Hybrid techniques for antenna retuning utilizing transmit and receive power information

Information

  • Patent Grant
  • 9119152
  • Patent Number
    9,119,152
  • Date Filed
    Tuesday, June 3, 2014
    10 years ago
  • Date Issued
    Tuesday, August 25, 2015
    9 years ago
Abstract
An embodiment of the present invention provides an apparatus, comprising a transceiver, an antenna tuner connecting said transceiver to an antenna, a power sensor adapted to acquire measurements about transmit power, a receive signal strength indicator (RSSI) adapted to acquire measurements about receive power and wherein said tuner tunes said antenna based upon said transmit and receive measurements to optimize said antenna in both the receive and transmit bands.
Description
BACKGROUND OF THE INVENTION

Wireless devices have become prevalent throughout society. As users demand more mobility, there is a tremendous requirement for decreasing power consumption and thereby increasing battery life. Further, many wireless devices may transmit on a plurality of carrier frequencies and include circuits dealing with several frequency bands of operation and may receive and transmit at varying power levels. In wireless applications, the transmitted power is much higher than the received power and to perform the retuning of a mismatched antenna or matching network, power measurement must be performed.


Thus, there is a strong need for techniques for antenna retuning utilizing transmit and receive power information.


SUMMARY OF THE INVENTION

An embodiment of the present invention provides an apparatus, comprising a transceiver, an antenna tuner connecting the transceiver to an antenna, a power sensor adapted to acquire measurements about transmit power, a receive signal strength indicator (RSSI) adapted to acquire measurements about receive power and wherein the tuner tunes the antenna based upon the transmit and receive measurements to optimize the antenna in both the receive and transmit bands.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is described with reference to the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements. Additionally, the left-most digit(s) of a reference number identifies the drawing in which the reference number first appears.



FIG. 1 illustrates an apparatus adapted for transmit and receive fully closed loop power measurements and antenna retuning of an embodiment of the present invention;



FIG. 2 illustrates an apparatus adapted for transmit and receive one half closed loop power measurements and antenna retuning of an embodiment of the present invention;



FIG. 3 illustrates an apparatus adapted for transmit and receive three quarters closed loop power measurements and antenna retuning of an embodiment of the present invention; and



FIG. 4 illustrates a method according to one embodiment of the present invention.





DETAILED DESCRIPTION

In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be understood by those skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components and circuits have not been described in detail so as not to obscure the present invention.


An algorithm is here, and generally, considered to be a self-consistent sequence of acts or operations leading to a desired result. These include physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers or the like. It should be understood, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities.


Unless specifically stated otherwise, as apparent from the following discussions, it is appreciated that throughout the specification discussions utilizing terms such as “processing,” “computing,” “calculating,” “determining,” or the like, refer to the action and/or processes of a computer or computing system, or similar electronic computing device, that manipulate and/or transform data represented as physical, such as electronic, quantities within the computing system's registers and/or memories into other data similarly represented as physical quantities within the computing system's memories, registers or other such information storage, transmission or display devices.


The processes and displays presented herein are not inherently related to any particular computing device or other apparatus. Various general purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct a more specialized apparatus to perform the desired method. The desired structure for a variety of these systems will appear from the description below. In addition, embodiments of the present invention are not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the invention as described herein. In addition, it should be understood that operations, capabilities; and features described herein may be implemented with any combination of hardware (discrete or integrated circuits) and software.


Use of the terms “coupled” and “connected”, along with their derivatives, may be used. It should be understood that these terms are not intended as synonyms for each other. Rather, in particular embodiments, “connected” may be used to indicate that two or more elements are in direct physical or electrical contact with each other. “Coupled” my be used to indicated that two or more elements are in either direct or indirect (with other intervening elements between them) physical or electrical contact with each other, and/or that the two or more elements co-operate or interact with each other (e.g. as in a cause an effect relationship).


