Hybrid system and method for reading indicia

Information

  • Patent Grant
  • 11763112
  • Patent Number
    11,763,112
  • Date Filed
    Thursday, March 14, 2019
    5 years ago
  • Date Issued
    Tuesday, September 19, 2023
    a year ago
Abstract
An indicia-reading system is provided that incorporates a hybrid approach to decoding indicia such as barcodes. An indicia-capturing subsystem acquires information about indicia within the indicia-capturing subsystem's field of view. An indicia-decoding module decodes indicia information acquired by the indicia-capturing subsystem. The indicia-decoding module includes a primary, basic signal processor for initially decoding indicia information, and a secondary, advanced signal processor for decoding indicia information that is not decoded by the primary, basic signal processor.
Description
FIELD OF THE INVENTION

The present invention relates to indicia readers, such as barcode readers. More specifically, the present invention relates to a hybrid system and method for reading indicia employing programmable-logic signal processing or software signal processing, or both.


BACKGROUND

Indicia readers, such as barcode scanners, are typically configured to acquire information from indicia and then decode that information for use in data systems. Advanced signal processing techniques beneficially aid in the decoding of indicia in circumstances where the signal representing the indicia information is outside of the nominal range. For example, reading indicia positioned at a greater distance from the indicia reader tends to increase signal interference and decrease signal strength. In such instances, greater processing power is typically needed to successfully decode insignia information. Although the advanced signal processing techniques, such as advanced computer software algorithms, often achieve improved decoding results, they can unnecessarily complicate and delay processing of signals acquired under more mundane circumstances.


Therefore, a need exists for an insignia reader capable of decoding more complex indicia information signals without sacrificing performance in decoding less complex signals.


SUMMARY

Accordingly, in one aspect, the present invention embraces a system for reading indicia, such as barcodes. The indicia-reading system includes an indicia-capturing subsystem for acquiring information about indicia within the indicia-capturing subsystem's field of view. The indicia-reading system also includes an indicia-decoding module. The indicia-decoding module is configured for decoding indicia information acquired by the indicia-capturing subsystem. The indicia-decoding module includes a primary, basic signal processor for initially decoding indicia information. The indicia-decoding module also includes a secondary, advanced signal processor for decoding indicia information that is not decoded by the primary signal processor.


In one exemplary embodiment, the indicia-capturing subsystem is configured to acquire information about barcode symbols within the indicia-capturing subsystem's field of view.


In another exemplary embodiment, the indicia-capturing subsystem is an imaging subsystem for capturing images within the imaging subsystem's field of view.


In yet another exemplary embodiment, the indicia-capturing subsystem is a laser scanning subsystem for scanning indicia within the laser scanning subsystem's field of view.


In yet another exemplary embodiment, the primary, basic signal processor includes a programmable controller.


In yet another exemplary embodiment, the secondary, advanced signal processor includes a computer processor in communication with an associated memory.


In yet another exemplary embodiment, the secondary, advanced signal processor includes a computer processor in communication with an associated memory, wherein the memory stores software configured to decode indicia information.


In another aspect, the present invention embraces a method for reading indicia. Information about indicia is acquired, and then the indicia information is decoded by (i) attempting to decode the indicia information via a primary, basic signal processor, and (ii) if the primary, basic signal processor cannot decode the indicia information, then the indicia information is decoded via a secondary, advanced signal processor.


In another aspect, the present invention embraces an indicia-reading method in which information about indicia is acquired. The indicia information is decoded by attempting to decode the indicia information via a primary, basic signal processor while substantially simultaneously attempting to decode the indicia information via a secondary, advanced signal processor. The substantially simultaneous decoding attempts continue until the indicia information is successfully decoded.


The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram illustrating an exemplary indicia-reading system according to the present invention.



FIG. 2 is a flow chart illustrating an exemplary indicia-reading method according to the present invention.





DETAILED DESCRIPTION

The present invention embraces a system for reading indicia. The term indicia is intended to refer broadly to various types of machine-readable indicia, including barcodes, QR codes, matrix codes, 1D codes, 2D codes, RFID tags, characters, etc. The indicia are typically graphical representations of information (e.g., data) such as product numbers, package tracking numbers, or personnel identification numbers. The use of indicia readers to input data into a system, rather than manual data entry, results in generally faster and more reliable data entry. The indicia-reading system may embrace various kinds of devices used to read indicia, such as handheld barcode scanners, fixed-position omni-directional barcode scanners, pen-type readers, laser scanners, CCD readers, imaging scanners, and mobile devices like smartphones that are equipped to read indicia, and similar devices. The indicia-reading system according to the present invention embraces a hybrid approach to decoding indicia. An initial attempt(s) is made to decode the indicia using less sophisticated, but faster, decoding technology. If the initial attempt(s) is unsuccessful, the system employs more sophisticated technology to decode the indicia.



FIG. 1 illustrates an exemplary indicia-reading system 100, which includes an indicia-capturing subsystem 110. The indicia-capturing subsystem 110 acquires information about indicia within the indicia-capturing subsystem's 110 field of view. Typically, an object 112 that bears one or more indicia is placed within the field of view of the indicia-capturing subsystem 110. Alternatively, the indicia-capturing subsystem 110 is manipulated to reposition the field of view to include the object 112 bearing the indicia.


In some instances, the indicia-capturing subsystem 110 is a laser scanning subsystem that sweeps a light beam (e.g., a laser beam) across the field of view, and then receives the optical signals that reflect or scatter off the indicia. Typically, the optical signal is received using a photoreceptor (e.g., photodiode), and is converted into an electrical signal. The electrical signal is an electronic representation of the indicia information (e.g., the data represented by the indicia). When in the form of an electrical signal, this information can be processed (e.g., decoded) by the system 100.


In other instances, the indicia-capturing subsystem 110 is an imaging subsystem. The imaging subsystem captures digital images of objects 112 within the subsystem's field of view. When the indicia information takes the form of a digital image, the indicia information is typically processed through the use of image-processing software (e.g. 1D bar code, 2D bar code, postal code, and/or optical character recognition (OCR) decoding technology), which can both identify the presence of indicia in the digital image and decode the indicia. Therefore, references herein to electrical signals are intended broadly to also encompass digital images capable of being processed electronically (e.g., via an image-processing computer processor).


