A portion of the disclosure of this patent document contains material, which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
The present invention generally relates to electricity generation and distribution.
The following references are cited in the specification. Disclosures of these references are incorporated herein by reference in their entirety.
The large reactive current in transmission systems is one of the most common power problems that increases transmission losses and lowers the stability of a power system [1]-[19]. Application of reactive power compensators is one of the solutions for this issue.
Static VAR compensators (SVCs) are traditionally used to dynamically compensate reactive current as the loads vary from time to time. However, SVCs suffer from many problems, such as resonance problems, harmonic current injection, and slow response [2]-[3]. To overcome these disadvantages, static synchronous compensators (STATCOMs) and active power filters (APFs) were developed for reactive current compensation with faster response, less harmonic current injection, and better performance [4]-[9]. However, the STATCOMs or APFs usually require multilevel structures in a medium- or high-voltage level transmission system to reduce the high-voltage stress across each power switch and DC-link capacitor, which drives up the initial and operational costs of the system and also increases the control complexity. Later, series-type capacitive-coupled STATCOMs (C-STATCOMs) were proposed to reduce the system DC-link operating voltage requirement [10], and other series-type hybrid structures that consist of different passive power filters (PPFs) in series with STATCOMs or APF structures (PPF-STATCOMs) have been applied to power distribution systems [11]-[16] and traction power systems [17]-[19]. However, C-STATCOMs and other series-type PPF-STATCOMs contain relatively narrow reactive power compensation ranges. When the required compensating reactive power is outside their compensation ranges, their system performances can significantly deteriorate.
To improve the operating performances of the traditional STATCOMs, C-STATCOMs, and other PPF-STATCOMs, many different control techniques have been proposed, such as the instantaneous p-q theory [4], [10], [11], [17]-[19], the instantaneous d-q theory [5], [6], [14], the instantaneous id-iq method [7], negative- and zero-sequence control [8], the back propagation (BP) control method [9], nonlinear control [12], Lyapunov-function-based control [13], instantaneous symmetrical component theory [15], and hybrid voltage and current control [16].
To reduce the current rating of the STATCOMs or APFs, a hybrid combination structure of PPF in parallel with STATCOM (PPF//STATCOM) was proposed in [20] and [21]. However, this hybrid compensator is dedicated for inductive loading operation. When it is applied for capacitive loading compensation, it easily loses its small active inverter rating characteristics. To enlarge the compensation range and keep low current rating characteristic of the APF, Dixon et al. [22] proposed another hybrid combination structure of SVC in parallel with APF (SVC//APF) in three-phase distribution systems. In this hybrid structure, the APF is controlled to eliminate the harmonics and compensate for the small amounts of load reactive and unbalanced power left by the SVC. However, if this structure is applied in a medium- or high-voltage level transmission system, the APF still requires a costly voltage step-down transformer and/or multilevel structure. In addition, these two parallel connected-hybrid STATCOM structures [15]-[17] may suffer from a resonance problem.
To overcome the shortcomings of different reactive power compensators [1]-[22] for transmission systems, this invention provides a hybrid-STATCOM that consists of a thyristor-controlled LC part (TCLC) and an active inverter part, as shown in
It is an objective of the present invention to provide a hybrid-STATCOM with the distinctive characteristics of a much wider compensation range than C-STATCOM [10] and other series-type PPF-STATCOMs [11]-[19] and a much lower DC-link voltage than traditional STATCOM [4]-[9] and other parallel-connected hybrid STATCOMs [20]-[22]. The V-I characteristic of the hybrid-STATCOM is analyzed to provide a clear view of its advantages in comparison with traditional STATCOM and C-STATCOM. The parameter design method of the hybrid-STATCOM is based on consideration of the reactive power compensation range, the filtering out of the current ripple caused by the power switches, and avoidance of mistuning of firing angle.