Turning to FIG. 1, is an apparatus, comprising a transceiver 100, an antenna tuner 125 connecting the transceiver 100 to an antenna 130, a power sensor 145 adapted to acquire measurements about transmit power, a receive signal strength indicator (RSSI) 155 adapted to acquire measurements about receive power, and wherein the tuner 125 tunes the antenna 130 based upon the transmit and receive measurements to optimize the antenna 130 in both the receive and transmit bands.


In an embodiment of the present invention, the transceiver may further comprise a modulator 105 driving a variable power amplifier module (PAM) 110 and a low noise amplifier 140 adapted to receive the output of the variable PAM 110 via a switch 115, and a variable gain amplifier (VGA) 135 receiving the output of the low noise amplifier 140. The RSSI may receive the output of the VGA and output it to a processor 160, thereby providing the receive sense for the receive signal measurements. The output of the PAM 110 may be coupled via a coupler 120 and switch 115 to the power sensor 145 to determine the transmit measurements. In an embodiment of the present invention the apparatus may further comprise a microcontroller 165 adapted to received transmit measurements from the power sensor 145 and receive measurements from the RSSI 155 via a processor 160 and pass this information to an application specific programmable integrated circuit (ASPIC) 150 to control the tuner 125.


Turning now to FIG. 2, a base-band may specify to the microcontroller 155 the transmit and receive state 210. Further, the apparatus of FIG. 2 illustrates the microcontroller may transmit to the ASPIC either a default received state 220 only or an optimized transmit or receive state 230 based on a base-band specification.



FIG. 3, illustrates the base-band specifying to the microcontroller the transmit and receive state or receive state only 310. The microcontroller 155 of FIG. 3 may transmit to the ASPIC either a receive default state only 320 or an optimized transmit state based on a base-band specification 330.


Turning now to FIG. 4, shown generally as 400, is a method according to an embodiment of the present invention, comprising connecting a transceiver to an antenna via an antenna tuner 410, using a power sensor adapted to acquire measurements about transmit power and a receive signal strength indicator (RSSI) adapted to acquire measurements about receive power 420 and tuning the antenna with the tuner based upon the transmit and receive measurements to optimize the antenna in both the receive and transmit bands 430. An embodiment of the present method may further comprise using a modulator driving a power amplifier module (PAM), a low noise amplifier adapted to receive the output of the PAM via a switch and a variable gain amplifier (VGA) receiving the output of the low noise amplifier in the transceiver. Also, the present method may further comprise receiving the output of the VGA by the RSSI and outputting to a processor, thereby providing the receive sense for the receive signal measurements and coupling the output of the PAM via a coupler and switch to the power sensor to determine the transmit measurements. An embodiment of the present method may further comprise using a microcontroller adapted to received transmit measurements from the power sensor and receive measurements from the RSSI via a processor and passing this information to an application specific programmable integrated circuit (ASPIC) to control the tuner.


Specifying by a base-band to the microcontroller the transmit and receive state or specifying by a base-band to the microcontroller the transmit and receive state or receive state only may also be included in some embodiments of the present invention. In still a further embodiment, the present method may further comprise transmitting by the microcontroller to the ASPIC either a default received state only or an optimized transmit or receive state based on a base-band specification.


Some embodiments of the present invention may be implemented, for example, using a machine-readable medium or article which may store an instruction or a set of instructions that, if executed by a machine, for example, by the microcontroller 130 or ASPIC 135 of FIG. 1, or by other suitable machines, cause the machine to perform a method and/or operations in accordance with embodiments of the invention. Such machine may include, for example, any suitable processing platform, computing platform, computing device, processing device, computing system, processing system, computer, processor, or the like, and may be implemented using any suitable combination of hardware and/or software. The machine-readable medium or article may include, for example, any suitable type of memory unit, memory device, memory article, memory medium, storage device, storage article, storage medium and/or storage unit, for example, memory, removable or non-removable media, erasable or non-erasable media, writeable or re-writeable media, digital or analog media, hard disk, floppy disk, Compact Disk Read Only Memory (CD-ROM), Compact Disk Recordable (CD-R), Compact Disk Re-Writeable (CD-RW), optical disk, magnetic media, various types of Digital Versatile Disks (DVDs), a tape, a cassette, or the like. The instructions may include any suitable type of code, for example, source code, compiled code, interpreted code, executable code, static code, dynamic code, or the like, and may be implemented using any suitable high-level, low-level, object-S oriented, visual, compiled and/or interpreted programming language, e.g., C, C++, Java, BASIC, Pascal, Fortran, Cobol, assembly language, machine code, or the like.