The indicia-reading system 100 according to the present invention may also include an indicia-decoding module 120. The indicia-decoding module 120 is configured to decode indicia information (e.g., electrical signal or digital image) acquired by the indicia-capturing subsystem 110. The indicia-decoding module includes a primary, basic signal processor 125. The primary, basic signal processor 125 is employed to make an initial attempt(s) at decoding the indicia information. Typically, the primary, basic signal processor 125 is configured to process the indicia information quickly. Typically, the primary, basic signal processor 125 is a programmable controller (e.g., programmable logic controller). Although a programmable controller may have limited signal-processing capabilities compared with more complex systems, a programmable controller's fast response time makes it suitable for this initial decoding attempt. In addition, because the system 100 does not rely on the primary, basic signal processor 125 to implement complex signal-processing methods, the configuration of the primary, basic signal processor 125 is relatively simple and less costly to manufacture.


Typically, the primary, basic signal processor 125 (e.g., programmable controller) is configured to process indicia information that is relatively simple to interpret. In other words, the primary, basic signal processor 125 handles general, fairly benign signal processing. For example, in the case of a system 100 incorporating a laser-scanning subsystem, the programmable controller would be responsible for providing general signal processing by generating edge lists for immediate decoding.


Although the primary, basic signal processor 125 is typically sufficient to decode the indicia information in about 70 percent to 80 percent of the system's 100 operating range, the remaining 20 percent to 30 percent of use cases require more complex signal processing. For example, when an indicia reader is attempting to read indicia positioned relatively far from the indicia-capturing subsystem 110, the optical signal can be compromised (e.g., through signal interference, signal loss), thereby increasing the difficulty in decoding the acquired indicia information. Similarly, when an indicia reader is attempting to read indicia positioned relatively near the indicia-capturing subsystem 110, the optical signal may be much more intense (e.g., powerful) than is typically encountered, thereby requiring additional, more complex processing to decode. Consequently, there are typically certain instances (e.g., edge cases, corner cases) where the signal-decoding performance of the primary, basic signal processor 125 is insufficient to successfully decode indicia information.


To handle indicia information that cannot be successfully decoded by the primary, basic signal processor 125, the system 100 according to the present invention typically incorporates a secondary, advanced signal processor 130. Typically, the secondary, advanced signal processor 130 is capable of executing more advanced signal-processing algorithms than the primary, basic signal processor 125 is capable of performing. Typically, the secondary, advanced signal processor 130 includes a computer processor in communication (e.g., electronic communication) with an associated memory (e.g., non-volatile computer-readable memory). More typically, the secondary, advanced signal processor 130 includes a computer processor in communication with an associated memory, wherein the memory stores software configured to decode indicia information (e.g., signal-processing software). The computer processor is configured to execute the instructions of the signal-processing software. It will be appreciated by a person of ordinary skill in the art that the incorporation of signal-processing software advantageously allows for relatively quick development, and for the designing of complex signal processing algorithms. Moreover, signal-processing software typically can be readily modified to achieve improved signal-processing results, and such modifications can often be implemented in the field (e.g., through system updates). The increased decoding power and flexibility offered by the secondary, advanced signal processor 130, however, typically comes at the cost of increased processing time. The advanced algorithms employed by the secondary, advanced signal processor 130 typically require complex calculations and data manipulation that require much more time to execute than do the functions of the typical primary, basic signal processor 125 (e.g., programmable controller). The user experiences this increased processing time as a lag between the time the user initiates a scan (e.g., by triggering the device) and the time that the indicia is decoded.


Because the secondary, advanced signal processor 130 typically takes longer to process indicia information than does the primary, basic signal processor, greater usability can be achieved by employing the system's hybrid approach to decoding indicia information. More particularly, the system 100 according to the present invention is usually configured to first attempt to decode indicia information using the primary, basic signal processor 125. Depending on the specific configuration of the system 100, which may be set at the factory and/or be adjusted by the user, the primary, basic signal processor 125 may make one or more attempts at decoding the indicia information. If the primary, basic signal processor 125 is unable to decode the indicia information, then the secondary, advanced signal processor 130 attempts to decode the indicia information. When the indicia information (e.g., electrical signal) is passed to the secondary, advanced signal processor 130, it may be in its original form, or it may be pre-processed by the primary, basic signal processor 125 into a form that can be more readily decoded by the secondary, advanced signal processor 130.


Alternatively, indicia information may be received by both the primary, basic signal processor 125 and the secondary, advanced signal processor 130 substantially simultaneously so that the primary, basic signal processor 125 and the secondary, advanced signal processor 130 may each attempt to decode the indicia information in parallel. It will be appreciated by a person of ordinary skill in the art that “substantially simultaneously” in this context means that the two processing sequences begin and/or end less than several milliseconds from each other. In this parallel arrangement, if the primary, basic signal processor 125 is able to decode the indicia information before the secondary, advanced signal processor 130 can decode the indicia information, the secondary, advanced signal processor 130 interrupts its processing to await receipt of the next indicia information. For example, the primary, basic signal processor 125 may send an instruction (e.g., an interrupt) to the secondary, advanced signal processor 125 directing it to cease attempting to decode the current indicia information. Conversely, if the secondary, advanced signal processor 130 successfully decodes the indicia information before the primary, basic signal processor 125 completes the decoding process, then the primary, basic signal processor 125 interrupts its decoding process and awaits receipt of the next indicia information for decoding. It will be appreciated by a person of ordinary skill in the art that both the primary, basic signal processor 125 and the secondary, advanced signal processor 130 may be software-based or hardware-based signal processors.


In an exemplary embodiment, the system 100 may be configured to initiate processing of indicia information by the secondary, advanced signal processor 130 only when a certain precondition(s) is satisfied. For example, the system 100 may be configured to utilize the secondary, advanced signal processor 130 only when a certain number of scans (e.g., laser sweeps, image processing attempts) have been performed (e.g., three scans). In this example, the system 100 makes three attempts to acquire indicia information and decode the indicia information. These initial three attempts are made by the primary, basic signal processor 125. If any one of these first three scans results in a successful decoding of the indicia information, the signal processing ceases, the results of the decoding are reported, and the system 100 resets and awaits the initiation of a subsequent decoding request (e.g., by the user activating a trigger). If, however, the first three scans do not result in a successful decoding of the indicia information, the system 100 switches over the signal-processing duties to the secondary, advanced signal processor 130. For all subsequent scans, the secondary, advanced signal processor 130 will continue to attempt to decode the indicia information until it reaches a predefined scan limit, whereupon it will report a scan failure. In this way, the indicia-decoding module 120 seeks first to decode indicia information using the faster primary, basic signal processor 125. In the majority (e.g., 70 percent to 80 percent) of operating scenarios, this approach will result in faster decoding because there is no time wasted on unnecessarily complicated signal-processing algorithms that are only needed in unusual circumstances (e.g., edge cases, corner cases). In those operating scenarios requiring greater signal processing capabilities to achieve successful decoding of indicia information, the system 100 retains the capability of calling upon the more sophisticated secondary, advanced signal processor 130 when needed. The result is a system 100 having indicia-decoding properties at least as great as similar readers, but featuring improved response time under most operating conditions.