It is a further objective of the present invention to provide a method of controlling the hybrid-STATCOM to coordinate the TCLC part and the active inverter part for reactive power compensation under different voltage and current conditions, such as unbalanced current, voltage fault, and voltage dip.
The characteristics of different reactive power compensators and the hybrid-STATCOM are compared and summarized in Table I below.
Embodiments of the invention are described in more details hereinafter with reference to the drawings, in which:
In the following description, STATCOMs and methods of controlling thereof and the likes are set forth as preferred examples. It will be apparent to those skilled in the art that modifications, including additions and/or substitutions may be made without departing from the scope and spirit of the invention. Specific details may be omitted so as not to obscure the invention; however, the disclosure is written to enable one skilled in the art to practice the teachings herein without undue experimentation.
Circuit Configuration of Hybrid-STATCOM
The TCLC part is composed of a coupling inductor Lc, a parallel capacitor CPF, and a thyristor-controlled reactor with LPF. The TCLC part provides a wide and continuous inductive and capacitive reactive power compensation range that is controlled by controlling the firing angles ax of the thyristors. The active inverter part is composed of a voltage source inverter with a DC-link capacitor CDC, and the small rating active inverter part is used to improve the performance of the TCLC part. In addition, the coupling components of the traditional STATCOM and C-STATCOM are also presented in
V-I Characteristics of Traditional STATCOM, C-STATCOM and Hybrid-STATCOM
The purpose of the hybrid-STATCOM is to provide the same amount of reactive power as the loadings (QLx) consumed, but with the opposite polarity (Qcx=−QLx). The hybrid-STATCOM compensating reactive power Qcx is the sum of the reactive power Qcx,TCLC that is provided by the TCLC part and the reactive power Qinvx that is provided by the active inverter part. Therefore, the relationship among QLx, Qcx,TCLC, and Qinvx can be expressed as:
QLx=−Qcx=−(Qcx,TCLC+Qinvx) (1)
The reactive power can also be expressed in terms of voltage and current as:
QLx=VxILqx=−(XTCLCx(ax)Icqx2+VinvxIcqx) (2)
where XTCLCx(ax) is the coupling impedance of the TCLC part; ax is the corresponding firing angle; Vx and Vinvx are the root mean square (RMS) values of the coupling point and the inverter voltage; and ILqx and Icqx are the RMS value of the load and compensating reactive current, where ILqx=−Icqx. Therefore, (2) can be further simplified as:
Vinvx=Vx+XTCLCx(ax)ILqx (3)
where the TCLC part impedance XTCLCx(ax) can be expressed as:
where XL
Ideally, XTCLCx(ax) is controlled to be Vx≈XTCLCx(ax)ILqx, so that the minimum inverter voltage (Vinvx≈0) can be obtained as shown in (3). In this case, the switching loss and switching noise can be significantly reduced. A small inverter voltage Vinvx(min) is necessary to absorb the harmonic current generated by the TCLC part, to prevent a resonance problem, and to avoid mistuning the firing angles. If the loading capacitive current or inductive current is outside the TCLC part compensating range, the inverter voltage Vinvx will be slightly increased to further enlarge the compensation range.
The coupling impedances for traditional STATCOM and C-STATCOM, as shown in
Vinvx=Vx+XLILqx (7)
Vinvx=Vx−(XC-XL)·ILqx (8)
where Xc>>XL. Based on (3)-(8), the V-I characteristics of the traditional STATCOM, C-STATCOM, and hybrid-STATCOM can be plotted as shown in
For the V-I characteristics of traditional STATCOM as shown in
For the V-I characteristics of C-STATCOM as shown in
For the V-I characteristics of the hybrid-STATCOM as shown in
In addition, three cases represented by points A, B, and C in
Parameter Design of Hybrid-STATCOM
The TCLC in accordance to an embodiment of the present invention is a SVC structure, which is designed based on the basis of the consideration of the reactive power compensation range (for LPF and CPF) and the filtering out of the current ripple caused by the power switches (for Lc). The active inverter part (DC-link voltage VDC) is designed to avoid mistuning of the firing angle of TCLC part.