In an embodiment of the present invention the machine-accessible medium that provides instructions, which when accessed, may cause the machine to perform operations comprising connecting a transceiver to an antenna via an antenna tuner, using a power sensor adapted to acquire measurements about transmit power and a receive signal strength indicator (RSSI) adapted to acquire measurements about receive power, and tuning the antenna with the tuner based upon the transmit and receive measurements to optimize the antenna in both the receive and transmit bands. The machine-accessible medium of the present invention may further comprise the instructions causing the machine to perform operations further comprising using a modulator driving a power amplifier module (PAM), a low noise amplifier adapted to receive the output of the PAM via a switch, and a variable gain amplifier (VGA) receiving the output of the low noise amplifier in the transceiver. The machine-accessible medium of the present invention yet still may further comprise the instructions causing the machine to perform operations further comprising receiving the output of the VGA by the RSSI and outputting to a processor, thereby providing the receive sense for the receive signal measurements and still further comprise the instructions causing the machine to perform operations further comprising coupling the output of the PAM via a coupler and switch to the power sensor to determine the transmit measurements and using a microcontroller adapted to received transmit measurements from the power sensor and receive measurements from the RSSI via a processor and passing this information to an application specific programmable integrated circuit (ASPIC) to control the tuner.


Some embodiments of the present invention may be implemented by software, by hardware, or by any combination of software and/or hardware as may be suitable for specific applications or in accordance with specific design requirements. Embodiments of the invention may include units and/or sub-units, which may be separate of each other or combined together, in whole or in part, and may be implemented using specific, multi-purpose or general processors or controllers, or devices as are known in the art. Some embodiments of the invention may include buffers, registers, stacks, storage units and/or memory units, for temporary or long-term storage of data or in order to facilitate the operation of a specific embodiment.


Regarding the timing for retuning, in an embodiment of the present invention the antenna retuning may occur once per frame, before the burst. In this case power is measured and averaged on the previous burst, the calculation of next biasing points is performed and new values are applied for the following burst. This has the advantages of a lot of time to compute, power savings, no transients issues (spurious), fast enough for humans (−100 ms for retuning).


While the present invention has been described in terms of what are at present believed to be its preferred embodiments, those skilled in the art will recognize that various modifications to the disclose embodiments can be made without departing from the scope of the invention as defined by the following claims.

