 8C is a perspective view of the tubular endoprosthesis in the expanded or deployed orientation. With continued reference to FIG. 8B, in one sense, the compression interconnectors 750 function as shock absorbing members to aid in and enable movement of adjacent expanded annular elements 710 one with another. The particular configuration of compression interconnectors 750 can allow for the annular elements to flex with respect to each other in the longitudinal, radial, and circumferential directions. In part, this can be accomplished with the serpentine shape configuration having at least a first collapsing arm 752a that includes a flexing point 760 and at least two flexible couplings 756, 758, and a second collapsing arm 752b that includes a flexing point 759 and at least two flexible couplings 764, 765. However, other configurations of the compression interconnectors 650 can also achieve the desired functionality. Thus, the Z-shaped compression interconnectors 750 between adjacent annular elements 610a-610b can allow expanded annular elements to move freely with respect to each other.


C. Offset Interconnectors


FIGS. 9A-9B are planar side views that shown an embodiment of a helical endoprosthesis 800a having an offset configuration. More particularly, FIG. 9A shows the endoprosthesis 800a in a collapsed or delivery configuration, and FIG. 9B shows a magnified view of FIG. 9A. The endoprosthesis can include longitudinally-adjacent annular elements 810a-810b that are interconnected by compression interconnectors 850. Also, the longitudinally-adjacent annular elements 810a-810b can be a continuous helical element that wraps around a central, longitudinal axis 802. Accordingly, the first annular element 810a continues to second annular element 810b by being in an offset direction 804. This can be seen with the annular elements 810 having an offset direction 804 that intersects the longitudinal axis 802 at an angle 806. Preferably, the angle 806 is not orthogonal to the longitudinal axis 802. Thus, the adjacent annular elements 810a-810b are a continuous helix that are additionally coupled through compression interconnectors 850. As such, any compression-interconnectors 850 described herein can be used with a helical endoprosthesis 800a, and the helical endoprosthesis can function as the endoprostheses 600-700 described above.


IV. Hybrid Segmented Endoprosthesis

The present invention additionally includes hybrid segmented endoprostheses that include at least two annular elements that have different configurations. The two annular elements are coupled together through a coupling so that the segmented endoprosthesis includes the functionality associated with the configuration of the first annular element as well as the functionality associated with the second annular element. Any number of different types of annular elements with unique configurations can be coupled together in order to prepare the hybrid endoprosthesis. For example, a first type of annular element may be more structurally rigid, and the second type can be more flexible so as to allow for flexion during delivery around tight junctions. The couplings can be any of the interconnectors described herein as well as bumpers or the like that are joined together.



FIGS. 10A-10C are side views illustrating embodiments of annular elements and methods of joining such annular elements into a hybrid segmented endoprosthesis 1000 in accordance with the present invention. The endoprosthesis 1000 includes a primary annular element 1004 that is coupled to a first end annular element 1002 and second end annular element 1006 via couplings 1014. As shown, the endoprosthesis 1000 can be formed from the strut elements described herein including crossbars 1020, elbows 1030, intersections 1050, and other endoprosthesis structures 1070. Additionally, the primary annular element 1004 is illustrated to have a configuration different from the first end annular element 1002 and second end annular element 1006 by having variations in line quality. Also, the primary annular element 1004 is illustrated to have a configuration different from the first end annular element 1002 and second end annular element 1006 by intersections 1050 that are different from intersections 1008 of the end annular elements 1002, 1006, and thereby having a different structure.


The primary annular element 1004 is show to have primary integrating members 1012 at each end. The first end annular element 1002 and second end annular element 1006 are shown to each have integrating members 1010 on an end adjacent to the primary integrating members 1012. The primary integrating members 1010 are shown to be coupled to the integrating members 1012 via couplings 1014.



FIG. 10A shows the primary annular element 1004 being separate from the first end annular element 1002 and the second end annular element 1006. FIG. 10B shows the endoprosthesis 1000a in the deployed and expanded orientation with the primary annular element 1004 being coupled with the first end annular element 1002 and the second end annular element 1006 via the couplings 1014. FIG. 10C shows the endoprosthesis 1000b in the delivery and collapsed orientation with the primary annular element 1004 being coupled with the first end annular element 1002 and the second end annular element 1006 via the couplings 1014.



FIGS. 11A-11C are side views illustrating embodiments of annular elements and methods of joining such annular elements into a hybrid segmented endoprosthesis in accordance with the present invention. The endoprosthesis 1100 includes a first annular element 1102 coupled to a second end annular element 1104 via couplings 1114. As shown, the endoprosthesis 1100 can be formed from the strut elements described herein including crossbars 1120, elbows 1130, intersections 1150, and other endoprosthesis structures 1170. Additionally, the first annular element 1102 is illustrated to have a configuration different from the second annular element 1104 by having variations in line quality. Also, the second annular element 1104 is illustrated to have a configuration different from the first annular element 1102 by intersections 1108 that are different from intersections 1150 of the first annular element 1102, and thereby having a different structure.


The first annular element 1102 is shown to have first integrating members 1110 at the end to be coupled to the second annular element 1104. The second annular element 1104 is shown to have second integrating members 1112 on an end adjacent to the first integrating members 1110. The first integrating members 1110 are shown to be coupled to the second integrating members 1112 via couplings 1114.



FIG. 11A shows the first annular element 1102 being separate from the second annular element 1102. FIG. 11B shows the endoprosthesis 1100a in the deployed and expanded orientation with the first end annular element 1102 being coupled to the second end annular element 1104 via the couplings 1114. FIG. 11C shows the endoprosthesis 1100b in the delivery and collapsed orientation with the first end annular element 1002 being coupled to the second end annular element 1006 via the couplings 1114.



FIGS. 12A-12C are side views illustrating embodiments of annular elements and methods of joining such annular elements into a hybrid segmented endoprosthesis in accordance with the present invention. The endoprosthesis 1200 includes a first primary annular element 1204 that is coupled to a second primary annular element 1202 and third primary annular element 1206 via couplings 1214. The three different annular elements 1202-1206 can be considered to be separate and distinct endoprostheses rather than just end pieces coupled to a primary endoprosthesis. As shown, the endoprosthesis 1200 can be formed from the strut elements described herein including crossbars 1220, elbows 1230, intersections 1250, and other endoprosthesis structures 1270. Additionally, the first primary annular element 1204 is illustrated to have a configuration different from the second primary annular element 1202 and third primary annular element 1206 by having variations in line quality. Also, the first primary annular element 1204 is illustrated to have a configuration different from the second primary annular element 1202 and third primary annular element 1206 by intersections 1208 that are different from intersections 1250 of the second primary annular element 1202 and third primary annular element 1206, and thereby having different structures.


The first primary annular element 1204 is show to have first integrating members 1212 at each end. The second primary annular element 1202 and third primary annular element 1206 are shown to each have integrating members 1210 on an end adjacent to the first integrating members 1012. The first integrating members 1212 are shown to be coupled to the integrating members 1210 of the second primary annular element 1202 and third primary annular element 1206 via couplings 1214.



FIG. 12A shows the first primary annular element 1204 being separate from the second primary annular element 1202 and the third primary annular element 1206. FIG. 12B shows the endoprosthesis 1200a in the deployed and expanded orientation with the first primary annular element 1204 being coupled with the second primary annular element 1202 and the third primary annular element 1206 via the couplings 1214. FIG. 12C shows the endoprosthesis 1200b in the delivery and collapsed orientation with the first primary annular element 1204 being coupled with the second primary annular element 1202 and the third primary annular element 1206 via the couplings 1214.



FIGS. 13A-13B are side views illustrating embodiments of annular elements and methods of joining such annular elements into a hybrid segmented endoprosthesis 1300 in accordance with the present invention. FIG. 13A is a close-up view showing two annular elements 1302a and 1302b. FIG. 13B shows an example of an endoprosthesis 1300 formed from a plurality of annular elements 1302a-1302k.


The endoprosthesis 1300 is formed by joining a plurality of annular elements 1302. In the example depicted in FIGS. 13A and 13B, a first annular element 1302a is coupled to a second annular element 1302b a plurality of couplings 1314. As shown, the endoprosthesis 1300 can be formed from annular elements that include the strut elements crossbars 1320 and elbows 1330. In the depicted embodiment, the annular elements 1302 are shown to have the same configuration. One will appreciate based on the discussion presented herein that the annular elements 1302 can have a number of different configurations depending on the application for which the endoprosthesis 1300 is designed. Further, adjacent annular elements may be the same or different.


The annular elements 1302 are shown to have a plurality of first integrating members 1310 and a plurality of second integrating members 1312. In the depicted embodiment, the endoprosthesis 1300 is formed by overlaying the second integrating members 1312 over the first integrating members 1310 and welding or bonding the first and second integrating members 1310 and 1312 together to form the plurality of couplings 1314.


