The present invention generally relates to the field of wearable devices, more particularly to the apparatus commonly referred to as “smart watches”, as well as to other wearable timepieces, as well as the methods of combining such devices together.
Smart watches, also often referred to as “smartwatches”, are portable electronic devices, worn like a wristwatch, or like a fashion accessory on a strap, or a belt, or some other fashion or jewelry contrivance. Smart watches are essentially small computers, as they include a processor, some memory, a display, a communication component, an ability to accept user input, and an ability to download and execute a variety of application software.
Like all electronic devices, smart watches depend for their functioning on having a built-in source of time, which enables them to perform the key function of a conventional timepiece: display the current time.
The ability of a smart watch to display the time is commonly seen as a cornerstone function of the device. A smart watch that does not function as a watch is usually seen as showing an unacceptable regression of its most basic function. Such device cannot be classified as a smart watch and would have to compete for space on the wrist of the user against a conventional watch that actually shows time and belongs on the wrist by custom and tradition.
In many human cultures, particularly the ones relying on the daily use of electronic devices, personal time management and thus immediate access to the current time are accepted as a common and essential utility. Various wristwatches with mechanical, quartz, kinetic, and other movements are commonly available and have established clear expectations of dependability.
Thus a need exists for an apparatus combining the benefits of the extensive functionality of smart watches with an ability to display time, similar in its dependability to traditional mechanical, quartz, and kinetic timepieces.
Aspects of the present invention address at least the above-mentioned problems and/or disadvantages and provide at least the advantages described below. Accordingly, an aspect of the present invention introduces an apparatus combining a smart watch and a conventional watch movement together into a “hybrid smart watch”, to offer the benefits of both.
The invention therefore concerns a hybrid wearable device comprising (A) a smart watch with at least a pixel-addressable digital display, a general purpose processor, an instruction and data memory, and a communications component, said “smart watch” component also referred to as “digital subsystem” or “electronic component” from here on, and (B) an alternate (mechanical, quartz, kinetic, or other) watch movement (or, possibly, multiple movements), also referred to from here on as “analog subsystem” or “conventional movement.”
A smart watch and an alternate, conventional (mechanical, quartz, kinetic, or other) movement each can have a dedicated power source, such a battery, capacitor, mainspring, mechanical rotor or some other means of storing and releasing energy, from here on is referred to as “energy storage”. The process of adding energy to the energy storage, whether electrical or mechanical, from here on is referred to simply as “charging”.
An analog time indicator in the form of a mechanical dial, where passage of time or change in other data, like, for example, power reserve, is indicated by physically moving one element relative to another, or any of the many embodiments known in the timepiece industry (from here on simply referred to as “analog dial” for brevity) is shown to the user. A smart watch pixel-addressable digital display is also shown to the user.
The analog dial indicates the time as established by the conventional movement within the hybrid smart watch. The digital display may indicate the time as established by the electronic component of the hybrid smart watch, or it may display the information imparted by various applications that may or may not relate to the time measurement function of the hybrid smart watch.
The analog dial and the digital display may be combined to offer enhanced functionality, and multiple analogue dials and digital displays may be combined within a single hybrid smart watch.
The electronic component of the hybrid smart watch can be further combined with the conventional movement or movements to facilitate time display such that at times the analog dial displays the time as measured by the electronic components, and/or the digital display shows time as measured by the conventional movement.
Elements of the analog dial may be integrated with the electronic component of a hybrid smart watch in such a fashion that the elements of an analog dial may be utilized to indicate information outside of time measurement domain, such as, for example, direction, air quality, radiation levels, available storage capacity, strength of communication signal, or any of the myriad other measurements available to the electronic component of the hybrid smart watch.
The electronic component of the hybrid smart watch can be further combined with the conventional movement to provide the benefits of integration, for example, to measure the precision of the conventional movement and sense the time it displays, adjust the conventional movement to display the correct time as indicated by the network services, regulate the subsystems of conventional movement so that they measure time with higher precision, change the time indicated by the conventional movement to adjust to a time zone change, wind up the spring of a mechanical movement (or otherwise charge up the power storage dedicated to a quartz movement) using the electronic component of the hybrid smart watch as the power source.