Claims
  • 1. A machine-readable storage device comprising executable instructions which, responsive to being executed by a processor, cause the processor to perform operations comprising: obtaining first data associated with transmit power of a wireless communication device;
  • 2. The machine-readable storage device of claim 1, wherein the operations further comprise receiving an output of a receive signal strength indicator device, wherein a modulator drives a power amplifier module, wherein a low noise amplifier receives an output of the power amplifier module via a switch, wherein a variable gain amplifier receives an output of the low noise amplifier, wherein an output of the variable gain amplifier is received by the receive signal strength indicator device.
  • 3. The machine-readable storage device of claim 2, wherein the processor is coupled to the output of the power amplifier module via a coupler and a switch to enable determining the first data.
  • 4. The machine-readable storage device of claim 1, wherein the operations further comprise providing the first and second data to an application specific programmable integrated circuit to control the tunable matching network.
  • 5. The machine-readable storage device of claim 1, wherein transmit and receive states are specified to the processor based on a base-band specification.
  • 6. The machine-readable storage device of claim 1, wherein a receive state without a transmit state is specified to the processor based on a base-band specification.
  • 7. The machine-readable storage device of claim 1, wherein the operations further comprise providing a default received state to an application specific programmable integrated circuit.
  • 8. The machine-readable storage device of claim 1, wherein the obtaining of the second data is via an receive signal strength indicator device.
  • 9. A method, comprising: obtaining, by a controller of a communication device, data associated with transmit power and associated with receive power; andadjusting, by the controller, a tunable matching network of the communication device for each frame based upon the data to adjust performance of an antenna of the communication device in both receive and transmit bands.
  • 10. The method of claim 9, wherein the data is first and second data, and wherein the first and second data is utilized in determining each adjustment to the tunable matching network.
  • 11. The method of claim 10, comprising: driving a power amplifier module using a modulator;receiving an output of the power amplifier module at a low noise amplifier via a switch; andreceiving an output of the low noise amplifier at a variable gain amplifier.
  • 12. The method of claim 11, comprising receiving an output of the variable gain amplifier at an receive signal strength indicator device.
  • 13. The method of claim 12, comprising coupling the output of the power amplifier module via a coupler and switch to the controller to determine the first and second data.
  • 14. The method of claim 13, wherein the controller comprises an application specific programmable integrated circuit.
  • 15. A wireless communication device comprising: an antenna;a tunable matching network coupled with the antenna; anda controller coupled with the tunable matching network,wherein the controller obtains first data associated with transmit power based on measurements of a power sensor,wherein the controller obtains second data associated with receive power based on an receive signal strength indicator device, andwherein the tunable matching network is adjusted for each frame based upon the first data and the second data to adjust performance of the antenna in both receive and transmit bands.
  • 16. The wireless communication device of claim 15, wherein both of the first data and the second data are utilized in determining each adjustment to the tunable matching network.
  • 17. The wireless communication device of claim 15, further comprising: a modulator driving a power amplifier module;a low noise amplifier adapted to receive an output of the power amplifier module via a switch;a variable gain amplifier receiving an output of the low noise amplifier; anda processor, wherein the output of the variable gain amplifier is received by the controller and outputted to the processor.
  • 18. The wireless communication device of claim 17, further comprising: a coupler and a switch that couples the output of the power amplifier module to the controller to determine the first data.
  • 19. The wireless communication device of claim 15, further comprising a processor, wherein the controller provides the first and second data to an application specific programmable integrated circuit to control the tunable matching network.
  • 20. The wireless communication device of claim 19, wherein one of a default received state only or an optimized transmit or receive state based on a base-band specification is provided by the controller to the application specific programmable integrated circuit.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of and claims priority to U.S. patent application Ser. No. 13/886,361, filed May 3, 2014, which is a continuation of U.S. patent application Ser. No. 13/484,343, filed May 31, 2012 now U.S. Pat. No. 8,457,569, which is a continuation of U.S. patent application Ser. No. 11/800,592, filed May 7, 2007 now U.S. Pat. No. 8,213,886, the disclosures of all of which are incorporated herein by reference in their entirety.