With respect to FIG. 13A, integrating elements 1310 and 1312 can be configured in a number of ways as shown in FIGS. 14A-16G, as well as others. With respect to FIG. 14A, FIGS. 14B and 14C depict alternate views of an overlay joinery element. In the embodiment depicted in FIGS. 14B and 14C, integrating elements 1310a and 1312a and annular elements 1302a and 1302b can have essentially uniform thickness. Integrating elements 1310a and 1312a are overlaid and bonded together to form a coupling 1314a.



FIG. 14C depicts a side view of the coupling 1314a. Coupling 1314a produces a joint having a stepped appearance on the inside and outside of the endoprosthesis where integrating elements 1310a and 1312a are overlaid and welded or otherwise bonded together. Such a configuration presents advantages in that additional machining or cutting are not required in order to form the coupling 1314a. In addition, a simple lap joint like 1314a allows for flexibility in terms of alignment between adjacent annular elements (e.g., 1302a and 1302b).



FIGS. 14D and 14E depict alternate views of a finger joinery element having complementary female and male integrating members (1310b and 1312b, respectively) for forming an endoprosthesis 1300a. In the embodiment depicted in FIGS. 14D and 14E, integrating elements 1310a and 1312a and annular elements 1302a and 1302b can have essentially uniform thickness. In order to form coupling 1314b, integrating element 1312b is inserted into a complementary notch 1310b formed in annular element 1302a and the integrating elements are bonded together using welding or another bonding method or technique to form a coupling 1314b.



FIG. 14E depicts a side view of the coupling 1314b. Coupling 1314b produces a joint that has a generally smooth interior and exterior surface that can be used to form an endoprosthesis having generally smooth interior and exterior surfaces. Such a configuration presents advantages in that, for example, the couplings do not present protrusions from the interior or exterior surfaces that may either injure a patient's vasculature or affect blood flow.



FIGS. 14F and 14G depict alternate views of another design of a finger joinery element for forming an endoprosthesis 1300a. In the preceding embodiments the integrating elements and the annular elements generally are of uniform thickness. In the embodiment depicted in FIGS. 14F and 14G, however, integrating elements 1310c and 1312c have a thickness that is about half of the thickness of the body of annular elements 1302a and 1302b. A notch 1311 is formed in integrating element 1310c that forms a cavity in integrating element 1310c. When joined, integrating elements 1310c and 1312c are bonded together using welding or another bonding method to form a coupling 1314c.



FIG. 14G depicts a side view of the coupling 1314c. Coupling 1314c results in a generally smooth transition between adjacent annular elements (e.g., 1302a and 1302b) and produces a joint having generally smooth interior and exterior surfaces that can be used to form an endoprosthesis having generally smooth interior and exterior surfaces. Such a configuration presents advantages in that, for example, the couplings do not present protrusions from the interior or exterior surfaces that may either injure a patient's vasculature or affect blood flow.



FIGS. 15A-15G depict a number of additional alternative integrating element configurations. The integrating elements described in FIGS. 15A-15G are similar in many respects to the integrating elements described in FIGS. 14A-14G. FIGS. 15B and 15C describe an alternative design of an overlay joinery element in which one integrating member 1320a has a substantially flat surface that is designed to accommodate a second integrating member 1322a having multiple prongs or extensions. For instance, integrating member 1322a may have a fork shape. In the embodiment depicted in FIGS. 15B and 15C, integrating elements 1320a and 1322a and annular elements 1302a and 1302b can have a generally uniform thickness. As mentioned above, integrating element 1322a may be laid over integrating element 1320a and bonded together to form a coupling 1316a. The substantial contact area afforded by the first integrating member having a substantially flat surface 1320a and the second integrating member having multiple prongs or extensions 1322a may result in a stronger joint when the integrating elements are welded or otherwise bonded together.



FIG. 15C depicts a side view of the coupling 1316a. Coupling 1316a produces a joint having a stepped appearance on the inside and outside of the endoprosthesis. Such a configuration presents advantages in that additional machining or cutting are not required in order to form the coupling 1316a. In addition, a simple lap joint like 1316a allows for flexibility in terms of alignment between adjacent annular elements (e.g., 1302a and 1302b).



FIGS. 15D and 15E depict alternate views of another design of a joinery element having complementary female and male integrating members (1320b and 1322b). For instance, integrating element 1320b can be configured to have multiple recesses to accommodate multiple prongs or extensions formed on the complementary integrating element 1322b. In the embodiment depicted in FIGS. 15D and 15E, integrating elements 1320a and 1322a and annular elements 1302a and 1302b can have generally uniform thickness. In order to form coupling 1316b, integrating element 1322b may be inserted into integrating element 1320b formed in annular element 1302a. The integrating elements may then be bonded together using welding or another bonding method or technique to form a coupling 1316b. As with integrating elements 1320a and 1322a, the coupling described in FIGS. 15D and 15E results in greater contact area, which may result in a stronger joint.



FIG. 15E depicts a side view of the coupling 1316b. Coupling 1316b produces a joint that has a smooth interior and exterior surface that can be used to form an endoprosthesis having smooth interior and exterior surfaces. Such a configuration presents advantages in that, for example, the couplings do not present protrusions from the interior or exterior surfaces that may either injure a patient's vasculature or affect blood flow.



FIGS. 15F and 15G depict alternate views of another design of a finger joinery element for forming an endoprosthesis 1300a. In the preceding embodiments the integrating elements and the annular elements generally are of uniform thickness. In the embodiment depicted in FIGS. 15F and 15G, however, integrating elements 1320c and 1322c can have a thickness that may be about half of the thickness of the body of annular elements 1302a and 1302b. Integrating element 1320c can be configured to have multiple recesses to accommodate multiple prongs or extensions formed on the complementary integrating element 1322c. A notch 1321 is formed in integrating element 1320c that forms a cavity in integrating element 1320c that is configured to accommodate the prongs or extensions of integrating element 1322c. When joined, integrating elements 1320c and 1322c are bonded together using welding or another bonding method or technique to form a coupling 1316c having relatively greater contact area and a stronger coupling.



FIG. 15G depicts a side view of the coupling 1316c. Coupling 1316c results in a generally smooth transition between adjacent annular elements (e.g., 1302a and 1302b) and produces a joint having generally smooth interior and exterior surfaces that can be used to form an endoprosthesis having generally smooth interior and exterior surfaces. Such a configuration presents advantages in that, for example, the couplings do not present protrusions from the interior or exterior surfaces that may either injure a patient's vasculature or affect blood flow.



FIGS. 16A-16E depict a number of additional alternative integrating element configurations for forming a coupling between adjacent annular elements. The integrating elements described in FIGS. 16A-16E are similar in many respects to the integrating elements described in FIGS. 14A-14G and FIGS. 15A-15G. FIGS. 16B and 16C describe a coupling having complementary female and male integrating members (i.e., 1324a and 1326a). Integrating element 1324a can be configured to have a semi-annular recess designed to accommodate an extension formed on the complementary integrating element 1326a. In the embodiment described in FIGS. 16B and 16C, integrating elements 1324a and 1326a and annular elements 1302a and 1302b can have generally uniform thickness. In order to form coupling 1318a, integrating element 1326a is inserted into the semi-annular recess formed in integrating element 1324a. The integrating elements can then be bonded together using welding or another bonding method technique to form a coupling 1318b. As with integrating elements 1324a and 1326a, the coupling described in FIGS. 16B and 16C results in greater contact area, which may result in a stronger joint. Coupling 1318a may present an additional safety feature in that integrating element 1326a cannot be pulled directly out of integrating element 1324a because integrating element 1324a partially surrounds integrating element 1326a. As a result, an endoprosthesis manufactured with integrating elements 1324a and 1326a is not likely to come apart and fail even if the weld or other bond between the integrating elements fails.



FIG. 16C depicts a side view of the coupling 1318a. Coupling 1318a produces a joint that has a generally smooth interior and exterior surface that can be used to form an endoprosthesis having generally smooth interior and exterior surfaces. Such a configuration presents advantages in that, for example, the couplings do not present protrusions from the interior or exterior surfaces that may either injure a patient's vasculature or affect blood flow.



FIGS. 16D and 16E depict alternate views of another design of a finger joinery element for forming an endoprosthesis 1300c. Integrating element 1324b can be configured to have a semi-annular recess designed to accommodate an extension formed on the complementary integrating element 1326b. In the preceding embodiments the integrating elements and the annular elements generally are of uniform thickness. In the embodiment depicted in FIGS. 16D and 16D, however, integrating elements 1324b and 1326b can have a thickness that is about half of the thickness of the body of annular elements 1302a and 1302b. A notch 1325 is formed in the semi-annular recess of integrating element 1324b that forms a cavity in integrating element 1324b. When joined, integrating elements 1324b and 1326b are bonded together using welding or another bonding method or technique to form a coupling 1318b having a relatively greater contact area and a stronger coupling. As in the previous examples, such a coupling (i.e., 1318b) may present an additional safety feature in that integrating element 1326b cannot be pulled directly out of integrating element 1324b because the semi-annular ring of integrating element 1324b partially surrounds integrating element 1326b. As a result, an endoprosthesis manufactured with integrating elements 1324b and 1326b is not likely to come apart and fail even if the weld or other bond between the integrating elements fails.