Electronic elements of the hybrid smart watch may control and/or utilize one or several forms of energy harvesting, including, but not limited to any combination of some or all of photovoltaic, piezoelectric, thermoelectric, kinetic, radio, microwave or some other form of energy harvesting. The harvested energy may then be used to wind up or otherwise recharge, drive, or augment the power source of the conventional (mechanical, quartz, kinetic, or other) movement.
Other aspects, advantages, and salient features of the invention will become apparent to those skilled in the art from the following detailed description, which, taken in conjunction with the annexed drawings, discloses various embodiments of the present invention.
The above and other aspects, features, and benefits of certain embodiments of the present invention will be more apparent from the following description taken in conjunction with the accompanying drawings in which:
Technical Problem
The ability of a computing device to perform its functions, including the function of displaying time, depends on the availability of electrical power. Wearable devices are, by their nature, usually disconnected from the power grid and thus rely on battery power. Yet the power supplied by the batteries is constrained by the wearable form factor itself—there is only so much one is usually willing to carry on the wrist.
One of the biggest consumers of power in a smart watch has been the display, to the point where many smart watches can sustain only a precious few hours of operation with the display constantly switched on. Various methods for constraining the power-consuming uses of smart watches have been implemented, but they all clash with the consumer's desire to enjoy the device in its full functionality.
Thus there is a contradiction: smart watches instigate more active use than conventional timepieces, yet once a smart watch is out of power it cannot even tell the time.
Similarly, while connected smart watches can automatically adjust their time to match precisely the time and time zone provided by specialized network services, thus significantly exceeding the precision of the mechanical movements that require a manual intervention of the user or a skilled professional to avoid time drift, even perfect precision is moot when a smart watch cannot show the time. Yet the mechanical movements do not lend themselves to an automatic adjustment to network time.
Overview
The following detailed description of the invention is intended to assist in a comprehensive understanding of various embodiments of the invention as defined by the claims and their equivalents. Accordingly, those of ordinary skill in the art will recognize that various modifications of the embodiments described herein can be made without departing from the scope and spirit of the current invention. In addition, descriptions of well-known functions and constructions may be omitted for clarity and conciseness.
These detailed description of the invention are to be regarded as merely exemplary in nature and are not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any theory presented in the preceding background or the following detailed description.
It is to be understood that the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a communications unit” includes reference to one or more such units.
The following various embodiments describe a hybrid smart watch with multiple sources of time, multiple power sources, and multiple time indicator mechanisms.
Referring to
The controller 811 may control general operations of the digital subsystem 810 and a signal flow between the components within. More particularly, it may execute various application and system software residing in the data storage 814 or elsewhere, perform operations on the system and user data residing in the data storage 814 or available over the communication unit 815, display the data and user interface elements via the digital display 817, read and set the internal clock 812, read the state of the energy storage 813, interact and control the time interaction subsystem 830, and engage the energy transfer unit 840.
The data storage 814 may store a program code required for operations according to an embodiment of the present invention, user data, or the like. For example, the storage unit 814 may store a program that controls general operations of the digital subsystem 810, applications required for an operating system (OS) booting the digital subsystem 810, interacting over various communications protocols such as IP, Bluetooth, ZigBee, Wi-Fi, LTE, and the like, and additional functions of the digital subsystem 810 of the hybrid smart watch, including but not limited to all or any of a camera function, a music playback function, an image display function, a video play function, or the like. More particularly, the storage unit 814 may store user preferences regarding the automatic adjustment of the analog subsystem when a time correction is suggested by the digital subsystem, for example when the digital sub-system discovers that the user has entered a different time zone, or when the analog subsystem has been deviating from the expected time by a certain, configurable amount, for example three seconds or more.