Referring now to FIG. 2, in another aspect, the invention embraces an indicia-reading method 200. Indicia information is acquired 210. Typically, indicia information will include electrical signals converted from optical signals, or it will include a digital image of an object bearing indicia. Typically, indicia information is acquired by an indicia-capturing subsystem (e.g., imaging subsystem, laser scanning subsystem). The acquired indicia information is decoded (e.g., read) by attempting to decode the indicia information via a primary, basic signal processor. If the primary, basic signal processor cannot decode the indicia (e.g., within a predetermined number of scan attempts), then the acquired indicia information is decoded via a secondary, advanced signal processor 220.


To supplement the present disclosure, this application incorporates entirely by reference the following patents, patent application publications, and patent applications: U.S. Pat. Nos. 6,832,725; 7,159,783; 7,128,266; 7,413,127; 7,726,575; 8,390,909; 8,294,969; 8,408,469; 8,408,468; 8,381,979; 8,408,464; 8,317,105; 8,366,005; 8,424,768; 8,322,622; 8,371,507; 8,376,233; 8,457,013; 8,448,863; 8,459,557; 8,469,272; 8,474,712; 8,479,992; 8,490,877; 8,517,271; 8,556,176 8,561,905; 8,523,076; 8,528,819; U.S. Patent Application Publication No. 2012/0111946; U.S. Patent Application Publication No. 2012/0223141; U.S. Patent Application Publication No. 2012/0193423; U.S. Patent Application Publication No. 2012/0203647; U.S. Patent Application Publication No. 2012/0248188; U.S. Patent Application Publication No. 2012/0228382; U.S. Patent Application Publication No. 2012/0193407; U.S. Patent Application Publication No. 2012/0168511; U.S. Patent Application Publication No. 2012/0168512; U.S. Patent Application Publication No. 2010/0177749; U.S. Patent Application Publication No. 2010/0177080; U.S. Patent Application Publication No. 2010/0177707; U.S. Patent Application Publication No. 2010/0177076; U.S. Patent Application Publication No. 2009/0134221; U.S. Patent Application Publication No. 2012/0318869; U.S. Patent Application Publication No. 2013/0043312; U.S. Patent Application Publication No. 2013/0068840; U.S. Patent Application Publication No. 2013/0070322; U.S. Patent Application Publication No. 2013/0075168; U.S. Patent Application Publication No. 2013/0056285; U.S. Patent Application Publication No. 2013/0075464; U.S. Patent Application Publication No. 2013/0082104; U.S. Patent Application Publication No. 2010/0225757; U.S. Patent Application Publication No. 2013/0175343; U.S. patent application Ser. No. 13/347,193 for a Hybrid-Type Bioptical Laser Scanning And Digital Imaging System Employing Digital Imager With Field Of View Overlapping Field Of Field Of Laser Scanning Subsystem, filed Jan. 10, 2012 (Kearney et al.); U.S. patent application Ser. No. 13/367,047 for Laser Scanning Modules Embodying Silicone Scan Element With Torsional Hinges, filed Feb. 6, 2012 (Feng et al.); U.S. patent application Ser. No. 13/400,748 for a Laser Scanning Bar Code Symbol Reading System Having Intelligent Scan Sweep Angle Adjustment Capabilities Over The Working Range Of The System For Optimized Bar Code Symbol Reading Performance, filed Feb. 21, 2012 (Wilz); U.S. patent application Ser. No. 13/432,197 for a Laser Scanning System Using Laser Beam Sources For Producing Long And Short Wavelengths In Combination With Beam-Waist Extending Optics To Extend The Depth Of Field Thereof While Resolving High Resolution Bar Code Symbols Having Minimum Code Element Widths, filed Mar. 28, 2012 (Havens et al.); U.S. patent application Ser. No. 13/492,883 for a Laser Scanning Module With Rotatably Adjustable Laser Scanning Assembly, filed Jun. 10, 2012 (Hennick et al.); U.S. patent application Ser. No. 13/367,978 for a Laser Scanning Module Employing An Elastomeric U-Hinge Based Laser Scanning Assembly, filed Feb. 7, 2012 (Feng et al.); U.S. patent application Ser. No. 13/852,097 for a System and Method for Capturing and Preserving Vehicle Event Data, filed Mar. 28, 2013 (Barker et al.); U.S. patent application Ser. No. 13/780,356 for a Mobile Device Having Object-Identification Interface, filed Feb. 28, 2013 (Samek et al.); U.S. patent application Ser. No. 13/780,158 for a Distraction Avoidance System, filed Feb. 28, 2013 (Sauerwein); U.S. patent application Ser. No. 13/784,933 for an Integrated Dimensioning and Weighing System, filed Mar. 5, 2013 (McCloskey et al.); U.S. patent application Ser. No. 13/785,177 for a Dimensioning System, filed Mar. 5, 2013 (McCloskey et al.); U.S. patent application Ser. No. 13/780,196 for Android Bound Service Camera Initialization, filed Feb. 28, 2013 (Todeschini et al.); U.S. patent application Ser. No. 13/792,322 for a Replaceable Connector, filed Mar. 11, 2013 (Skvoretz); U.S. patent application Ser. No. 13/780,271 for a Vehicle Computer System with Transparent Display, filed Feb. 28, 2013 (Fitch et al.); U.S. patent application Ser. No. 13/736,139 for an Electronic Device Enclosure, filed Jan. 8, 2013 (Chaney); U.S. patent application Ser. No. 13/771,508 for an Optical Redirection Adapter, filed Feb. 20, 2013 (Anderson); U.S. patent application Ser. No. 13/750,304 for Measuring Object Dimensions Using Mobile Computer, filed Jan. 25, 2013; U.S. patent application Ser. No. 13/471,973 for Terminals and Methods for Dimensioning Objects, filed May 15, 2012; U.S. patent application Ser. No. 13/895,846 for a Method of Programming a Symbol Reading System, filed Apr. 10, 2013 (Corcoran); U.S. patent application Ser. No. 13/867,386 for a Point of Sale (POS) Based Checkout System Supporting a Customer-Transparent Two-Factor Authentication Process During Product Checkout Operations, filed Apr. 22, 2013 (Cunningham et al.); U.S. patent application Ser. No. 13/888,884 for an Indicia Reading System Employing Digital Gain Control, filed May 7, 2013 (Xian et al.); U.S. patent application Ser. No. 13/895,616 for a Laser Scanning Code Symbol Reading System Employing Multi-Channel Scan Data Signal Processing with Synchronized Digital Gain Control (SDGC) for Full Range Scanning, filed May 16, 2013 (Xian et al.); U.S. patent application Ser. No. 13/897,512 for a Laser Scanning Code Symbol Reading System Providing Improved Control over the Length and Intensity Characteristics of a Laser Scan Line Projected Therefrom Using Laser Source Blanking Control, filed May 20, 2013 (Brady et al.); U.S. patent application Ser. No. 13/897,634 for a Laser Scanning Code Symbol Reading System Employing Programmable Decode Time-Window Filtering, filed May 20, 2013 (Wilz, Sr. et al.); U.S. patent application Ser. No. 13/902,242 for a System For Providing A Continuous Communication Link With A Symbol Reading Device, filed May 24, 2013 (Smith et al.); U.S. patent application Ser. No. 13/902,144, for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Chamberlin); U.S. patent application Ser. No. 13/902,110 for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Hollifield); U.S. patent application Ser. No. 13/912,262 for a Method of Error Correction for 3D Imaging Device, filed Jun. 7, 2013 (Jovanovski et al.); U.S. patent application Ser. No. 13/912,702 for a System and Method for Reading Code Symbols at Long Range Using Source Power Control, filed Jun. 7, 2013 (Xian et al.); U.S. patent application Ser. No. 13/922,339 for a System and Method for Reading Code Symbols Using a Variable Field of View, filed Jun. 20, 2013 (Xian et al.); U.S. patent application Ser. No. 13/927,398 for a Code Symbol Reading System Having Adaptive Autofocus, filed Jun. 26, 2013 (Todeschini); U.S. patent application Ser. No. 13/930,913 for a Mobile Device Having an Improved User Interface for Reading Code Symbols, filed Jun. 28, 2013 (Gelay et al.); U.S. patent application Ser. No. 13/933,415 for an Electronic Device Case, filed Jul. 2, 2013 (London et al.); U.S. patent application Ser. No. 13/947,296 for a System and Method for Selectively Reading Code Symbols, filed Jul. 22, 2013 (Rueblinger et al.); U.S. patent application Ser. No. 13/950,544 for a Code Symbol Reading System Having Adjustable Object Detection, filed Jul. 25, 2013 (Jiang); U.S. patent application Ser. No. 13/961,408 for a Method for Manufacturing Laser Scanners, filed Aug. 7, 2013 (Saber et al.); U.S. patent application Ser. No. 13/973,315 for a Symbol Reading System Having Predictive Diagnostics, filed Aug. 22, 2013 (Nahill et al.); U.S. patent application Ser. No. 13/973,354 for a Pairing Method for Wireless Scanner via RFID, filed Aug. 22, 2013 (Wu et al.); U.S. patent application Ser. No. 13/974,374 for Authenticating Parcel Consignees with Indicia Decoding Devices, filed Aug. 23, 2013 (Ye et al.); U.S. patent application Ser. No. 14/018,729 for a Method for Operating a Laser Scanner, filed Sep. 5, 2013 (Feng et al.); U.S. patent application Ser. No. 14/019,616 for a Device Having Light Source to Reduce Surface Pathogens, filed Sep. 6, 2013 (Todeschini); U.S. patent application Ser. No. 14/023,762 for a Handheld Indicia Reader Having Locking Endcap, filed Sep. 11, 2013 (Gannon); and U.S. patent application Ser. No. 14/035,474 for Augmented-Reality Signature Capture, filed Sep. 24, 2013 (Todeschini).