FIG. 16G depicts a side view of the coupling 1318b. Coupling 1318b results in a generally smooth transition between adjacent annular elements (e.g., 1302a and 1302b) and produces a joint having generally smooth interior and exterior surfaces that can be used to form an endoprosthesis having generally smooth interior and exterior surfaces. Such a configuration presents advantages in that, for example, the couplings do not present protrusions from the interior or exterior surfaces that can either injure a patient's vasculature or affect blood flow.


Couplings 1314-1314c, 1316-1316c, and 1318-1318b may be advantageously employed to assemble a modular endoprosthesis. For example, coupling 1316a described in FIGS. 14A and 14B can be used to assemble an endoprosthesis having annular rings (e.g., 1302a-1302k) with different configurations such as material composition, length, diameter, wall thickness, flexibility, shape, structure, drug loading, drug type, shape memory, austenite finish temperature, radial force, or strut elements, and combinations thereof. In addition, couplings 1314-1314c, 1316-1316c, and 1318-1318b may be advantageously employed to assemble endoprostheses that are longer than is practical using standard manufacturing techniques. For example, it is known that forming long stents out of a single piece of tubular material by laser cutting can be expensive and inefficient because a single defect requires scrapping the entire endoprosthesis. In contrast, forming a modular endoprosthesis from multiple annular elements by joining integrating members together by welding or bonding facilitates forming endoprostheses having essentially limitless length by virtue of the fact that a defect in a single annular element necessitates discarding only the defective annular element.


In one configuration, the hybrid segmented endoprosthesis can include an interconnector that couples first annular element having a first configuration to the second annular element having a second configuration that is different from the first configuration. The interconnector can reduce stress and forces propagating between adjacent positions of the endoprosthesis. The interconnector can flex so that the different annular elements can move relative to one another and facilitate delivery to and placement within a body lumen. Further, the interconnector can enable the endoprosthesis to flex during movement of the body lumen following deployment.


In another configuration, the hybrid segmented endoprosthesis can include a first annular element having a first configuration flexibly-resiliently coupled to a second annular element having a second configuration by first and second flexibly-resilient interconnectors. The first annular element can have a first end that includes both a first strut element and a second strut element, while the second annular element can have a second end that is adjacent to the first end of the first annular element. Adjacent to the third strut element can be the first stent element and the second strut element can be adjacent to the fourth strut element. The first flexibly-resilient interconnector can be coupled to the first strut element and the third strut element, and the second flexibly-resilient interconnector can be coupled to the second strut element and the fourth strut element. Additionally, the first and second interconnectors can be positioned on the endoprosthesis so that when the endoprosthesis bends in a first direction the first interconnector collapses and the second interconnector expands, or vice versa.


In another configuration, a flexible, segmented endoprosthesis can include a first annular element adjacent to a different type of second annular element. A plurality of shock absorbing members or structures each having a first end and a second end can be disposed between the first and second annular elements. The first end can be coupled to the first annular element and the second end can be coupled to the second annular element.


In another configuration, a decouplable segmented endoprosthesis can include a first annular element with a first configuration and having a plurality of first decouplable interconnectors at a first end and a second annular element with a second configuration having a plurality of second decouplable interconnectors at a second end. At least one of the plurality of second decouplable interconnectors can be releasably coupled with at least one of the plurality of first decouplable interconnectors when the segmented endoprosthesis is in a delivery orientation. Additionally, when in the delivery configuration the decouplable interconnectors can be configured to transmit axial loads while preventing one segment to move independent of another.


In another configuration, a decouplable segmented endoprosthesis can include a plurality of sub-endoprostheses having different configurations being releasably coupled together when the segmented endoprosthesis is in a delivery orientation. Each of the plurality of sub-endoprostheses can decouple from adjacent sub-endoprostheses when the endoprosthesis is expanded into a deployed orientation. Accordingly, the endoprosthesis can include a first sub-endoprosthesis that can include at least a first decouplable interconnector and a second sub-endoprosthesis that can include at least a second decouplable interconnector that interlocks with the at least a first decouplable interconnector when the endoprosthesis is in the delivery orientation.


In another configuration, a segmented endoprosthesis can include a series of longitudinally-adjacent sub-endoprostheses that have different configurations. As such, the segmented sub-endoprosthesis can include a first annular element with a first configuration that can have a plurality of first bumpers at a first end and a second annular element with a second configuration that can have a plurality of second bumpers at a second end. At least one of the plurality of second bumpers can abut with at least one of the plurality of first bumpers when the segmented endoprosthesis is in a delivery orientation.


In another configuration, a series of substantially different sub-endoprostheses can each have bumpers that separate each other and form a segmented endoprosthesis. Each sub-endoprosthesis can be in contact with longitudinally-adjacent sub-endoprostheses when the segmented endoprosthesis is in a delivery orientation. Also, each of the plurality of sub-endoprostheses can separate from the longitudinally-adjacent sub-endoprostheses when the endoprosthesis is expanded into a deployed orientation. The segmented endoprosthesis can include a first sub-endoprosthesis that can include at least a first bumper, and a second sub-endoprosthesis that can include at least a second bumper that abuts and contacts the first bumper when the endoprosthesis is in the delivery orientation.


V. Endoprosthetic Composition

The hybrid segmented endoprostheses of the present invention can be made of a variety of materials, such as, but not limited to, those materials which are well known in the art of endoprosthesis manufacturing. This can include, but not limited to, an endoprosthesis having a primary material for at least one of the annular elements and/or interconnectors. Alternatively, at least two of the annular elements and/or interconnectors can be made of different materials. Generally, the materials for the endoprosthesis can be selected according to the structural performance and biological configurations that are desired.


In one configuration, the interconnectors and/or the annular elements have multiple layers, with at least one layer being applied to a primary material forming the annular elements. As such, at least one annular element can have multiple layers that are different from at least one other annular element. The multiple layers on the interconnectors and/or the annular elements can be resiliently flexible materials or rigid and inflexible materials. For example, materials such as Ti3Al2.5V (also referred to as 3-2.5Ti), Ti6Al4V (also referred to as 6-4Ti), Ti6Al7Nb, Ti6AlV, and platinum may be particularly good choices for adhering to a flexible material, such as, but not limited to, Nitinol and providing good crack arresting properties. The use of resiliently flexible materials can provide shock-absorbing characteristics to the structures, decouplable interconnectors, and/or bumpers, which can also be beneficial for absorbing stress and strains, which may inhibit crack formation at high stress zones. Also, the multiple layers can be useful for applying radiopaque materials to selected annular elements, such as end annular elements to provide different configurations. For example, types of materials that are used to make an endoprosthesis can be selected so that the endoprosthesis is capable of being collapsed during placement and expanded when deployed. Usually, the endoprosthesis can be self-expanding, balloon-expandable, or can use some other well-known configuration for deployment. For purposes of illustration and not limitation, reference is made generally to self-expanding embodiments and balloon-expandable embodiments of the endoprosthesis of the present invention; however, other types of endoprostheses can be configured in accordance with the present invention.


Embodiments of the annular elements or sub-endoprostheses can include a material made from any of a variety of known suitable materials, such as a shaped memory material (“SMM”). For example, the SMM can be shaped in a manner that allows for restriction to induce a substantially tubular, linear orientation while within a delivery shaft, but can automatically retain the memory shape of the endoprosthesis once extended from the delivery shaft. SMMs have a shape memory effect in which they can be made to remember a particular shape. Once a shape has been remembered, the SMM may be bent out of shape or deformed and then returned to its original shape by unloading from strain or heating. Typically, SMMs can be shape memory alloys (“SMA”) comprised of metal alloys, or shape memory plastics (“SMP”) comprised of polymers. The materials can also be referred to as being superelastic.


Usually, an SMA can have any non-characteristic initial shape that can then be configured into a memory shape by heating the SMA and conforming the SMA into the desired memory shape. After the SMA is cooled, the desired memory shape can be retained. This allows for the SMA to be bent, straightened, compacted, and placed into various contortions by the application of requisite forces; however, after the forces are released, the SMA can be capable of returning to the memory shape. The main types of SMAs are as follows: copper-zinc-aluminium; copper-aluminium-nickel; and nickel-titanium (“NiTi”) alloys known as nitinol. Cobalt-chromium-nickel alloys and cobalt-chromium-nickel-molybdenum alloys (known as elgiloy alloys) are similar to SMAs in that they have a high modulus of elasticity and they can be used in many similar applications. However, unlike SMAs, cobalt-chromium-nickel alloys and cobalt-chromium-nickel-molybdenum can be permanently deformed without the application of heat by exceeding the modulus of elasticity. The temperatures at which SMAs and similar alloys change their crystallographic structure are characteristic of the alloy, and can be tuned by varying the elemental ratios or by the conditions of manufacture.