The communication unit 815 may form wireless or wired communication channels with other devices and network services. It may have a single communication interface 816 or multiple communication interfaces as needed. In fact, multiple, medium-specific communications units might be employed in various embodiments of the present invention. The communication unit 815 may use a communication technology such as Ethernet, Universal Serial Bus (USB), Bluetooth, infrared communication, Wi-Fi, Wi-Fi Direct, home RF, DLNA, ZigBee, or the like. More particularly, the communication unit 815 may form a communication channel with a network time service employing NTP or a functionally similar protocol, and may thus discover events such as clock drift or time zone change. Such events may trigger the controller 811 to make automatic adjustments, or to communicate the need for such adjustments to the user via the digital display 817, the tactile feedback system 818, or some other means.
The digital display 817 shows the information and user interface presented by the applications and the operating system executed within the digital subsystem of the hybrid smart watch, information provided by external devices via the communication unit 815, or the information generated by various sensors and components of the digital subsystem, as well as the sensors and components interacting with the analog subsystem of the smart watch. For example, the display unit 817 may provide work areas for various applications such as a weather report, a message reader, a digital timer, a power indicator, a “wondering”, “jumping”, or retrograde indicator, while also showing a dial that would indicate the time when considered in conjunction with the analog time indicator 822, such as the mechanical hour and minute hands as shown in
The tactile feedback system 818 drives one or many mechanisms that provide information to the user of the hybrid smart watch via one or more haptic mechanisms. Such mechanisms may be simple like a single-point pressure actuator, or complex, with patterns extended in time and across multiple pressure points. For example, when the controller 811 determines that the time in the internal clock 812 deviates from the time as known to the analog subsystem 820 of the hybrid smart watch by a certain pre-configured amount, it may alert the user by sending a tactile pattern that would be perceived by the user as an alert requiring a human intervention.
The internal clock 812 is an essential component of any electronic system and thus of the digital subsystem 810. The digital subsystem may contain multiple such clocks necessary for the operation of its components. The internal clock does not necessarily have to keep track of the date or the hour, but rather of the passage of time. The controller 811 may translate the passage of time as indicated by the internal clock 812 into the current date and time as perceived by humans. The controller 811 may request and receive the current time and date from various network services via the communications unit 815. Once the controller 811 arrives, as a result of a network dialogue via communications unit 815, at what it perceives to be an accurate current time, it may adjust the internal clock 812, or adjust the formula it uses to translate the time reported by the internal clock 812 into the time in human-readable format. Likewise, the time as reported by the internal clock 812 or arrived at through a network transaction via communications unit 815 may be used to adjust the time in the analog subsystem 820. Thus an external source can be utilized to adjust either the internal time of the hybrid smart watch, or the time displayed by the hybrid smart watch on its digital or analog dial(s).
The energy storage 813 provides electric power to all the components of the digital subsystem 810, as well as time adjustment sub-system 830, and may provide power to the energy transfer unit 840 as well. The energy storage 813 is charged by an energy capture unit 819, which receives energy from a wired source such as USB power, a power harvesting subsystem, a wireless source such as inductive charging, or the like. The controller 811 can receive indications of the amount of power stored within energy storage 813 and adjust the behavior of the digital subsystem 810 and its components accordingly, as well as alert the user. The power contained within the energy storage 813 could be used to charge the energy storage 823 of the analog subsystem of the hybrid smart watch. Mechanisms for efficiently and safely regulating and charging small power sources are well-known in the art and will not be enumerated here.
Although not illustrated in
Still referring to
The time indicator 822 may be any of the known analog time indicators using, for example, separate hands to indicate hours, minutes, seconds, and fractions thereof, or a wondering hour dial, a sun-and-moon dial, a mystery dial, a jumping or retrograde display, or any other mechanical contrivance for showing time. The time indicator 822 may rely on the digital display 817 to provide the context for the time it displays, such as digitally displayed hour and minute marks, or the current hour in case of the wondering hour time indicator. The time indicator 822 may include multiple interrelated or independent indicators, showing different times or the same time in different formats, driven by the same movement or by multiple watch movements. The time indicator may also display the date or dates as per various calendars, as well as the time elapsed from a certain moment, or time remaining until a certain moment in the future.