In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.

Claims
  • 1. An indicia-reading method, comprising: acquiring information about an indicia; anddecoding the acquired indicia information, the decoding comprising: attempting, by a primary, basic signal processor, initial processing of the indicia information;generating, by the primary, basic signal processor, pre-processed indicia information from the indicia information, based on the initial processing by the primary, basic signal processor being unsuccessful;sending the pre-processed indicia information from the primary, basic signal processor to a secondary, advanced signal processor, wherein the pre-processed indicia information is in a form readily decodable by the secondary, advanced signal processor; andprocessing, by the secondary, advanced signal processor, the received pre-processed indicia information for decoding, based on the initial processing by the primary, basic signal processor being unsuccessful,wherein the secondary, advanced signal processor is configured for executing a more complex signal-processing algorithm than the primary, basic signal processor.
  • 2. The method of claim 1, wherein the secondary, advanced signal processor is configured for decoding indicia information that cannot be decoded by the primary, basic signal processor due to anomalies in the indicia information caused by signal interference and/or signal strength.
  • 3. The method of claim 1, wherein the indicia information is acquired by an indicia-capturing subsystem.
  • 4. The method of claim 3, wherein the indicia-capturing subsystem comprises an imaging subsystem for capturing images within the imaging subsystem's field of view.
  • 5. The method of claim 3, wherein the indicia-capturing subsystem comprises a laser scanning subsystem for scanning indicia within the laser scanning subsystem's field of view.
  • 6. The method according to claim 1, wherein the primary, basic signal processor comprises a programmable controller.
  • 7. The method according to claim 1, wherein the secondary, advanced signal processor comprises a computer processor in communication with an associated memory.
  • 8. The system according to claim 7, wherein the memory stores software configured to decode the indicia information.
CROSS-REFERENCE TO PRIORITY APPLICATION

This application is a continuation of commonly assigned U.S. application Ser. No. 14/065,768 for a HYBRID SYSTEM AND METHOD FOR READING INDICIA, filed Oct. 29, 2013, the entire disclosure of which is incorporated herein by reference.