US Referenced Citations (440)
Number Name Date Kind
2745067 True May 1956 A
3117279 Ludvigson Jan 1964 A
3160832 Beitman Dec 1964 A
3390337 Beitman Jun 1968 A
3443231 Roza May 1969 A
3509500 McNair Apr 1970 A
3571716 Hill Mar 1971 A
3590385 Sabo Jun 1971 A
3601717 Kuecken Aug 1971 A
3742279 Kupsky Jun 1973 A
3749491 Maxfield et al. Jul 1973 A
3794941 Templin Feb 1974 A
3919644 Smolka Nov 1975 A
3990024 Hou Nov 1976 A
3995237 Brunner Nov 1976 A
4186359 Kaegebein Jan 1980 A
4201960 Skutta May 1980 A
4227256 O'Keefe Oct 1980 A
4383441 Willis May 1983 A
4476578 Gaudin Oct 1984 A
4493112 Bruene Jan 1985 A
4509019 Banu et al. Apr 1985 A
4777490 Sharma Oct 1988 A
4799066 Deacon Jan 1989 A
4965607 Wilkins et al. Oct 1990 A
4980656 Duffalo Dec 1990 A
5032805 Elmer Jul 1991 A
5136478 Bruder Aug 1992 A
5142255 Chang Aug 1992 A
5177670 Shinohara Jan 1993 A
5195045 Keane Mar 1993 A
5200826 Seong Apr 1993 A
5212463 Babbitt May 1993 A
5243358 Sanford Sep 1993 A
5258728 Taniyoshi Nov 1993 A
5276912 Siwiak Jan 1994 A
5301358 Gaskill Apr 1994 A
5307033 Koscica Apr 1994 A
5310358 Johnson May 1994 A
5312790 Sengupta May 1994 A
5334958 Babbitt Aug 1994 A
5361403 Dent Nov 1994 A
5371473 Trinh Dec 1994 A
5409889 Das Apr 1995 A
5427988 Sengupta Jun 1995 A
5430417 Martin Jul 1995 A
5446447 Carney Aug 1995 A
5448252 Ali Sep 1995 A
5451567 Das Sep 1995 A
5451914 Stengel Sep 1995 A
5457394 McEwan Oct 1995 A
5472935 Yandrofski Dec 1995 A
5479139 Koscica Dec 1995 A
5486491 Sengupta Jan 1996 A
5496795 Das Mar 1996 A
5502372 Quan Mar 1996 A
5524281 Bradley Jun 1996 A
5548837 Hess et al. Aug 1996 A
5561407 Koscica Oct 1996 A
5564086 Cygan Oct 1996 A
5589844 Belcher et al. Dec 1996 A
5593495 Masuda Jan 1997 A
5635433 Sengupta Jun 1997 A
5635434 Sengupta Jun 1997 A
5640042 Koscica Jun 1997 A
5679624 Das Oct 1997 A
5689219 Piirainen Nov 1997 A
5693429 Sengupta Dec 1997 A
5694134 Barnes Dec 1997 A
5699071 Urakami Dec 1997 A
5721194 Yandrofski Feb 1998 A
5766697 Sengupta Jun 1998 A
5777581 Lilly Jul 1998 A
5778308 Sroka Jul 1998 A
5786727 Sigmon Jul 1998 A
5812572 King Sep 1998 A
5812943 Suzuki Sep 1998 A
5830591 Sengupta Nov 1998 A
5846893 Sengupta Dec 1998 A
5874926 Tsuru Feb 1999 A
5880635 Satoh Mar 1999 A
5886867 Chivukula Mar 1999 A
5892482 Coleman et al. Apr 1999 A
5929717 Richardson Jul 1999 A
5940030 Hampel et al. Aug 1999 A
5963871 Zhinong Oct 1999 A
5969582 Boesch Oct 1999 A
5982099 Barnes et al. Nov 1999 A
5990766 Zhang Nov 1999 A
6009124 Smith Dec 1999 A
6020787 Kim Feb 2000 A
6020795 Kim Feb 2000 A
6029075 Das Feb 2000 A
6045932 Jia Apr 2000 A