Shape memory materials are characterized by their austenite and martensite states. The transformation between austenite and martensite is reversible but the temperature at which it occurs is different whether the shape memory alloy is being cooled or heated. This difference is referred to as the hysteresis cycle. This cycle is characterized by four different temperatures: As (Austenite Start), Af (Austenite Finish), Ms (Martensite Start), and Mf (Martensite Finish). A martensitic shape memory alloy will begin to transform to austenite when its temperature reaches As and will be fully austenitic when the temperature reaches Af. Upon cooling from a high temperature, martensite will start to appear when the temperature reaches Ms and the transformation will be complete when the temperature drops below Mf. A number of parameters including alloy composition and thermo-mechanical history can affect the transformation temperatures and can be adjusted for specific applications.


Shape memory materials possess unique characteristics that are particularly useful in endoprosthetic applications. If a piece of a shape memory alloy, such as nitinol, is mechanically stretched, compressed, bent, or twisted in its martensitic phase, it will return to its original configuration upon heating. Typically, the shape of the shape memory alloy is set to by deforming an austenitic material at high temperature, cooling the material to a martensitic state. When the material is again heated above the Af temperature, the material will return to the shape it had when it was deformed in the austenitic state.


In one embodiment, at least one annular ring used to fabricate a segmented endoprosthesis is heat set to its final diameter and selectively configured to have a particular Af temperature. Preferably, the Af temperature is a temperature in a range from about 5° C. to about 45° C., more preferably, the Af temperature is a temperature in a range from about 20° C. to about 40° C., most preferably, the Af temperature is a temperature in a range from about 25° C. to about 35° C. An endoprosthesis fabricated from a plurality of annular rings where at least one ring is characterized by having an austenitic finish temperature from about 5° C. to about 45° C. would be capable of self-expanding to a particular diameter when in installed in a body lumen. Additional discussion of the use of austenitic and martensitic shape memory materials can be found in U.S. patent application Ser. No. 11/748,214, filed May 14, 2007, entitled “FATIGUE RESISTANT ENDOPROSTHESES” to Shrivastava et al., the entirety of which is incorporated herein by reference.


For example, the primary material of an endoprosthesis can be of a NiTi alloy that forms superelastic nitinol. In the present case, nitinol materials can be trained to remember a certain shape, straightened in a shaft, catheter, or other tube, and then released from the catheter or tube to return to its trained shape. Also, additional materials can be added to the nitinol depending on the desired configuration.


An SMP is a shape-shifting plastic that can be fashioned into an endoprosthesis in accordance with the present invention. Also, it can be beneficial to include at least one layer of an SMA and at least one layer of an SMP to form a multilayered body; however, any appropriate combination of materials can be used to form a multilayered endoprosthesis. When an SMP encounters a temperature above the lowest melting point of the individual polymers, the blend makes a transition to a rubbery state. The elastic modulus can change more than two orders of magnitude across the transition temperature (“Ttr”). As such, an SMP can formed into a desired shape of an endoprosthesis by heating it above the Ttr, fixing the SMP into the new shape, and cooling the material below Ttr. The SMP can then be arranged into a temporary shape by force, and then resume the memory shape once the force has been applied. Examples of SMPs include, but are not limited to, biodegradable polymers, such as oligo(ε-caprolactone)diol, oligo(ρ-dioxanone)diol, and non-biodegradable polymers such as, polynorborene, polyisoprene, styrene butadiene, polyurethane-based materials, vinyl acetate-polyester-based compounds, and others yet to be determined. As such, any SMP can be used in accordance with the present invention.


An annular element or sub-endoprosthesis having at least one layer made of an SMM or suitable superelastic material and other suitable layers can be compressed or restrained in its delivery configuration within a delivery device using a sheath or similar restraint, and then deployed to its desired configuration at a deployment site by removal of the restraint as is known in the art. An annular element or sub-endoprosthesis made of a thermally-sensitive material can be deployed by exposure of the endoprosthesis to a sufficient temperature to facilitate expansion as is known in the art.


Also, annular elements or sub-endoprostheses can be comprised of a variety of known suitable deformable materials, including stainless steel, silver, platinum, tantalum, palladium, cobalt-chromium alloys or other known biocompatible materials. Such materials can include a suitable biocompatible polymer in addition to or in place of a suitable metal. The polymeric endoprosthesis can include biodegradable or bioabsorbable materials, which can be either plastically deformable or capable of being set in the deployed configuration. If plastically deformable, the material can be selected to allow the endoprosthesis to be expanded in a similar manner using an expandable member so as to have sufficient radial strength and scaffolding and also to minimize recoil once expanded. If the polymer is to be set in the deployed configuration, the expandable member can be provided with a heat source or infusion ports to provide the required catalyst to set or cure the polymer.


For example, one layer can be a coating that is applied over the entire hybrid segmented endoprosthesis, or to select portions. The select portions can include the layer of polymer being applied over the integrating members of adjacent annular elements in order to form a coupling in the form of a sleeve.


Examples of such biocompatible materials can include a suitable hydrogel, hydrophilic polymer, biodegradable polymers, bioabsorbable polymers. Examples of such polymers can include nylons, poly(alpha-hydroxy esters), polylactic acids, polylactides, poly-L-lactide, poly-DL-lactide, poly-L-lactide-co-DL-lactide, polyglycolic acids, polyglycolide, polylactic-co-glycolic acids, polyglycolide-co-lactide, polyglycolide-co-DL-lactide, polyglycolide-co-L-lactide, polyanhydrides, polyanhydride-co-imides, polyesters, polyorthoesters, polycaprolactones, polyesters, polyanydrides, polyphosphazenes, polyester amides, polyester urethanes, polycarbonates, polytrimethylene carbonates, polyglycolide-co-trimethylene carbonates, poly(PBA-carbonates), polyfumarates, polypropylene fumarate, poly(p-dioxanone), polyhydroxyalkanoates, polyamino acids, poly-L-tyrosines, poly(beta-hydroxybutyrate), polyhydroxybutyrate-hydroxyvaleric acids, combinations thereof, or the like.


Furthermore, the endoprosthesis can be formed from a ceramic material. In one aspect, the ceramic can be a biocompatible ceramic which optionally can be porous. Examples of suitable ceramic materials include hydroxylapatite, mullite, crystalline oxides, non-crystalline oxides, carbides, nitrides, silicides, borides, phosphides, sulfides, tellurides, selenides, aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, alumina-zirconia, silicon carbide, titanium carbide, titanium boride, aluminum nitride, silicon nitride, ferrites, iron sulfide, and the like. Optionally, the ceramic can be provided as sinterable particles that are sintered into the shape of an endoprosthesis or layer thereof.


Moreover, the endoprosthesis can include a radiopaque material to increase visibility during placement. Optionally, the radiopaque material can be a layer or coating any portion of the endoprosthesis. The radiopaque materials can be platinum, tungsten, silver, stainless steel, gold, tantalum, bismuth, barium sulfate, or a similar material.


It is further contemplated that the external surface and/or internal surface of the endoprosthesis (e.g., exterior and luminal surfaces) can be coated with another material having a composition different from the primary endoprosthetic material. The use of a different material to coat the surfaces can be beneficial for imparting additional properties to the endoprosthesis, such as providing radiopaque characteristics, drug-reservoirs, and improved biocompatibility.


A. Biodegradable Coating Layers

In one configuration, the external and/or internal surfaces of an endoprosthesis can be coated with a biocompatible material. Such coatings can include hydrogels, hydrophilic and/or hydrophobic compounds, and polypeptides, proteins or amino acids or the like. Specific examples can include polyethylene glycols, polyvinylpyrrolidone (“PVP”), polyvinylalcohol (“PVA”), parylene, heparin, phosphorylcholine, or the like. A preferred coating material can include phosphorylcholine, as disclosed in U.S. Pat. No. 6,015,815, issued Jan. 18, 2000, and entitled “TETRAZOL-CONTAINING RAPAMYCIN ANALOGS WITH SHORTENED HALF-LIVES”, the entirety of which is herein incorporated by reference.


The coatings can also be provided on the endoprosthesis to facilitate the loading or delivery of beneficial agents or drugs, such as therapeutic agents, pharmaceuticals and radiation therapies. As such, the endoprosthetic material and/or holes can be filled and/or coated with a biodegradable material.


Accordingly, the biodegradable material can contain a drug or beneficial agent to improve the use of the endoprosthesis. Such drugs or beneficial agents can include antithrombotics, anticoagulants, antiplatelet agents, thrombolytics, antiproliferatives, anti-inflammatories, agents that inhibit hyperplasia, inhibitors of smooth muscle proliferation, antibiotics, growth factor inhibitors, or cell adhesion inhibitors, as well as antineoplastics, antimitotics, antifibrins, antioxidants, agents that promote endothelial cell recovery, antiallergic substances, radiopaque agents, viral vectors having beneficial genes, genes, siRNA, antisense compounds, oligionucleotides, cell permeation enhancers, and combinations thereof. Another example of a suitable beneficial agent is described in U.S. Pat. No. 6,015,815, issued Jan. 18, 2000, and entitled “TETRAZOLE-CONTAINING RAPAMYCIN ANALOGS WITH SHORTENED HALF-LIVES” and U.S. Pat. No. 6,329,386, issued Dec. 11, 2001, and entitled “TETRAZOLE-CONTAINING RAPAMYCIN ANALOGS WITH SHORTENED HALF-LIVES,” the entireties of which are herein incorporated by reference


In one configuration, the external surfaces of an endoprosthesis can include a coating comprised of polytetrafluorethylene (“PTFE”), expanded PTFE (“ePTFE”), Dacron, woven materials, cut filaments, porous membranes, harvested vessels and/or arteries, or others such materials to form a stent graft prosthesis. Similarly, a medical device, such as a valve, a flow regulator or monitor device, can be used with the endoprosthesis, such that the endoprosthesis functions as an anchor for the medical device within the body lumen.