US Referenced Citations (291)
Number Name Date Kind
3668650 Wang Jun 1972 A
4411016 Wakeland Oct 1983 A
4542528 Sanner et al. Sep 1985 A
5081342 Knowles et al. Jan 1992 A
5194722 Mergenthaler et al. Mar 1993 A
5247161 Actis et al. Sep 1993 A
5378883 Batterman et al. Jan 1995 A
5481098 Davis et al. Jan 1996 A
5510603 Hess et al. Apr 1996 A
5512739 Chandler Apr 1996 A
5627358 Roustaei May 1997 A
5952644 Barkan Sep 1999 A
5992750 Chadima, Jr. Nov 1999 A
6234395 Chadima et al. May 2001 B1
6286760 Schmidt et al. Sep 2001 B1
6543691 Lemelson et al. Apr 2003 B1
6832725 Gardiner et al. Dec 2004 B2
6860427 Schmidt et al. Mar 2005 B1
7070108 Blanford Jul 2006 B1
7128266 Marlton et al. Oct 2006 B2
7159783 Walczyk et al. Jan 2007 B2
7311259 Watanabe et al. Dec 2007 B2
7380719 Gregerson Jun 2008 B1
7413127 Ehrhart et al. Aug 2008 B2
7726575 Wang et al. Jun 2010 B2
7857221 Kuhno et al. Dec 2010 B2
8294969 Plesko Oct 2012 B2
8317105 Kotlarsky et al. Nov 2012 B2
8322622 Suzhou et al. Dec 2012 B2
8366005 Kotlarsky et al. Feb 2013 B2
8371507 Haggerty et al. Feb 2013 B2
8376233 Van Horn et al. Feb 2013 B2
8381979 Franz Feb 2013 B2
8390909 Plesko Mar 2013 B2
8408464 Zhu et al. Apr 2013 B2
8408468 Horn et al. Apr 2013 B2
8408469 Good Apr 2013 B2
8424768 Rueblinger et al. Apr 2013 B2
8448863 Xian et al. May 2013 B2
8457013 Essinger et al. Jun 2013 B2
8459557 Havens et al. Jun 2013 B2
8469272 Kearney Jun 2013 B2
8474712 Kearney et al. Jul 2013 B2
8479992 Kotlarsky et al. Jul 2013 B2
8490877 Kearney Jul 2013 B2
8500027 Kishimoto et al. Aug 2013 B2
8517271 Kotlarsky et al. Aug 2013 B2
8523076 Good Sep 2013 B2
8528818 Ehrhart et al. Sep 2013 B2
8544737 Gomez et al. Oct 2013 B2
8548420 Grunow et al. Oct 2013 B2
8550335 Samek et al. Oct 2013 B2
8550354 Gannon et al. Oct 2013 B2
8550357 Kearney Oct 2013 B2
8556174 Kosecki et al. Oct 2013 B2
8556176 Van Horn et al. Oct 2013 B2
8556177 Hussey et al. Oct 2013 B2
8559767 Barber et al. Oct 2013 B2
8561895 Gomez et al. Oct 2013 B2
8561903 Sauerwein Oct 2013 B2
8561905 Edmonds et al. Oct 2013 B2
8565107 Pease et al. Oct 2013 B2
8571307 Li et al. Oct 2013 B2
8579200 Samek et al. Nov 2013 B2
8583924 Caballero et al. Nov 2013 B2
8584945 Wang et al. Nov 2013 B2
8587595 Wang Nov 2013 B2
8587697 Hussey et al. Nov 2013 B2
8588869 Sauerwein et al. Nov 2013 B2
8590789 Nahill et al. Nov 2013 B2
8590792 Tan et al. Nov 2013 B2
8596539 Havens et al. Dec 2013 B2
8596542 Havens et al. Dec 2013 B2
8596543 Havens et al. Dec 2013 B2
8599271 Havens et al. Dec 2013 B2
8599957 Peake et al. Dec 2013 B2
8600158 Li et al. Dec 2013 B2
8600167 Showering Dec 2013 B2
8602309 Longacre et al. Dec 2013 B2
8608053 Meier et al. Dec 2013 B2
8608071 Liu et al. Dec 2013 B2
8611309 Wang et al. Dec 2013 B2
8615487 Gomez et al. Dec 2013 B2
8621123 Caballero Dec 2013 B2
8622303 Meier et al. Jan 2014 B2
8628013 Ding Jan 2014 B2
8628015 Wang et al. Jan 2014 B2
8628016 Winegar Jan 2014 B2
8629926 Wang Jan 2014 B2
8630491 Longacre et al. Jan 2014 B2
8635309 Berthiaume et al. Jan 2014 B2
8636200 Kearney Jan 2014 B2
8636212 Nahill et al. Jan 2014 B2
8636215 Ding et al. Jan 2014 B2
8636224 Wang Jan 2014 B2
8638806 Wang et al. Jan 2014 B2
8640958 Lu et al. Feb 2014 B2
8640960 Wang et al. Feb 2014 B2
8643717 Li et al. Feb 2014 B2
8646692 Meier et al. Feb 2014 B2
8646694 Wang et al. Feb 2014 B2
8657200 Ren et al. Feb 2014 B2
8659397 Vargo et al. Feb 2014 B2
8668149 Good Mar 2014 B2
8678285 Kearney Mar 2014 B2
8678286 Smith et al. Mar 2014 B2
8682077 Longacre Mar 2014 B1
D702237 Oberpriller et al. Apr 2014 S
8687282 Feng et al. Apr 2014 B2
8692927 Pease et al. Apr 2014 B2
8695880 Bremer et al. Apr 2014 B2
8698949 Grunow et al. Apr 2014 B2
8702000 Barber et al. Apr 2014 B2
8717494 Gannon May 2014 B2
8720783 Biss et al. May 2014 B2
8723804 Fletcher et al. May 2014 B2
8723904 Marty et al. May 2014 B2
8727223 Wang May 2014 B2
8939363 Powell et al. Jan 2015 B2
10067069 Pinter Sep 2018 B2
10489623 Handshaw Nov 2019 B1
10621397 Jovanovski Apr 2020 B2
20010042789 Krichever et al. Nov 2001 A1
20020063159 Wilz et al. May 2002 A1
20020148898 Gregerson et al. Oct 2002 A1
20020170970 Ehrhart Nov 2002 A1
20020190128 Levine et al. Dec 2002 A1
20030085284 Bremer et al. May 2003 A1
20030222144 Meier et al. Dec 2003 A1
20030222147 Havens Dec 2003 A1
20040016797 Jones et al. Jan 2004 A1
20040112963 Blanford Jun 2004 A1
20040164163 Watanabe Aug 2004 A1
20040238629 Buchholz Dec 2004 A1
20040240559 Prakasam et al. Dec 2004 A1
20050001035 Hawley et al. Jan 2005 A1
20050178834 Natsuno Aug 2005 A1
20060065734 Sackett Mar 2006 A1