6061025 Jackson May 2000 A
6074971 Chiu Jun 2000 A
6096127 Dimos Aug 2000 A
6100733 Dortu Aug 2000 A
6101102 Brand Aug 2000 A
6115585 Matero Sep 2000 A
6125266 Matero et al. Sep 2000 A
6133883 Munson Oct 2000 A
6172385 Duncombe Jan 2001 B1
6215644 Dhuler Apr 2001 B1
6242989 Barber Jun 2001 B1
6281748 Klomsdorf et al. Aug 2001 B1
6281847 Lee Aug 2001 B1
6309895 Jaing Oct 2001 B1
6343208 Ying Jan 2002 B1
6377142 Chiu Apr 2002 B1
6377217 Zhu Apr 2002 B1
6377440 Zhu Apr 2002 B1
6384785 Kamogawa May 2002 B1
6404614 Zhu Jun 2002 B1
6408190 Ying Jun 2002 B1
6414562 Bouisse Jul 2002 B1
6415562 Donaghue Jul 2002 B1
6452776 Chakravorty Sep 2002 B1
6461930 Akram Oct 2002 B2
6466774 Okabe Oct 2002 B1
6492883 Liang Dec 2002 B2
6514895 Chiu Feb 2003 B1
6525630 Zhu Feb 2003 B1
6531936 Chiu Mar 2003 B1
6535076 Partridge Mar 2003 B2
6535722 Rosen Mar 2003 B1
6538603 Chen Mar 2003 B1
6556102 Sengupta Apr 2003 B1
6556814 Klomsdorf Apr 2003 B1
6570462 Edmonson May 2003 B2
6590468 du Toit Jul 2003 B2
6590541 Schultze Jul 2003 B1
6597265 Liang Jul 2003 B2
6608603 Alexopoulos Aug 2003 B2
6624786 Boyle Sep 2003 B2
6640085 Chatzipetros Oct 2003 B1
6657595 Phillips et al. Dec 2003 B1
6661638 Jackson et al. Dec 2003 B2
6670256 Yang Dec 2003 B2
6710651 Forrester Mar 2004 B2
6724611 Mosley Apr 2004 B1
6724890 Bareis Apr 2004 B1
6737179 Sengupta May 2004 B2
6747522 Pietruszynski et al. Jun 2004 B2
6759918 du Toit Jul 2004 B2
6765540 Toncich Jul 2004 B2
6768472 Alexopoulos Jul 2004 B2
6774077 Sengupta Aug 2004 B2
6795712 Vakilian Sep 2004 B1
6825818 Toncich Nov 2004 B2
6839028 Lee Jan 2005 B2
6845126 Dent Jan 2005 B2
6859104 Toncich Feb 2005 B2
6862432 Kim Mar 2005 B1
6864757 Du Toit Mar 2005 B2
6868260 Jagielski Mar 2005 B2
6875655 Lin et al. Apr 2005 B2
6882245 Utsunomiya Apr 2005 B2
6888714 Shaw May 2005 B2
6905989 Ellis Jun 2005 B2
6906653 Uno Jun 2005 B2
6907234 Karr Jun 2005 B2
6920315 Wilcox et al. Jul 2005 B1
6922330 Nielsen Jul 2005 B2
6943078 Zheng Sep 2005 B1
6946847 Nishimori Sep 2005 B2
6949442 Barth Sep 2005 B2
6961368 Dent Nov 2005 B2
6964296 Memory Nov 2005 B2
6965837 Vintola Nov 2005 B2
6993297 Smith Jan 2006 B2
6999297 Klee Feb 2006 B1
7009455 Toncich Mar 2006 B2
7071776 Forrester Jul 2006 B2
7106715 Kelton Sep 2006 B1
7107033 D du Toit Sep 2006 B2
7113614 Rhoads Sep 2006 B2
7151411 Martin Dec 2006 B2
7176634 Kitamura Feb 2007 B2
7176845 Fabrega-Sanchez Feb 2007 B2
7180467 Fabrega-Sanchez Feb 2007 B2
7221327 Toncich May 2007 B2
7298329 Diament Nov 2007 B2
7299018 Van Rumpt Nov 2007 B2
7312118 Kiyotoshi Dec 2007 B2
7332980 Zhu Feb 2008 B2