Design of CPF and LPF
The purpose of the TCLC part is to provide the same amount of compensating reactive power Qcx,TCLC(ax) as the reactive power required by the loads QLx but with the opposite direction. Therefore, CPF and LPF are designed on the basis of the maximum capacitive and inductive reactive power. The compensating reactive power Qcx range in term of TCLC impedance XTCLCx(ax) can be expressed as:
where Vx is the RMS value of the load voltage and XTCLCx(ax) is the impedance of the TCLC part, which can be obtained from (4). In (9), when the XTCLCx(ax)=XCap(min)(ax=180°) and XTCLCx(ax)=XInd(min)(ax=90°), the TCLC part provides the maximum capacitive and inductive compensating reactive power Qcx(MaxCap) and Qcx(MaxInd), respectively.
where the minimum inductive impedance XInd(min) and the capacitive impedance XCap(min) are obtained from (5) and (6), respectively.
To compensate for the load reactive power (Qcx=−QLx), CPF and LPF can be deduced on the basis of the loading maximum inductive reactive power QLx(MaxInd) (=−Qcx(MaxCap)) and capacitive reactive power QLx(MaxCap) (=−Qcx(MaxInd)). Therefore, based on (10) and (11), the parallel capacitor CPF and inductor LPF can be designed as:
where ω is the fundamental angular frequency and Vx is the RMS load voltage.
Design of Lc
The purposes of Lc in TCLC is to filter out the current ripple caused by the power switches of active inverter part, and the value of the Lc can be designed as:
where fs is the switching frequency of active inverter, ΔiLcmax is the maximum allowed output current ripple value, and VDC is the DC-link voltage.
Design of VDC
Different with the traditional VDC design method of the STATCOM to compensate maximum load reactive power, the VDC of Hybrid-STATCOM is designed to solve the firing angle mistuning problem of TCLC (i.e., affect the reactive power compensation) so that the source reactive power can be fully compensated. Reforming (3), the inverter voltage Vinvx can also be expressed as:
where QLx is the load reactive power, Qcx,TCLC(ax) is the TCLC part compensating reactive power, and Vx is the RMS value of the phase load voltage. Then the required DC-link voltage VDCx of each phase and VDC for hybrid-STATCOM can be expressed as:
and
VDC=max(VDCa, VDCb, VDCc).
Ideally, Qcx,TCLC(ax) is controlled to be equal to −QLx so that the required VDC can be zero. However, in the practical case, the Qcx,TCLC(ax) may not be exactly equal to −QLx due to the firing angle mistuning problem. The worst case of mistuning QLx/Qcx,TCLC(ax) ratio can be pre-measured to estimate the required minimum VDC value. Finally, a slightly greater VDC value can be chosen. Based on (12), (13), (14), and (16), the system parameters CPF, LPF, Lc, and VDC of hybrid-STATCOM can be designed accordingly.