In one configuration, different external surfaces of an endoprosthesis, such as a low stress zone less susceptible to flexing, can be coated with functional layers of an imaging compound or radiopaque material. The radiopaque material can be applied as a layer at low stress zones of the endoprosthesis. Also, the radiopaque material can be encapsulated within a biocompatible or biodegradable polymer and used as a coating. For example, the suitable radiopaque material can be palladium platinum, tungsten, silver, stainless steel, gold, tantalum, bismuth, barium sulfate, or a similar material. The radiopaque material can be applied as layers on selected surfaces of the endoprosthesis using any of a variety of well-known techniques, including cladding, bonding, adhesion, fusion, deposition or the like.


Also, the biodegradable coating can be applied to the interconnectors and/or integrating members of adjacent annular elements so as to form a coupling in the form of a sleeve.


B. Degradable Interconnectors

In one configuration, the interconnectors and/or other stent elements of the endoprosthesis can be degradable. For instance, all or a portion of the interconnector (e.g., coupling between different types of annular elements) can be degraded after deployment by being biodegradable or energy-degradable. More generally, one or more portions of the endoprosthesis can be degraded after development by being biodegradable or energy-degradable. The biodegradable portions can be prepared from any of the biodegradable materials described herein as well as others.


A portion of the endoprosthesis, such as, but not limited to, an interconnector, can be energy degradable by responding to light, RF, vibrational, or ultrasonic energy. As such, application of light, RF, vibrational, or ultrasonic energy to the particular portion of endoprosthesis can cause it to break. Alternatively, the portion of the endoprosthesis can include a material that undergoes a physical transition under light, which can have a specific or range of wavelengths, so that it more easily breaks and degrades under RF, vibrational, or ultrasonic energy. The energy can be applied to the energy degradable material after deployment via a catheter, such as the delivery catheter that delivers the endoprosthesis. In any event, any other type of interconnector between annular elements can be fabricated of such an energy degradable material.


For example, a portion of the endoprosthesis, such as an interconnector, can be fabricated of a material that is flexible during deployment and becomes brittle in response to application of a selected wavelength or range of wavelengths of electromagnetic radiation. As such, the energy can be applied to the endoprosthesis after deployment. Ultrasonic energy, such as that used in ultrasounds, can then be used to degrade the degradable portion of the endoprosthesis. This can be beneficial for removing, for instance, the interconnector after deployment, which may help reduce inflammation and provide increased flexibility to the endoprosthesis. Advantageously, this can be used with an endoprosthesis or endoprosthetic system that includes an embolic filter.


C. Matrix with Crack-Inhibiting Features


In addition to the foregoing compositions that can be used in different annular elements or sub-endoprostheses of the hybrid segmented endoprosthesis, a crack-inhibiting feature can be included within the matrix of the different segments of the endoprosthesis. Exemplary crack-inhibiting features can include holes, fibers, particles, and bodies having multiple layers, such as planar layers or concentric layers. As such, any of the foregoing compositions can be impregnated and/or encapsulated with a suitable fibrous or particulate material. Also, an endoprosthesis can be prepared to include a plurality of holes that extend through the endoprosthetic body. Moreover, the endoprosthetic body can have multiple layers separated by junctions or boundaries that inhibit crack propagation. Additional information regarding fibers being dispersed through a matrix of a layer can be found in U.S. patent application Ser. No. 11/375,380, filed Mar. 13, 2006, and entitled “CRACK/FATIGUE RESISTANT ENDOPROSTHESIS”, and additional information on multilayered endoprosthetic bodies can be found in U.S. patent application Ser. No. 11/375,381, filed Mar. 13, 2006, and entitled “MULTILAYERED ENDOPROSTHESIS, each of which are hereby incorporated by reference in its entirety.


For example, different annular elements or sub-endoprostheses of a hybrid segmented endoprosthesis can have different crack-inhibiting features.


V. Method of Making Endoprostheses

Various different manufacturing techniques are well known and may be used for fabrication of the segmented endoprosthesis of the present invention. Such manufacturing techniques can be employed to make the different annular elements or sub-endoprotheses of the hybrid segmented endoprosthesis. For example, the different annular elements or sub-endoprotheses can be formed from a hollow tube using a known technique, such as laser cutting, EDM, milling, chemical etching, hydro-cutting, and the like. Also, the different annular elements or sub-endoprotheses can be prepared to include multiple layers or coatings deposited through a cladding process such as vapor deposition, electroplating, spraying, or similar processes. Also, various other processes can be used such as those described below and or others known to those skilled in the art in light of the teaching contained herein.


Optionally, the different annular elements or sub-endoprotheses can be fabricated from a sheet of suitable material, where the sheet is rolled or bent about a longitudinal axis into the desired tubular shape. Additionally, either before or after being rolled into a tube, the material can be shaped to include endoprosthetic elements by being shaped with well-known techniques such as laser-cutting, milling, etching or the like. If desired, the lateral edges of the structure can be joined together, such as by welding or bonding, to form a closed tubular structure, or the lateral edges can remain unattached to form a coiled, rolled sheet or open tubular structure. Such fabrication techniques are described in more detail below and known to those skilled in the art.


A. Sintering

A method of making different annular elements or sub-endoprotheses in accordance with the present invention can include sintering sinterable particles to provide a sintered article having the shape of the endoprosthesis. The sintering can be conducted in molds that are in the shape of an endoprosthesis.


In one configuration, the sintered body can be obtained from a molded green body prepared by molding a mixture of sinterable particles with or without a binder into the shape of different annular elements or sub-endoprotheses or body intermediate. Sintering a molded green body that has the shape of different annular elements or sub-endoprotheses can provide a sintered body that can function as an endoprosthesis with no or minimal further processing. Alternatively, after the green body has been formed in the mold and sintered into a hardened endoprosthesis, the process can include shaping the sintered body with a stream of energy and/or matter in order to obtain a desired shape. Thus, sintering a green body in a mold can result in an endoprosthesis that is either ready for use, or requires additional processing or finishing.


Additionally, the sintered body can be shaped into an endoprosthesis as described herein. Also, the endoprosthesis can be further processed after sintering and/or shaping such as by grinding, sanding, or the like to provide enhanced surface characteristics.


B. Drawing Concentric Tubes

In one configuration, a multilayered annular elements or sub-endoprotheses in accordance with the present invention can be prepared by a drawing process that draws two or more distinct concentric tubes into a single tube having two or more layers. Additionally, such a drawing process can combine multiple concentric tubes into a single multilayered tube. The drawing process can be configured to produce junctions separating adjacent layers or bonds that bond adjacent layers. As such, the sequentially-adjacent concentric tubes can be drawn together and progressively reduced in a cross-sectional profile until the desired size and residual clamping stress is attained.


Accordingly, a metallurgical bond can be prepared with elements of each sequentially-concentric tube diffusing together and bonding so as to form a strong metallurgical bond. Such a metallurgical bond can be achieved by applying significant pressure and heat to the tubes. As such, a metallurgical bond can form a diffusion layer at the interface between sequentially-adjacent concentric tubes (i.e., layers). The characteristics of these diffusion layers can be controlled by the proper heat treatment cycle. In part, this is because the heat treatment, temperature, and time of processing can control the rates of transfer of the diffusing elements that produce the diffusion layers. Also, the pressure at the interface between layers can be developed so as to result in the residual radial clamping stress in the tube after drawing. A similar process can be used in order to couple the adjacent different annular elements or sub-endoprotheses together to form the hybrid segmented endoprosthesis.


In one example of this process, an outer tube of nitinol, a middle tube of tantalum, and an inner tube of Nitinol can be arranged to form the composite structure. The multilayered material can be produced to result in bonding between the layers to achieve a residual clamping stress of at least about 50 p.s.i. Accordingly, the annealing process can be performed within a limited range of time and temperatures. For example, the lower limit can be at least about 1550° F. for at least six minutes, and the upper limit can be less than about 1850° F. for less than 15 minutes. A similar process can be used in order to couple the adjacent different annular elements or sub-endoprotheses together to form the hybrid segmented endoprosthesis.