7332981 Matsuno Feb 2008 B2
7339527 Sager Mar 2008 B2
7369828 Shamsaifar May 2008 B2
7426373 Clingman Sep 2008 B2
7427949 Channabasappa et al. Sep 2008 B2
7453405 Nishikido et al. Nov 2008 B2
7468638 Tsai et al. Dec 2008 B1
7469129 Blaker et al. Dec 2008 B2
7531011 Yamasaki May 2009 B2
7535080 Zeng et al. May 2009 B2
7535312 McKinzie May 2009 B2
7539527 Jang et al. May 2009 B2
7557507 Wu Jul 2009 B2
7596357 Nakamata et al. Sep 2009 B2
7633355 Matsuo Dec 2009 B2
7642879 Matsuno Jan 2010 B2
7655530 Hosking Feb 2010 B2
7667663 Hsiao Feb 2010 B2
7705692 Fukamachi Apr 2010 B2
7711337 McKinzie May 2010 B2
7714676 McKinzie May 2010 B2
7714678 du Toit May 2010 B2
7728693 du Toit Jun 2010 B2
7760699 Malik Jul 2010 B1
7768400 Lawrence et al. Aug 2010 B2
7786819 Ella Aug 2010 B2
7795990 du Toit Sep 2010 B2
7852170 McKinzie Dec 2010 B2
7856228 Lekutai et al. Dec 2010 B2
7865154 Mendolia Jan 2011 B2
7907094 Kakitsu et al. Mar 2011 B2
7917104 Manssen et al. Mar 2011 B2
7949309 Rofougaran May 2011 B2
7969257 du Toit Jun 2011 B2
7983615 Bryce et al. Jul 2011 B2
7991363 Greene Aug 2011 B2
8008982 McKinzie Aug 2011 B2
8072285 Spears Dec 2011 B2
8112043 Knudsen et al. Feb 2012 B2
8170510 Knudsen et al. May 2012 B2
8190109 Ali et al. May 2012 B2
8204446 Scheer Jun 2012 B2
8217732 McKinzie Jul 2012 B2
8299867 McKinzie Oct 2012 B2
8320850 Khlat Nov 2012 B1
8325097 McKinzie, III et al. Dec 2012 B2
8405563 McKinzie et al. Mar 2013 B2
8421548 Spears et al. Apr 2013 B2
8432234 Manssen et al. Apr 2013 B2
8442457 Harel et al. May 2013 B2
8457569 Blin Jun 2013 B2
8472888 Manssen et al. Jun 2013 B2
8558633 McKinzie, III Oct 2013 B2
8564381 McKinzie Oct 2013 B2
8594584 Greene et al. Nov 2013 B2
8620236 Manssen et al. Dec 2013 B2
8620246 McKinzie et al. Dec 2013 B2
8620247 McKinzie et al. Dec 2013 B2
8655286 Mendolia Feb 2014 B2
8674783 Spears et al. Mar 2014 B2
8693963 du Toit et al. Apr 2014 B2
8712340 Hoirup et al. Apr 2014 B2
8787845 Manssen et al. Jul 2014 B2
20020008672 Griffin Jan 2002 A1
20020030566 Bozler Mar 2002 A1
20020079982 Lafleur et al. Jun 2002 A1
20020109642 Gee et al. Aug 2002 A1
20020118075 Ohwada Aug 2002 A1
20020145483 Bouisse Oct 2002 A1
20020167963 Joa-Ng Nov 2002 A1
20020183013 Auckland et al. Dec 2002 A1
20020187780 Souissi Dec 2002 A1
20020191703 Ling Dec 2002 A1
20020193088 Jung Dec 2002 A1
20030060227 Sekine Mar 2003 A1
20030071300 Yashima Apr 2003 A1
20030114124 Higuchi Jun 2003 A1
20030142022 Ollikainen Jul 2003 A1
20030193997 Dent Oct 2003 A1
20030199286 D du Toit Oct 2003 A1
20030210206 Phillips Nov 2003 A1
20030216150 Ueda Nov 2003 A1