Method of Controlling the Hybrid-STATCOM
A method of controlling the hybrid-STATCOM is provided by coordinating the control of the TCLC part and the active inverter part so that the two parts can complement each other's disadvantages and the overall performance of hybrid-STATCOM can be improved. Specifically, with the controller in accordance to various embodiments of the present invention, the response time of the hybrid-STATCOM can be faster than SVCs, and the active inverter part can operate at lower DC-link operating voltage than the traditional STATCOMs. The control block diagram of hybrid-STATCOM is shown in
TCLC Part Control
Different from the traditional SVC control based on the traditional definition of reactive power [2]-[3], to improve its response time, the TCLC part control is based on the instantaneous pq theory [4]. The TCLC part is mainly used to compensate the reactive current with the controllable TCLC part impedance XTCLCx. Referring to (3), to obtain the minimum inverter voltage Vinvx≈0, XTCLCx can be calculated with Ohm's law in terms of the RMS values of the load voltage (Vx) and the load reactive current (ILqx). However, to calculate the XTCLCx in real time, the expression of XTCLCx can be rewritten in terms of instantaneous values as:
where ∥v∥ is the norm of the three-phase instantaneous load voltage and
In (18) and (19), vx and qLx are the instantaneous load voltage and the load reactive power, respectively. As shown in
Active Inverter Part Control
In the control method, the instantaneous active and reactive current id-iq method [7] is implemented for the active inverter part to improve the overall performance of hybrid-STATCOM under different voltage and current conditions, such as balanced/unbalanced, voltage dip, and voltage fault. Specifically, the active inverter part is used to improve the TCLC part characteristic by limiting the compensating current icx to its reference value icx*so that the mistuning problem, the resonance problem, and the harmonic injection problem can be avoided. The icx*is calculated by applying the id-iq method [7] because it is valid for different voltage and current conditions.
The calculated icx*contains reactive power, unbalanced power, and current harmonic components. By controlling the compensating current icx to track its reference icx*, the active inverter part can compensate for the load harmonic current and improve the reactive power compensation ability and dynamic performance of the TCLC part under different voltage conditions. The icx*can be calculated as:
where id and iq are the instantaneous active and reactive current, which include DC components īd and īq, and AC components ĩd and ĩq. ĩd is obtained by passing id through a high-pass filter. id and iq are obtained by:
In (21), the current (iα and iβ) in α-β plane are transformed from a-b-c frames by:
where iLx is the load current signal.
The TCLC part has two back-to-back connected thyristors in each phase that are triggered alternately in every half cycle, so that the control period of the TCLC part is one cycle (0.02 s). However, the hybrid-STATCOM structure connects the TCLC part in series with an instantaneous operated active inverter part, which can significantly improve its overall response time. With the controller, the active inverter part can limit the compensating current icx to its reference value icx*via pulse width modulation (PWM) control, and the PWM control frequency is set to be 12.5 kHz. During the transient state, the response time of hybrid-STATCOM can be separately discussed in the following two cases: a.) if the load reactive power is dynamically changing within the inductive range (or within the capacitive range), the response time of hybrid-STATCOM can be as fast as traditional STATCOM; and b.) in contrast, when the load reactive power suddenly changes from capacitive to inductive or vice versa, the hybrid-STATCOM may take approximately one cycle to settle down. However, in practical application, case b.) described above seldom happens. Therefore, based on the above, the hybrid-STATCOM can be considered as a fast-response reactive power compensator in which the dynamic performances of hybrid-STATCOM are proved by the simulation result shown in
Simulation Results
In the following, the simulation results among traditional STATCOM, C-STATCOM, and the hybrid-STATCOM are discussed and compared. The previous discussions of the required inverter voltage (or DC-link voltage VDC=√{square root over (2)} ·√{square root over (3)} ·Vinvx) for these three STATCOMs are also verified by simulations. The STATCOMs are simulated with the same voltage level as in the experimental results. The simulation studies are carried out with PSCAD/EMTDC. Table III shows the simulation system parameters for traditional STATCOM, C-STATCOM, and hybrid-STATCOM. In addition, three different cases of loading are built for testing: a.) inductive and light loading, b.) inductive and heavy loading, and c.) capacitive loading. These three testing cases are also represented by points A, B, and C in
With the consideration of IEEE standard 519-2014 [23], total demand distortion (TDD)=15% and ISC/IL in 100<1000 scale at a typical case, the nominal rate current is assumed to be equal to the fundamental load current in the worst-case analysis, which results in THD=TDD=15%. Therefore, this paper evaluates the compensation performance by setting THD<15%.
a.) Inductive and Light Loading
When the loading is inductive and light, traditional STATCOM requires a high DC-link voltage (VDC>√{square root over (2)}·VL-L=269V, VDC=300V) for compensation. After compensation, the source current isx is reduced to 5.55 A from 6.50 A and the source-side displacement power factor (DPF) becomes unity from 0.83. In addition, the source current total harmonics distortion (THDisx) is 7.22% after compensation, which satisfies the international standard [23] (THDisx<15%).