In another configuration, a metallic interleaf layer can be placed between separate tubes so as to bond the tubes together and form a multilayered material. The multiple tubes separated by the metallic interleaf layer can be drawn together and progressively reduced until the desired cross-sectional profile and residual clamping stress is attained, as described above. The drawn tubes can be heat-treated to form a diffusion bond between the separate layers. As such, the metallic interleaf layer can enhance the diffusion rate or type of diffusing atoms that are transported across a diffusion region between one layer and the interleaf layer. A similar process can be used in order to couple the adjacent different annular elements or sub-endoprotheses together to form the hybrid segmented endoprosthesis.


In one configuration, a multilayered sheet can be prepared to have separate layers of different materials or the same material. For example, the multilayered sheet can have a top layer of nitinol, a middle layer of tantalum, and a bottom layer of Nitinol. The sheet can be prepared by metallurgically bonding the layers prior to a deep drawing process, which is well known in the art. During the deep drawing process, the sheet can be placed over a die and forced into the die, such as by a punch or the like. A tube having a closed end and a defined wall thickness can be formed in the die. This process can be repeated using a series of dies that have progressively decreasing diameters until a multilayered tube is formed having the desired diameter and wall thickness. For certain material combinations, intermediate heat treatments can be performed between the progressive drawing operations to form a multilayered material that is resistant to delaminating. Once a multilayered tube of desired thickness and dimensions has been formed, the closed end and the curved edges can be cut off. Then, the tube can be heat treated, as described above, until proper inter-metallic bonds are formed between the layers.


C. Shaping

Accordingly, an endoprosthetic material can be shaped by various methods as described in more detail below. Such shaping techniques can utilize streams of energy and/or streams of matter in order to impart shapes into the endoprosthetic material. The streams of energy include photons, electromagnetic radiation, atomic, and sub-atomic materials, as described above. On the other hand, the streams of matter are considered to include materials larger than atomic scale particles, and can be microscopic or macroscopic in size. In any event, the shaping can be designed to direct a stream of energy or a stream of matter at the endoprosthetic material to form an endoprosthetic element and/or holes therein.


In one configuration, a stream of energy can cut, shape, and/or form a tube into an endoprostheses by generating heat at the site where the stream intersects the material, as is well known in the art. The thermal interaction can elevate the local temperature to a point, which can cut, melt, shape, and/or vaporize portions of the endoprosthetic material from the rest of the material.


Accordingly, one configuration of the stream-cutting apparatus can operate and shape the endoprosthetic material by thermal interactions. As such, any of the thermal processes described herein can be used for thermal-cutting. For example, such thermal interactions can arise from laser beam treatment, laser beam machining, electron beam machining, electrical discharge machining, ion beam machining, and plasma beam machining.


In one configuration, by knowing the thermal properties of the endoprosthetic material, precise energy requirements can be calculated so that the thermal beam provides the appropriate or minimum energy for melting and/or vaporizing the material without significantly melting undesirable portions of the material. For example, laser beams are a common form of a stream of energy that can be used to shape the endoprosthetic material. Additionally, there are instances where a laser is preferred over all other cutting techniques because of the nature of the resulting endoprosthesis as well as the characteristics of the endoprosthetic material.


In one configuration, an endoprosthesis may be manufactured as described herein using a femtosecond laser. A femtosecond laser may be desirable in producing an endoprosthesis in accordance with the multilayered composite structure of the present invention because it produces a smaller heat influence zone (“HIZ”) or heat affected zone (HAZ) compared to other lasers, or it can substantially eliminate the HIZ or HAZ. In comparison, cutting an endoprosthesis using known methods can result in the tubular material being melted away, and thereby forming the pattern in the tubular member. Such melting can result in embrittlement of some materials due to oxygen uptake into the HIZ.


In one configuration, electrical discharge machining is used to shape endoprosthetic material and/or form holes in the endoprosthetic material as desired. As such, electrical discharge machining be capable of cutting all types of conductive materials such as exotic metal including titanium, hastaloy, kovar, inconel, hard tool steels, carbides, and the like. In electrical discharge, the main interaction between the stream of energy and the endoprosthetic material is thermal, where heat is generated by producing electrical discharges. This can lead to the endoprosthetic material being removed by melting and evaporation. Some examples of electrical discharge machining include wire electron discharge machining, CNC-controlled electrical discharge machining, sinker electrical discharge machining, small hole discharge machining, and the like.


In another configuration, a charged particle beam can be used for shaping the endoprosthetic material, wherein electron beams and ion beams exemplify charged particle beams. A charged particle beam is a group of electrically-charged particles that have approximately the same kinetic energy and move in approximately the same direction. Usually, the kinetic energies are much higher than the thermal energies of similar particles at ordinary temperatures. The high kinetic energy and the directionality of these charged beams can be useful for cutting and shaping of the green bodies, as described herein. Additionally, there are some instances where electron beams or ion beams are preferred over other cutting techniques.


In one configuration, a stream of chemical matter can be used in order to shape or form holes in the endoprosthetic material. Chemical-jet milling, for example, provides selective and controlled material removal by jet and chemical action. As such, the process is similar to water-jet cutting, which is described in more detail below. In any event, chemical-jet milling can be useful for shaping various types of endoprosthetic materials, which provides intricate shaping capabilities.


In another configuration, electrochemical shaping can be based on a controlled electrochemical dissolution process similar to chemical-jet milling an endoprosthetic material. As such, the endoprosthetic material can be attached to an electrical source in order to allow an electrical current to assist in the shaping.


In one configuration, hydro-cutting or water-jet cutting can be used to shape an endoprosthetic material. Hydro-cutting is essentially a water-jet technology that uses the high force and high pressure of a stream of water directed at the endoprosthetic material in order to cut and shape the material as desired. Hydro-cutting can be preferred over some of the other stream-cutting technologies because it can be free of heat, flame, and chemical reactions, and can provide a precise cold shaping technique. Also, heated water with or without being doped with reactive chemicals can also be used. Hydro-cutting is particularly suitable for polymeric endoprostheses, but can be used for metal materials when combined with abrasive particles, as described below.


Additionally, hydro-cutting can be enhanced by the introduction of particulate materials into the water feed line. As such, some hydro-cutting techniques utilize garnet or other rigid and strong materials in order to apply an abrasive cutting force along with the force applied by the water itself. Also, the hydro-cutting process in the present invention can be used with or without inclusion of such abrasives.


Additionally, one of the benefits of hydro-cutting is the ability to reutilize and recycle the spent water-jet material. As such, the endoprosthetic material can be easily separated from the spent water, thereby enabling the recycling and reuse of the water during the hydro-cutting process.


In one configuration, sandblasting, which fits into the regime of stream of matter cutting, can be used to shape an endoprosthetic material by projecting a high energy stream of sand particles at the material. Sandblasting cuts materials in a manner similar to hydro-cutting, especially when the water-jet is doped with abrasive particulates. Additionally, various other particulate streams other than sand can be used in the stream-cutting techniques and machinery.


D. Additional Processing

An additional step of passivation can be performed during the manufacturing stage of the hybrid segmented endoprosthesis in order to form a homogeneous oxide layer for corrosion-resistance. The passivation process may be performed prior to installation of the markers in accordance with the present invention or it may be performed after installation of the radiopaque markers. It can also be done before or after the different annular elements or sub-endoprotheses are coupled together. Alternatively, multiple passivation processes may be performed, once prior to application of the markers, and again after insertion of the markers.


As originally shaped and/or fabricated, the annular elements or sub-endoprotheses can correspond to its delivery configuration, to a deployed configuration, or to a configuration therebetween. The annular elements or sub-endoprotheses can be fabricated with a configuration at least slightly larger than the delivery configuration. In this manner, the endoprosthesis can be crimped or otherwise compressed into its delivery configuration in a corresponding delivery device.


In another configuration, the annular elements or sub-endoprotheses can be originally fabricated from a tube having a diameter corresponding to the deployed configuration. In this manner, the longitudinally-free portions of the annular elements (e.g., elbow or foot not at a connection location) and circumferentially-free portions (e.g., the toe and/or heel portion of the foot extensions) can be maintained within the general cylindrical shape (e.g., diameter) of the endoprosthesis when deployed, so as to avoid such portions from extending radially inward when in the deployed configuration. The endoprosthesis can be designed to match the target vessel in which the endoprosthesis is to be deployed. For example, a stent can be provided with an outer diameter in the deployed configuration ranging from about 1 mm for neurological vessels to about 25 mm for the aorta. Similarly, a stent can be provided with a length ranging from about 5 mm to about 200 mm. Variations of these dimensions will be understood in the art based upon the intended application or indication for the endoprosthesis.


Also, the geometry of each component of the endoprosthesis or endoprosthetic element, such as the width, thickness, length and shape of the strut elements, interconnectors, crossbars, connectors, elbows, foot portions, ankle portions, toe portions, heel portions and the like can be selected to obtain predetermined expansion, flexibility, foreshortening, coverage scaffolding, and cross-sectional profile configurations. For example, longer crossbars and/or connectors can promote greater radial expansion or scaffolding coverage. The phase difference or circumferential alignment between adjacent annular elements likewise can be altered to control coverage and flexibility. Similarly, the number and placement of connection locations and, if present, the connectors, between longitudinally-adjacent annular elements can be selected to obtained the desired flexibility of the endoprosthesis. The number of elbows and/or foot extensions between connection locations also can be varied to achieve desired performance configuration.