The time currently shown by the time indicator 822 may be captured by the time indicator sensor 831 and reported to the controller 811. The time indicator itself may be adjusted by the time adjustment mechanism 832 based on a command from the controller 811. For example, in one embodiment of the invention, the controller 811 would discover as a result of a transaction with a network time service like GPS, GSM, or LTE that the hybrid smart watch has entered a different time zone, and would command the time adjustment mechanism 832 to move the hour and minute hands of the time dial to match the local time. In another embodiment, the controller 811 may command the time adjustment mechanism 832 to regulate the conventional mechanism so as to improve precision of the same. In another embodiment, the watch asks the user if they wish to have the time adjusted. For example, some people who travel like to keep the conventional watch indicating their home time.
The watch movement 821, such as mechanical, quartz, kinetic, or some other movement, counts the time and controls the state of the time indicator 822 using power from the energy storage 823. A hybrid smart watch may have more than one watch movement, just as it may have more than one time indicator. The watch movement may track the time based on the common 24-hour day scale and the Gregorian calendar, or may track the sidereal time, the solar time, or other times such as measured by various cultural and religious traditions. The watch movement may also use Gregorian, Mayan, or any of the multitudes of other calendars.
The energy storage 823 of the analog subsystem of the hybrid smart watch provides power to the watch movement 821. The energy storage may be implemented as a battery or a capacitor for a quartz movement, a spring for a mechanical movement, or the like. It may also be augmented by an energy-harvesting mechanism. In some embodiments of the present invention the controller 811 would be able to command the energy transfer unit 840 to transfer some energy from energy storage 813 of the digital subsystem to the energy storage 823 of the analogue subsystem. For example, as the hybrid smart watch is charging from an inductive charger, it may also automatically wind up the spring of the mechanical movement driving the analog subsystem of the hybrid smart watch.
Turning to
On
Further on
Thus
Thus
Another embodiment taking advantage of the hybrid nature of the smart watch presented in the current invention is depicted in
Turning to
Having received the network time 713, the controller 701 reads the watch time, as displayed by the time indicator, from the time indicator sensor 703. When the indicator sensor 703 reports current watch time 715 to the controller 701, the controller 701 compares it to the network time received earlier and makes a decision 716 whether there is a need to adjust the watch time.
If time adjustment is indicated, the controller 701 raises the request 717 to the user 705 asking for permission to adjust the watch. In various embodiments of the present invention such a request could be issued via a digital display, a dedicated indicator, a sound, a haptic subsystem or by some other means. Once the user 705 issues the permission 718 to adjust the watch, the controller 701 sends the command 719 to adjust the watch to the actuator 704. The actuator 704 would then physically affect the analog time indicator to adjust the time displayed.
While this invention has been described in conjunction with the specific embodiments outlined above, it is evident that many alternatives, modifications, and variations will be apparent to those ordinarily skilled in the art. Accordingly, the preferred embodiments of the invention as set forth above are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit and scope of the inventions as defined in the following claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/029409 | 4/27/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/141393 | 9/9/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4413915 | Besson | Nov 1983 | A |
7420885 | Claret | Sep 2008 | B2 |
9152129 | Modaragamage | Oct 2015 | B2 |
9551975 | Weiser | Jan 2017 | B2 |
20020048221 | Basturk | Apr 2002 | A1 |
20050243653 | Lizzi | Nov 2005 | A1 |
20080130423 | Claret | Jun 2008 | A1 |
20150301506 | Koumaiha | Oct 2015 | A1 |
20160109861 | Kim | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
2851756 | Mar 2015 | EP |
2913723 | Sep 2015 | EP |
Entry |
---|
EP16759660, Supplementary Partial European Search Report, dated Oct. 18, 2018, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20180039232 A1 | Feb 2018 | US |
Number | Date | Country | |
---|---|---|---|
62126614 | Mar 2015 | US |