For C-STATCOM, the coupling impedance contributes a large voltage drop between the load voltage and the inverter voltage so that the required DC-link voltage can be small (VDC=80V). The isx, DPF and THDisx are compensated to 5.48 A, unity, and 2.01%, respectively.
For the hybrid-STATCOM, the isx, DPF, and THDisx are compensated to 5.48 A, unity, and 1.98%, respectively. As discussed in the previous part, a low DC-link voltage (VDC=50V) of hybrid-STATCOM is used to avoid mistuning of firing angles, prevent resonance problems, and reduce the injected harmonic current.
b.) Inductive and Heavy Loading
To compensate for the inductive and heavy loading, traditional STATCOM still requires a high DC-link voltage of VDC=300V for compensation. Traditional STATCOM can obtain acceptable results (DPF=1.00 and THDisx=6.55%). The isx is reduced to 5.95 A from 8.40 A after compensation.
With a low DC-link voltage (VDC=50V), C-STATCOM cannot provide satisfactory compensation results (DPF=0.85 and THDisx=17.5%). However, when the DC-link voltage is increased to VDC=300V, the compensation results (DPF=1.00 and THDisx=7.02%) are acceptable and satisfy the international standard [23] (THDisx<15%). The isx is reduced to 5.90 A from 8.40 A after compensation.
On the other hand, the hybrid-STATCOM can still obtain acceptable compensation results (DPF=1.00 and THDisx=3.01%) with a low DC-link voltage of VDC=50V. The isx is reduced to 5.89 A from 8.40 A after compensation.
c.) Capacitive Loading
When the loading is capacitive, with VDC=250V (VDC<√{square root over (2)}·VL-L=269V), the compensation results of traditional STATCOM are acceptable, in which the DPF and THDisx are compensated to unity and 7.61%. The isx is also reduced to 3.67 A from 4.34 A after compensation.
For C-STATCOM with VDC=50V, the isx increases to 7.10 A from the original 4.34 A. The compensation performances (DPF=0.57 and THDisx=23.5%) are not satisfactory, which cannot satisfy the international standard [23] (THDisx<15%). When VDC is increased to 500V, the DPF is improved to 0.99 and the THDisx is reduced to 10.6%, which can be explained by its V-I characteristic. However, the compensated isx=5.02 A is still larger than isx=3.73 A before compensation.
With the lowest DC-link voltage (VDC=50V) of the three STATCOMs, hybrid-STATCOM can still obtain the best compensation results with DPF=1.00 and THDisx=3.01%. In addition, the isx is reduced to 3.41 A from 4.34 A after compensation.
Dynamic Response of Hybrid-STATCOM
According to the above simulation results, Table II verifies the V-I characteristics of the traditional STATCOM, C-STATCOM, and hybrid-STATCOM, as shown in
Based on the simulation results, a summary can be drawn as follows:
Experimental Results
The objective of the experiment is to verify that the hybrid-STATCOM has the characteristics of a wide compensation range and low DC-link voltage under different voltage and current conditions, such as unbalanced current, voltage dip, and voltage fault. In the experiment, a 110-V, 5-kVA experimental prototype of the three-phase hybrid-STATCOM is constructed in the laboratory. The control system has a sampling frequency of 25 kHz. The switching devices for the active inverter are Mitsubishi IGBTs PM300DSA060. The switching devices for the TCLC are thyristors SanRex PK110FG160. Moreover, the experimental parameters of the hybrid-STATCOM are the same as those for the simulation listed in Table III. The experimental prototype's DC-link voltage is maintained at VDC=50V for all experiments.