20060076397 Geoffrey Apr 2006 A1
20060090161 Bodas Apr 2006 A1
20060091219 Joseph May 2006 A1
20070051812 Lopez et al. Mar 2007 A1
20070057050 Kuhno et al. Mar 2007 A1
20070057064 Schneider et al. Mar 2007 A1
20070063048 Havens et al. Mar 2007 A1
20070221734 Madej Sep 2007 A1
20070267501 Jovanovski et al. Nov 2007 A1
20080011855 Nadabar Jan 2008 A1
20080029602 Burian Feb 2008 A1
20080034272 Wu et al. Feb 2008 A1
20080121717 Gregerson May 2008 A1
20080179402 Barkan et al. Jul 2008 A1
20080185432 Caballero et al. Aug 2008 A1
20080197201 Manessis et al. Aug 2008 A1
20080253275 Feher Oct 2008 A1
20080296393 Jovanovski et al. Dec 2008 A1
20090127343 Chiang May 2009 A1
20090134221 Zhu et al. May 2009 A1
20100177076 Essinger et al. Jul 2010 A1
20100177080 Essinger et al. Jul 2010 A1
20100177707 Essinger et al. Jul 2010 A1
20100177749 Essinger et al. Jul 2010 A1
20100252635 Drzymala et al. Oct 2010 A1
20110062238 Good Mar 2011 A1
20110080414 Wang Apr 2011 A1
20110169999 Grunow et al. Jul 2011 A1
20110174881 Samek Jul 2011 A1
20110202554 Powilleit et al. Aug 2011 A1
20110211726 Moed et al. Sep 2011 A1
20110215146 Shams Sep 2011 A1
20110246760 Ueta Oct 2011 A1
20110253784 Kishimoto et al. Oct 2011 A1
20110264981 Alrod et al. Oct 2011 A1
20120111946 Golant May 2012 A1
20120138685 Qu et al. Jun 2012 A1
20120153022 Havens Jun 2012 A1
20120168511 Kotlarsky et al. Jul 2012 A1
20120168512 Kotlarsky et al. Jul 2012 A1
20120193407 Barten Aug 2012 A1
20120193423 Samek Aug 2012 A1
20120193426 Gelay Aug 2012 A1
20120203647 Smith Aug 2012 A1
20120223141 Good et al. Sep 2012 A1
20120228382 Havens et al. Sep 2012 A1
20120248188 Kearney Oct 2012 A1
20120256000 Cok Oct 2012 A1
20130037605 Cok et al. Feb 2013 A1
20130043312 Van Horn Feb 2013 A1
20130043314 Gillet et al. Feb 2013 A1
20130056285 Meagher Mar 2013 A1
20130062412 Tan et al. Mar 2013 A1
20130070322 Fritz et al. Mar 2013 A1
20130075168 Amundsen et al. Mar 2013 A1
20130082104 Kearney et al. Apr 2013 A1
20130112752 Negro May 2013 A1
20130175341 Kearney et al. Jul 2013 A1
20130175343 Good Jul 2013 A1
20130200158 Feng et al. Aug 2013 A1
20130214048 Wilz Aug 2013 A1
20130256418 Havens et al. Oct 2013 A1
20130257744 Daghigh et al. Oct 2013 A1
20130257759 Daghigh Oct 2013 A1
20130270346 Xian et al. Oct 2013 A1
20130278425 Cunningham et al. Oct 2013 A1
20130287258 Kearney Oct 2013 A1
20130292474 Xian et al. Nov 2013 A1
20130292475 Kotlarsky et al. Nov 2013 A1
20130292477 Hennick et al. Nov 2013 A1
20130293539 Hunt et al. Nov 2013 A1
20130293540 Laffargue et al. Nov 2013 A1
20130306728 Thuries et al. Nov 2013 A1
20130306730 Brady et al. Nov 2013 A1
20130306731 Pedraro Nov 2013 A1
20130306734 Xian et al. Nov 2013 A1
20130307964 Bremer et al. Nov 2013 A1
20130308625 Corcoran Nov 2013 A1
20130313324 Koziol et al. Nov 2013 A1
20130313325 Wilz et al. Nov 2013 A1
20130313326 Ehrhart Nov 2013 A1
20130327834 Hennick et al. Dec 2013 A1
20130341399 Xian et al. Dec 2013 A1
20130342717 Havens et al. Dec 2013 A1
20140001267 Giordano et al. Jan 2014 A1
20140002828 Laffargue et al. Jan 2014 A1
20140008430 Soule et al. Jan 2014 A1
20140008439 Wang Jan 2014 A1
20140021256 Qu et al. Jan 2014 A1
20140025584 Liu et al. Jan 2014 A1
20140027518 Edmonds et al. Jan 2014 A1
20140034723 Van Horn et al. Feb 2014 A1
20140034734 Sauerwein Feb 2014 A1
20140036848 Pease et al. Feb 2014 A1
20140039693 Havens et al. Feb 2014 A1
20140042814 Kather et al. Feb 2014 A1
20140049120 Kohtz et al. Feb 2014 A1
20140049635 Laffargue et al. Feb 2014 A1
20140061305 Nahill et al. Mar 2014 A1
20140061306 Wu et al. Mar 2014 A1
20140061307 Wang et al. Mar 2014 A1
20140063289 Hussey et al. Mar 2014 A1
20140066136 Sauerwein et al. Mar 2014 A1
20140067692 Ye et al. Mar 2014 A1
20140070005 Nahill et al. Mar 2014 A1
20140071840 Venancio Mar 2014 A1
20140074746 Wang Mar 2014 A1
20140075846 Woodburn Mar 2014 A1
20140076974 Havens et al. Mar 2014 A1
20140078341 Havens et al. Mar 2014 A1
20140078342 Li et al. Mar 2014 A1
20140078345 Showering Mar 2014 A1
20140084068 Gillet et al. Mar 2014 A1
20140086348 Peake et al. Mar 2014 A1
20140097249 Gomez et al. Apr 2014 A1
20140098284 Oberpriller et al. Apr 2014 A1
20140098792 Wang et al. Apr 2014 A1
20140100774 Showering Apr 2014 A1
20140100813 Showering Apr 2014 A1
20140103115 Meier et al. Apr 2014 A1
20140104413 McCloskey et al. Apr 2014 A1
20140104414 McCloskey et al. Apr 2014 A1
20140104416 Li et al. Apr 2014 A1
20140104451 Todeschini et al. Apr 2014 A1
20140106594 Skvoretz Apr 2014 A1
20140106725 Sauerwein Apr 2014 A1