E. Coupling Adjacent Annular Elements

After the different annular elements or sub-endoprotheses, which can be formed by the same or different processes, are prepared, they are coupled together into a hybrid segmented endoprosthesis. The different annular elements or sub-endoprotheses can be coupled together by any possible method, including methods of coupling different medical devices as is known in the art. For example, the different annular Aelements or sub-endoprotheses can be coupled together into a hybrid segmented endoprosthesis by brazing, forming a metallurgical bond, welding, forming a sleeve, forming a mechanical bond (e.g., forming a crimp to join two or more pieces of metal), or affixation with an adhesive. Other methods are also possible.


VI. Method of Delivering Hybrid Segmented Endoprosthesis

Generally, the hybrid segmented endoprosthesis of the present invention can be delivered into a body of a subject by any method known or developed. For example, the method of using catheters to deploy self-expandable or balloon-expandable stents can be employed.


In one embodiment, the hybrid segmented endoprosthesis of the present invention are configured for use in a body lumen. As such, the present invention includes a method of delivering a hybrid segmented endoprosthesis into a body lumen of a subject. Such a method includes: providing a hybrid segmented endoprosthesis as described herein; orienting the hybrid segmented endoprosthesis into a delivery orientation with a cross section that is smaller than the body lumen; inserting the hybrid segmented endoprosthesis in the delivery orientation into a delivery device, such as a deliver catheter that can be configured substantially as a catheter for delivering a stent; delivering the hybrid segmented endoprosthesis to a desired deployment site within the body lumen of the subject; removing the hybrid segmented endoprosthesis from the delivery device; and expanding the hybrid segmented endoprosthesis so as to have an enlarged dimension that applies radial forces to an inner wall of the body lumen.



FIGS. 17A-17B are side views illustrating an embodiment of a hybrid segmented endoprosthesis and methods of deploying such a hybrid segmented endoprosthesis into a body lumen in accordance with the present invention. The endoprosthesis 1200a is substantially as shown in FIG. 12A-12C, and include a first primary annular element 1204, second primary annular element 1202, and third primary annular element 1206, where 1202a, 1204a, and 1206a designate the delivery configuration and 1202b, 1204b, and 1206b designate the deployed configuration.



FIG. 17A is a schematic representation illustrating a delivery system 1500a for delivering a hybrid segmented endoprosthesis 1200a into a body lumen 1540, such as a blood vessel like the vena cava. The delivery system includes an endoprosthesis delivery catheter 1502 configured for delivering a hybrid segmented endoprosthesis 1200a that is retained by the catheter 1502 in a delivery orientation (e.g., radially compressed). The delivery catheter 1502 includes a delivery member 1504 that defines a delivery lumen 1507 that is shaped and dimensioned to retain the endoprosthesis 1200a in the delivery orientation. Accordingly, the delivery member 1504 is substantially tubular and configured similarly as any delivery catheter member. An internal surface 1506 defined by the delivery member 1504 holds the endoprosthesis 1200a within the delivery catheter 1502.


The delivery system 1500 delivers the endoprosthesis 1200a with a catheter 1502 similarly to the method of delivering other endoprostheses into a body lumen. As such, an insertion site (not shown) is formed through the skin (not shown) that traverses into a body lumen 1540. A guidewire (not shown) is then inserted through the insertion site, through the body lumen 1540, to the delivery site 1544. A catheter (not shown) is then inserted into the body lumen 1540 to the delivery site 1544 over the guidewire, and the guidewire is optionally extracted. The delivery catheter 1502 is then inserted through the catheter (not shown) until reaching the delivery site 1544 and the catheter is withdrawn.


Optionally, the catheter is the delivery catheter 1502, and in this instance, the delivery catheter 1502 is retained at the delivery site 1544 and the endoprosthesis 1200a is delivered to the delivery site 1544 through the lumen 1507 of the delivery catheter 1502. A pusher 1510 can be used to push the endoprosthesis 1200a within the lumen 1507 of the delivery catheter 1502 to the delivery site 1544.


Accordingly, the delivery system 1500 is inserted through percutaneous insertion site (not shown) that traverses from the skin (not shown) into the body lumen 1540 until reaching the delivery site 1544. The pusher 1510 includes a distal end 1512 that pushes the endoprosthesis 1200a from the distal end 1508 of the delivery member 1504. Alternatively, the endoprosthesis 1200a can be disposed at the distal end 1508 of the delivery member 1504, and the pusher 1510 holds the endoprosthesis 1200a at the delivery site 1544 and the delivery member 1504 is retracted over the endoprosthesis 1200a and pusher 1510. Thus, the pusher 510 can push the endoprosthesis 1200a from the delivery catheter 1502 or the delivery member 1504 can be withdrawn over the endoprosthesis 1200a and pusher 1510 in order to deploy the endoprosthesis 1200a.



FIG. 17B illustrates the endoprosthesis 1200b in the deployed configuration at the delivery site 1544 within the body lumen 1540. As such, the endoprosthesis 1200b is radially expanded so as to contact the inner wall 1542 of the body lumen 1540.


In one embodiment, the present invention can include a method of extracting the endoprosthesis from the body lumen, which can include: inserting an endoprosthesis-extracting medical device into the body lumen so as to come into contact with the endoprosthesis; engaging the endoprosthesis-extracting medical device with the endoprosthesis; radially compressing the endoprosthesis so as to have a reduced dimension with a cross section that is smaller than the body lumen; and retrieving the endoprosthesis from the desired deployment site within the body lumen of the subject. Optionally, the endoprosthesis can be received into the endoprosthesis-extracting medical device, which can be substantially similar to a catheter.


In one embodiment, at least one of delivering or retrieving the endoprosthesis is performed with a catheter. Catheters configured for delivering and/or retrieving endoprostheses from a body lumen can be adapted for delivering and/or retrieving the endoprosthesis of the present invention.


The present invention may be configured in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope. All references recited herein are incorporated herein by specific reference.