Table IV summarizes the hybrid-STATCOM experimental results. The experimental results confirm that the hybrid-STATCOM has a wide reactive power compensation range and low DC-link voltage characteristics with good dynamic performance even under different voltage and current conditions.
The embodiments disclosed herein may be implemented using general purpose or specialized computing devices, computer processors, or electronic circuitries including but not limited to digital signal processors (DSP), application specific integrated circuits (ASIC), field programmable gate arrays (FPGA), and other programmable logic devices configured or programmed according to the teachings of the present disclosure. Computer instructions or software codes running in the general purpose or specialized computing devices, computer processors, or programmable logic devices can readily be prepared by practitioners skilled in the software or electronic art based on the teachings of the present disclosure.
In some embodiments, the present invention includes computer storage media having computer instructions or software codes stored therein which can be used to program computers or microprocessors to perform any of the processes of the present invention. The storage media can include, but are not limited to, floppy disks, optical discs, Blu-ray Disc, DVD, CD-ROMs, and magneto-optical disks, ROMs, RAMs, flash memory devices, or any type of media or devices suitable for storing instructions, codes, and/or data.
The foregoing description of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations will be apparent to the practitioner skilled in the art.
The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalence.
Number | Name | Date | Kind |
---|---|---|---|
5434497 | Larsen | Jul 1995 | A |
8400119 | Angquist | Mar 2013 | B2 |
20130293021 | Varma | Nov 2013 | A1 |
Entry |
---|
Design and Performance of an Adaptive Low-DC-Voltage-Controlled LC-Hybrid Active Power Filter With a Neutral Inductor in Three-Phase; Four-Wire Power Systems, Chi-Seng Lam, Member, IEEE, Man-Chung Wong, Senior Member, IEEE, Wai-Hei Choi, Student Member, IEEE, Xiao-Xi Cui, Hong-Ming Mei, and Jian-Zheng Liu. |
J. Dixon, L. Moran, J. Rodriguez, and R. Domke, “Reactive power compensation technologies: State-of-the-art review,” Proc. IEEE, vol. 93, No. 12, pp. 2144-2164, Dec. 2005. |
L. Gyugyi, R. A. Otto, and T. H. Putman, “Principles and applications of static thyristor-controlled shunt compensators,” IEEE Trans. Power App. Syst., vol. PAS-97, No. 5, pp. 1935-1945, Sep./Oct. 1978. |
T. J. Dionise, “Assessing the performance of a static var compensator for an electric arc furnace,” IEEE Trans. Ind. Appl., vol. 50, No. 3, pp. 1619-1629, Jun. 2014. |
F. Z. Peng and J. S. Lai, “Generalized instantaneous reactive power theory for three-phase power systems,” IEEE Trans. Instrum. Meas., vol. 45, No. 1, pp. 293-297, Feb. 1996. |
L. K. Haw, M. S. Dahidah, and H. A. F. Almurib, “A new reactive current reference algorithm for the STATCOM system based on cascaded multilevel inverters,” IEEE Trans. Power Electron., vol. 30, No. 7, pp. 3577-3588, Jul. 2015. |
J. A. Munoz, J. R. Espinoza, C. R. Baler, L. A. Moran, J. I. Guzman, and V. M. Cardenas, “Decoupled and modular harmonic compensation for multilevel STATCOMs,” IEEE Trans. Ind. Electron., vol. 61, No. 6, pp. 2743-2753, Jun. 2014. |