20140108010 Maltseff et al. Apr 2014 A1
20140108402 Gomez et al. Apr 2014 A1
20140108682 Caballero Apr 2014 A1
20140110485 Toa et al. Apr 2014 A1
20140114530 Fitch et al. Apr 2014 A1
20140121438 Kearney May 2014 A1
20140121445 Ding et al. May 2014 A1
20140124577 Wang et al. May 2014 A1
20140124579 Ding May 2014 A1
20140125842 Winegar May 2014 A1
20140125853 Wang May 2014 A1
20140125999 Longacre et al. May 2014 A1
20140129378 Richardson May 2014 A1
20140131441 Nahill et al. May 2014 A1
20140133379 Wang et al. May 2014 A1
20140140585 Wang May 2014 A1
20140151453 Meier et al. Jun 2014 A1
20140160329 Ren et al. Jun 2014 A1
20140263632 Powell Sep 2014 A1
20150115035 Meier Apr 2015 A1
20150161429 Xian Jun 2015 A1
20150205984 Jiang Jul 2015 A1
20150332078 Wang Nov 2015 A1
20150379320 Slowik et al. Dec 2015 A1
20160012324 Eschbach et al. Jan 2016 A1
20170293788 Taira Oct 2017 A1
20210158000 Fjellstad May 2021 A1
Foreign Referenced Citations (3)
Number Date Country
2013163789 Nov 2013 WO
2013173985 Nov 2013 WO
2014019130 Feb 2014 WO
Non-Patent Literature Citations (70)
Entry
U.S. Appl. No. 14/274,858 for Mobile Printer With Optional Battery Accessory, filed May 12, 2014, (Marty et al.), 26 pages.
U.S. Appl. No. 14/264,173 for Autofocus Lens System for Indicia Readers filed Apr. 29, 2014, (Ackley et al.), 39 pages.
U.S. Appl. No. 14/230,322 for Focus Module and Components with Actuator filed Mar. 31, 2014 (Feng at al.); 92 pages.
U.S. Appl. No. 14/222,994 for Method and Apparatus for Reading Optical Indicia Using a Plurality of Data filed Mar. 24, 2014 (Smith et al.); 30 pages.
U.S. Appl. No. 14/231,898 for Hand-Mounted Indicia-Reading Device with Finger Motion Triggering filed Apr. 1, 2014 (Van Horn et al.); 36 pages.
U.S. Appl. No. 29/486,759 for an Imaging Terminal, filed Apr. 2, 2014 (Oberpriller et al.); 8 pages.
U.S. Appl. No. 29/436,337 for an Electronic Device, filed Nov. 5, 2012 (Fitch et al.); 19 pages.
U.S. Appl. No. 29/458,405 for an Electronic Device, filed Jun. 19, 2013 (Fitch et al.); 22 pages.
U.S. Appl. No. 29/459,620 for an Electronic Device Enclosure, filed Jul. 2, 2013 (London et al.); 21 pages.
U.S. Appl. No. 29/459,681 for an Electronic Device Enclosure, filed Jul. 2, 2013 (Chaney et al.); 14 pages.
U.S. Appl. No. 29/459,785 for a Scanner and Charging Base, filed Jul. 3, 2013 (Fitch et al.); 21 pages.
U.S. Appl. No. 29/459,823 for a Scanner, filed Jul. 3, 2013 (Zhou et al.); 13 pages.
U.S. Appl. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.); 44 pages.
U.S. Appl. No. 13/367,978, filed Feb. 7, 2012, (Feng et al.); now abandoned.
U.S. Appl. No. 13/736,139 for an Electronic Device Enclosure, filed Jan. 8, 2013 (Chaney); 40 pages.
U.S. Appl. No. 13/771,508 for an Optical Redirection Adapter, filed Feb. 20, 2013 (Anderson); 26 pages.
U.S. Appl. No. 13/780,356 for a Mobile Device Having Object Identification Interface, filed Feb. 28, 2013 (Samek et al.); 21 pages.
U.S. Appl. No. 13/852,097 for a System and Method for Capturing and Preserving Vehicle Event Data, filed Mar. 28, 2013 (Barker et al.); 20 pages.
U.S. Appl. No. 13/902,110 for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Hollifield); 29 pages.
U.S. Appl. No. 13/902,144, for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Chamberlin); 23 pages.
U.S. Appl. No. 13/902,242 for a System For Providing A Continuous Communication Link With A Symbol Reading Device, filed May 24, 2013 (Smith et al.); 24 pages.
U.S. Appl. No. 13/912,262 for a Method of Error Correction for 3D Imaging Device, filed Jun. 7, 2013 (Jovanovski et al.); 33 pages.
U.S. Appl. No. 13/912,702 for a System and Method for Reading Code Symbols at Long Range Using Source Power Control, filed Jun. 7, 2013 (Xian et al.); 24 pages.
U.S. Appl. No. 13/922,339 for a System and Method for Reading Code Symbols Using a Variable Field of View, filed Jun. 20, 2013 (Xian et al.); 23 pages.
U.S. Appl. No. 13/927,398 for a Code Symbol Reading System Having Adaptive Autofocus, filed Jun. 26, 2013 (Todeschini); 24 pages.
U.S. Appl. No. 13/930,913 for a Mobile Device Having an Improved User Interface for Reading Code Symbols, filed Jun. 28, 2013 (Gelay et al.); 24 pages.
U.S. Appl. No. 13/933,415 for an Electronic Device Case, filed Jul. 2, 2013 (London et al.); 47 pages.
U.S. Appl. No. 13/947,296 for a System and Method for Selectively Reading Code Symbols, filed Jul. 22, 2013 (Rueblinger et al.); 29 pages.
U.S. Appl. No. 13/950,544 for a Code Symbol Reading System Having Adjustable Object Detection, filed Jul. 25, 2013 (Jiang); 28 pages.