Claims
  • 1. A segmented endoprosthesis comprising: a first annular element having a plurality of first integrating members on a first longitudinal end, said first annular element having a first characterization;a second annular element having a plurality of second integrating members on a second longitudinal end, said second integrating members of the second longitudinal side of the second annular element being adjacent to corresponding first integrating members of the first longitudinal side of the first annular element, said second annular element having a second characterization that is the same as or different from the first characterization of the first annular element; anda plurality of couplings disposed between and coupling the plurality of first integrating members of the first annular element with the plurality of second integrating members of the second annular element so as to form the segmented endoprosthesis.
  • 2. The endoprosthesis of claim 1, wherein the characterization is at least one of material composition, length, diameter, wall thickness, flexibility, shape, structure, drug loading, drug type, shape memory, austenite finish temperature, radial force, or strut elements.
  • 3. The endoprosthesis of claim 1, wherein at least one of the couplings is comprised of at least one of a brazing, metallurgical bond, weld, sleeve, mechanical bond, or an adhesive.
  • 4. The endoprosthesis of claim 1, wherein the first and second integrating members are comprised of at least one of the following blunt joinery elements, overlay joinery elements, complementary male and female joinery elements, or complementary finger joinery elements.
  • 5. The endoprosthesis of claim 1, further comprising: the first integrating members on the first longitudinal end each having a first coating;the second integrating members on the second longitudinal end each having a second coating; andthe plurality of couplings each being attached to the first coating and the second coating.
  • 6. The endoprosthesis of claim 5, wherein the first coatings and second coatings are comprised of a polymer and each coupling is an adhesive.
  • 7. The endoprosthesis of claim 5, wherein the first coatings and second coatings are comprised of the same polymer and form the coupling.
  • 8. A segmented endoprosthesis comprising: a primary annular element of a primary length and having a plurality of primary integrating members on both first and second longitudinal ends, said primary annular element having a primary characterization;a first end annular element of a first length and having a plurality of first integrating members on an integrating longitudinal side, said first integrating members of the integrating longitudinal side of the first end annular element being adjacent to corresponding primary integrating members of the first longitudinal side of the primary annular element, said first end annular element having a first characterization that is the same as or different from the primary characterization of the primary annular element;a second end annular element of a second length having a plurality of second integrating members on an integrating longitudinal side, said second integrating members of the integrating longitudinal side of the second end annular element being adjacent to corresponding primary integrating members of the second longitudinal side of the primary annular element, said second end annular element having a second characterization that is the same as or different from the primary characterization of the primary annular element;a first plurality of first couplings disposed between and coupling the plurality of primary integrating members of the primary annular element on the first longitudinal side with the plurality of first integrating members of the first end annular element; anda second plurality of second couplings disposed between and coupling the plurality of primary integrating members of the primary annular element on the second longitudinal side with the plurality of second integrating members of the second end annular element such that the first plurality of first couplings and second plurality of second couplings form the primary annular element into a segmented endoprosthesis with the first end annular element and second end annular element.
  • 9. The endoprosthesis of claim 8, wherein the characterization is at least one of material composition, length, diameter, wall thickness, flexibility, shape, structure, drug loading, drug type, shape memory, austenite finish temperature, radial force, or strut elements.
  • 10. The endoprosthesis of claim 8, wherein at least one of the first couplings or second couplings is comprised of at least one of a brazing, metallurgical bond, weld, sleeve, mechanical bond, or an adhesive.
  • 11. The endoprosthesis of claim 8, wherein the first and second integrating members are comprised of at least one of the following blunt joinery elements, overlay joinery elements, complementary male and female joinery elements, or complementary finger joinery elements.
  • 12. The endoprosthesis of claim 8, further comprising: the primary integrating members each having a primary coating;the first integrating members each having a first coating;the second integrating members each having a second coating;the first plurality of first couplings each being attached to the first coating and the primary coating; andthe second plurality of second couplings each being attached to the primary coating and the second coating.
  • 13. The endoprosthesis of claim 12, wherein the primary coatings, first coatings, and second coatings are comprised of a polymer and each of the first couplings and second couplings is an adhesive.
  • 14. The endoprosthesis of claim 12, wherein the primary coatings, first coatings, and second coatings are comprised of the same polymer and form the first and second couplings.
  • 15. A method of manufacturing a segmented endoprosthesis, said method comprising: providing a first annular element having a plurality of first integrating members on a first longitudinal end, said first annular element having a first characterization;providing a second annular element having a plurality of second integrating members on a second longitudinal end, said second integrating members of the second longitudinal side of the second annular element being adjacent to corresponding first integrating members of the first longitudinal side of the first annular element, said second annular element having a second characterization that is the same as or different from the first characterization of the first annular element;adjacently disposing said plurality of first integrating members with said plurality of second integrating members; andcoupling the first annular element with the second annular element by forming a plurality of couplings between the plurality of first integrating members of the first annular element with the plurality of second integrating members of the second annular element to form the segmented endoprosthesis.
  • 16. The method of claim 15, wherein the characterization is at least one of material composition, length, diameter, wall thickness, flexibility, shape, structure, drug loading, drug type, shape memory, austenite finish temperature, radial force, or strut elements.
  • 17. The method of claim 15, wherein the first and second integrating members are comprised of at least one of the following blunt joinery elements, overlay joinery elements, complementary male and female joinery elements, or complementary finger joinery elements.
  • 18. The method of claim 15, further comprising brazing the first integrating members to the second integrating members in order to form the plurality of couplings.
  • 19. The method of claim 15, further comprising metallurgically bonding the first integrating members to the second integrating members in order to form the plurality of couplings.
  • 20. The method of claim 15, further comprising welding the first integrating members to the second integrating members in order to form a weld.
  • 21. The method of claim 15, further comprising adhering the first integrating members to the second integrating members with an adhesive.
  • 22. The method of claim 15, further comprising preparing the first annular element by a process different from preparing the second annular element.
  • 23. The method of claim 15, further comprising finishing the first annular element by a first process and separately finishing the second annular element by a second process prior to coupling the first annular element with the second annular element.
  • 24. The method of claim 15, further comprising coating the entire endoprosthesis with a substantially uniform coating.
  • 25. The method of claim 15, further comprising loading the endoprosthesis with a substantially uniform drug distribution.
  • 26. The method of claim 15, further comprising coating the first integrating members on the first longitudinal end with a first coating;coating the second integrating members on the second longitudinal end with a second coating; andattaching the first coatings and the second coatings to form the plurality of couplings.
  • 27. The method of claim 26, wherein the first coatings and second coatings are comprised of a polymer and each coupling is an adhesive.
  • 28. The method of claim 26, wherein the first coatings and second coatings are comprised of the same polymer and form the couplings.
  • 29. A method of manufacturing a segmented endoprosthesis, said method comprising: providing a primary annular element of a primary length and having a plurality of primary integrating members on both first and second longitudinal ends, said primary annular element having a primary characterization;providing a first end annular element of a first length and having a plurality of first integrating members on an integrating longitudinal side, said first integrating members of the integrating longitudinal side of the first end annular element being adjacent to corresponding primary integrating members of the first longitudinal side of the primary annular element, said first end annular element having a first characterization that is the same as or different from the primary characterization of the primary annular element;providing a second end annular element of a second length having a plurality of second integrating members on an integrating longitudinal side, said second integrating members of the integrating longitudinal side of the second end annular element being adjacent to corresponding primary integrating members of the second longitudinal side of the primary annular element, said second end annular element having a second characterization that is the same as or different from the primary characterization of the primary annular element;coupling the primary annular element with the first end annular element by forming a first plurality of first couplings disposed between and coupling the plurality of primary integrating members of the primary annular element on the first longitudinal side with the plurality of first integrating members of the first end annular element; andcoupling the primary annular element with the second end annular element by forming a second plurality of second couplings disposed between and coupling the plurality of primary integrating members of the primary annular element on the second longitudinal side with the plurality of second integrating members of the second end annular element such that the primary annular element is formed into a segmented endoprosthesis with the first end annular element and second end annular element.
  • 30. The method of claim 29, wherein the characterization is at least one of material composition, length, diameter, wall thickness, flexibility, shape, structure, drug loading, drug type, shape memory, austenite finish temperature, radial force, or strut elements.
  • 31. The method of claim 29, wherein the first and second integrating members are comprised of at least one of the following blunt joinery elements, overlay joinery elements, complementary male and female joinery elements, or complementary finger joinery elements.
  • 32. The method of claim 29, further comprising brazing the primary integrating members to at least one of the first integrating members or the second integrating members in order to form at least the first plurality of first couplings or the second plurality of second couplings.
  • 33. The method of claim 29, further comprising metallurgically bonding the primary integrating members to at least one of the first integrating members or the second integrating members in order to form at least the first plurality of first couplings or the second plurality of second couplings.
  • 34. The method of claim 29, further comprising welding the primary integrating members to at least one of the first integrating members or the second integrating members in order to form at least the first plurality of first couplings or the second plurality of second couplings as welds.
  • 35. The method of claim 29, further comprising adhering the primary integrating members to at least one of the first integrating members or the second integrating members with an adhesive in order to form at least the first plurality of first couplings or the second plurality of second couplings.
  • 36. The method of claim 29, further comprising preparing the primary annular element by a process different from preparing at least one of the first annular end element or the second annular end element.
  • 37. The method of claim 29, further comprising finishing the primary annular element by a first process and separately finishing at least one of the first annular end element the second annular end element by a second process prior to coupling the primary annular element to at least one of the first annular end element or the second annular end element.
  • 38. The method of claim 29, further comprising coating the entire endoprosthesis with a substantially uniform coating.
  • 39. The method of claim 29, further comprising loading the endoprosthesis with a substantially uniform drug distribution.
  • 40. The method of claim 29, further comprising coating the primary integrating members with a primary coating:coating the first integrating members with a first coating;coating the second integrating members with a second coating; andattaching the primary coating to both the first coatings and the second coatings to form the first plurality of first couplings and second plurality of second couplings.
  • 41. The method of claim 40, wherein the first coatings and second coatings are comprised of a polymer and each coupling is an adhesive.
  • 42. The method of claim 40, wherein the first coatings and second coatings are comprised of the same polymer and form the couplings.
  • 43. A method for manufacturing a custom segmented endoprosthesis, said method comprising: designing a custom segmented endoprosthesis based on at least one medical condition and/or at least one anatomical characteristic of the site of placement, wherein the designing comprises: selecting design criteria from the group consisting of material composition, length, diameter, wall thickness, flexibility, shape, structure, drug loading, drug type, shape memory, austenite finish temperature, radial force, or strut elements, and combinations thereof;selecting a plurality of segments based on the selected design criteria for assembly into the custom segmented endoprosthesis, wherein the segments comprise: annular elements having a plurality of first integrating members on a first longitudinal end and a plurality of second integrating members on a second longitudinal end;adjacently disposing the plurality of first integrating members with the plurality of second integrating members; andcoupling the plurality of annular elements by bonding the plurality of first integrating members to the plurality of second integrating members to form the custom segmented endoprosthesis.
  • 44. The method for manufacturing a custom segmented endoprosthesis of claim 43, wherein the first and second integrating members are comprised of at least one of the following blunt joinery elements, overlay joinery elements, complementary male and female joinery elements, or complementary finger joinery elements.
  • 45. The method for manufacturing a custom segmented endoprosthesis of claim 43, wherein the bonding comprises at least one of brazing, metallurgical bond, welding, sleeve, mechanical bond, or an adhesive, and combinations thereof.
CROSS-REFERENCE TO RELATED APPLICATIONS

This United States patent application is a continuation-in-part of U.S. patent application Ser. No. 11/374,923, filed Mar. 13, 2006, and entitled “SEGMENTED ENDOPROSTHESIS”, which is incorporated herein by specific reference in its entirety.

Continuation in Parts (1)
Number Date Country
Parent 11374923 Mar 2006 US
Child 12548268 US