V. Soares and P. Verdelho, “An instantaneous active and reactive current component method for active filters,” IEEE Trans. Power Electron., vol. 15, No. 4, pp. 660-669, Jul. 2000. |
M. Hagiwara, R. Maeda, and H. Akagi, “Negative-sequence reactive-power control by a PWM STATCOM based on a modular multilevel cascade converter (MMCC-SDBC),” IEEE Trans. Ind. Appl., vol. 48, No. 2, pp. 720-729, 2012. |
B. Singh and S. R. Arya, “Back-propagation control algorithm for power quality improvement using DSTATCOM,” IEEE Trans. Ind. Electron., vol. 61, No. 3, pp. 1204-1212, Mar. 2014. |
M.-C.Wong, C.-S. Lam, and N.-Y. Dai, “Capacitive-coupling STATCOM and its control,” Chinese Patent for Invention, Granted, No. 200710196710.6, May 2011. |
C.-S. Lam, M.-C. Wong, W.-H. Choi, X.-X. Cui, H.-M. Mei, and J.-Z. Liu, “Design and performance of an adaptive low-dc-voltage-controlled LC-Hybrid active power filter with a neutral inductor in three-phase four-wire power systems,” IEEE Trans. Ind. Electron., vol. 61, No. 6 pp. 2635-2647, Jun. 2014. |
S. Rahmani, A. Hamadi, N. Mendalek, and K. Ai-Haddad, “A new control technique for three-phase shunt hybrid power filter,” IEEE Trans. Ind. Electron., vol. 56, No. 8, pp. 2904-2915, Aug. 2009. |
S. Rahmani, A. Hamadi, and K. Ai-Haddad, “A Lyapunov-function-based control for a three-phase shunt hybrid active filter,” IEEE Trans. Ind. Electron., vol. 59, No. 3, pp. 1418-1429, Mar. 2012. |
H. Akagi and K. Isozaki, “A hybrid active filter for a three-phase 12-pulse diode rectifier used as the front end of a medium-voltage motor drive,” IEEE Trans. Power Electron., vol. 27, No. 1, pp. 69-77, Jan. 2012. |
C. Kumar and M. Mishra, “An improved hybrid DSATCOM topology to compensate reactive and nonlinear loads,” IEEE Trans. Ind. Electron., vol. 61, No. 12, pp. 6517-6527, Dec. 2014. |
J. He, Y. W. Y Li, and F. Blaabjerg, “Flexible microgrid power quality enhancement using adaptive hybrid voltage and current controller,” IEEE Trans. Ind. Electron, vol. 61, No. 6, pp. 2784-2794, Jun. 2014. |
S. Hu, Z. Zhang, Y. Chen, et al. “A new integrated hybrid power quality control system for electrical railway,” IEEE Trans. Ind. Electron., vol. 62, No. 10, pp. 6222-6232, Oct. 2015. |
K-W. Lao, M-C. Wong, N. Y. Dai, C-K. Wong, and C-S. Lam, “A systematic approach to hybrid railway power conditioner design with harmonic compensation,” IEEE Trans. Ind. Electron., vol. 62, No. 2, pp. 930-942, Feb. 2015. |
K.-W. Lao, N. Dai, W.-G.Liu, and M.-C. Wong, “Hybrid power quality compensator with minimum DC operation voltage design for high-speed traction power systems,” IEEE Trans. Power Electron., vol. 28, No. 4, pp. 2024-2036, Apr. 2013. |
A. Varschavsky, J. Dixon, M. Rotella, and L. Moran, “Cascaded nine-level inverter for hybrid-series active power filter, using industrial controller,” IEEE Trans. Ind. Electron., vol. 57, No. 8, pp. 2761-2767, Aug. 2010. |
S. P. Litran and P. Salmeron, “Reference voltage optimization of a hybrid filter for nonlinear load reference,” IEEE Trans. Ind. Electron., vol. 61, No. 6, pp. 2648-2654, Jun. 2014. |
J. Dixon, Y. del Valle, M. Orchard, M. Ortuzar, L. Moran, and C. Maffrand, “A full compensating system for general loads, based on a combination of thyristor binary compensator, and a PWM-IGBT active power filter,” IEEE Trans. Ind. Electron., vol. 50, No. 5, pp. 982-989, Oct. 2003. |
IEEE recommended practices and requirements for harmonic control in electrical power systems, 2014, IEEE Standard 519-2014. |