U.S. Appl. No. 13/961,408 for a Method for Manufacturing Laser Scanners, filed Aug. 7, 2013 (Saber et al.); 26 pages.
U.S. Appl. No. 14/018,729 for a Method for Operating a Laser Scanner, filed Sep. 5, 2013 (Feng et al.); 24 pages.
U.S. Appl. No. 14/019,616 for a Device Having Light Source to Reduce Surface Pathogens, filed Sep. 6, 2013 (Todeschini); 23 pages.
U.S. Appl. No. 14/023,762 for a Handheld Indicia Reader Having Locking Endcap, filed Sep. 11, 2013 (Gannon); 31 pages.
U.S. Appl. No. 14/035,474 for Augmented-Reality Signature Capture, filed Sep. 24, 2013 (Todeschini); 33 pages.
U.S. Appl. No. 14/047,896 for Terminal Having Illumination and Exposure Control filed Oct. 7, 2013 (Jovanovski et al.); 32 pages.
U.S. Appl. No. 14/053,175 for Imaging Apparatus Having Imaging Assembly, filed Oct. 14, 2013 (Barber); 39 pages.
U.S. Appl. No. 14/055,234 for Dimensioning System, filed Oct. 16, 2013 (Fletcher); 26 pages.
U.S. Appl. No. 14/053,314 for Indicia Reader, filed Oct. 14, 2013 (Huck); 29 pages.
U.S. Appl. No. 14/065,768 for Hybrid System and Method for Reading Indicia, filed Oct. 29, 2013 (Meier et al.); 22 pages.
U.S. Appl. No. 14/074,746 for Self-Checkout Shopping System, filed Nov. 8, 2013 (Hejl et al.); 26 pages.
U.S. Appl. No. 14/074,787 for Method and System for Configuring Mobile Devices via NFC Technology, filed Nov. 8, 2013 (Smith et al.); 28 pages.
U.S. Appl. No. 14/087,190 for Optimal Range Indicators for Bar Code Validation, filed Nov. 22, 2013 (Hejl); 27 pages.
U.S. Appl. No. 14/345,735 for Optical Indicia Reading Terminal with Combined Illumination filed Mar. 19, 2014 (Ouyang); 19 pages.
U.S. Appl. No. 14/101,965 for High Dynamic-Range Indicia Reading System, filed Dec. 10, 2013 (Xian); 28 pages.
U.S. Appl. No. 14/118,400 for Indicia Decoding Device with Security Lock, filed Nov. 18, 2013 (Liu); 28 pages.
U.S. Appl. No. 14/150,393 for Incicia-reader Having Unitary Construction Scanner, filed Jan. 8, 2014 (Colavito et al.); 28 pages.
U.S. Appl. No. 14/154,207 for Laser Barcode Scanner, filed Jan. 14, 2014 (Hou et al.); 26 pages.
U.S. Appl. No. 14/154,915 for Laser Scanning Module Employing a Laser Scanning Assembly having Elastomeric Wheel Hinges, filed Jan. 14, 2014 (Havens et al.); 24 pages.
U.S. Appl. No. 14/158,126 for Methods and Apparatus to Change a Feature Set on Data Collection Devices, filed Jan. 17, 2014 (Berthiaume et al.); 53 pages.
U.S. Appl. No. 14/342,551 for Terminal Having Image Data Format Conversion filed Mar. 4, 2014 (Lui et al.); 25 pages.
U.S. Appl. No. 14/342,544 for Imaging Based Barcode Scanner Engine with Multiple Elements Supported on a Common Printed Circuit Board filed Mar. 4, 2014 (Liu et al.); 27 pages.
U.S. Appl. No. 14/257,174 for Reading Apparatus Having Partial Frame Operating Mode filed Apr. 21, 2014, (Barber et al.), 67 pages.
U.S. Appl. No. 14/200,405 for Indicia Reader for Size-Limited Applications filed Mar. 7, 2014 (Feng et al.); 42 pages.
U.S. Appl. No. 14/166,103 for Indicia Reading Terminal Including Optical Filter filed Jan. 28, 2014 (Lu et al.); 29 pages.
Search and Exam Report in related Application GB1417501.2, dated Mar. 26, 2015, 4 pages.
Examination Report in related Application GB1417501.2, dated Oct. 7, 2015, 3 pages.
Second Examination Report in counterpart British Application No. GB1417501.2 dated Dec. 9, 2016, pp. 1-3.
Intention to Grant in counterpart British Application No. GB1417501.2, dated Oct. 14, 2016, pp. 1-4.
Second Examination Report in counterpart British Application No. GB1417501.2, dated Dec. 9, 2015, pp. 1-3.
Advisory Action (PTOL-303) dated Jun. 9, 2015 for U.S. Appl. No. 14/065,768.
Advisory Action (PTOL-303) dated Oct. 18, 2016 for U.S. Appl. No. 14/065,768.
Applicant Initiated Interview Summary (PTOL-413) dated Jan. 16, 2015 for U.S. Appl. No. 14/065,768.
Final Rejection dated Aug. 16, 2016 for U.S. Appl. No. 14/065,768.
Final Rejection dated Feb. 9, 2015 for U.S. Appl. No. 14/065,768.
Final Rejection dated Oct. 4, 2018 for U.S. Appl. No. 14/065,768.
Non-Final Rejection dated Apr. 25, 2016 for U.S. Appl. No. 14/065,768.
Non-Final Rejection dated Jul. 18, 2014 for U.S. Appl. No. 14/065,768.
Non-Final Rejection dated Mar. 2, 2017 for U.S. Appl. No. 14/065,768.
Non-Final Rejection dated May 30, 2018 for U.S. Appl. No. 14/065,768.
Notice of Allowance and Fees Due (PTOL-85) dated Dec. 14, 2018 for U.S. Appl. No. 14/065,768.
Related Publications (1)
Number Date Country
20190213370 A1 Jul 2019 US
Continuations (1)
Number Date Country
Parent 14065768 Oct 2013 US
Child 16353192 US