20030232607 Le Bars et al. Dec 2003 A1
20040009754 Smith, Jr. Jan 2004 A1
20040090372 Nallo May 2004 A1
20040100341 Luetzelschwab May 2004 A1
20040127178 Kuffner Jul 2004 A1
20040137950 Bolin Jul 2004 A1
20040202399 Kochergin Oct 2004 A1
20040227176 York Nov 2004 A1
20040232982 Itchitsubo et al. Nov 2004 A1
20040257293 Friedrich Dec 2004 A1
20040263411 Fabrega-Sanchez et al. Dec 2004 A1
20050007291 Fabrega-Sanchez Jan 2005 A1
20050032488 Pehlke Feb 2005 A1
20050032541 Wang Feb 2005 A1
20050042994 Otaka Feb 2005 A1
20050059362 Kalajo Mar 2005 A1
20050082636 Yashima Apr 2005 A1
20050085204 Poilasne et al. Apr 2005 A1
20050093624 Forrester et al. May 2005 A1
20050130608 Forse Jun 2005 A1
20050130699 Kim Jun 2005 A1
20050208960 Hassan Sep 2005 A1
20050215204 Wallace Sep 2005 A1
20050227633 Dunko Oct 2005 A1
20050259011 Vance Nov 2005 A1
20050264455 Talvitie Dec 2005 A1
20050282503 Onno Dec 2005 A1
20060003537 Sinha Jan 2006 A1
20060009165 Alles Jan 2006 A1
20060077082 Shanks et al. Apr 2006 A1
20060099915 Laroia et al. May 2006 A1
20060148415 Hamalainen et al. Jul 2006 A1
20060160501 Mendolia Jul 2006 A1
20060183431 Chang et al. Aug 2006 A1
20060183433 Mori et al. Aug 2006 A1
20060183442 Chang et al. Aug 2006 A1
20060195161 Li et al. Aug 2006 A1
20060205368 Bustamante Sep 2006 A1
20060281423 Caimi Dec 2006 A1
20070013483 Stewart Jan 2007 A1
20070035458 Friedrich Feb 2007 A1
20070042725 Poilasne Feb 2007 A1
20070042734 Ryu Feb 2007 A1
20070063788 Zhu Mar 2007 A1
20070080888 Mohamadi Apr 2007 A1
20070082611 Terranova et al. Apr 2007 A1
20070085609 Itkin Apr 2007 A1
20070091006 Thober et al. Apr 2007 A1
20070111681 Alberth et al. May 2007 A1
20070142011 Shatara Jun 2007 A1
20070142014 Wilcox Jun 2007 A1
20070149146 Hwang Jun 2007 A1
20070171879 Bourque Jul 2007 A1
20070182636 Carlson Aug 2007 A1
20070184825 Lim et al. Aug 2007 A1
20070194859 Brobston Aug 2007 A1
20070197180 McKinzie et al. Aug 2007 A1
20070200766 McKinzie Aug 2007 A1
20070200773 Dou et al. Aug 2007 A1
20070285326 McKinzie Dec 2007 A1
20070293176 Yu Dec 2007 A1
20080007478 Jung Jan 2008 A1
20080018541 Pang Jan 2008 A1
20080055016 Morris Mar 2008 A1
20080081670 Rofougaran Apr 2008 A1
20080090539 Thompson Apr 2008 A1
20080094149 Brobston Apr 2008 A1
20080106350 McKinzie May 2008 A1
20080122553 McKinzie May 2008 A1
20080122723 Rofougaran May 2008 A1
20080129612 Wang Jun 2008 A1
20080158076 Walley Jul 2008 A1
20080261544 Blin Oct 2008 A1
20080274706 Blin Nov 2008 A1
20080280570 Blin Nov 2008 A1
20080285729 Glasgow et al. Nov 2008 A1
20080294718 Okano Nov 2008 A1
20080300027 Dou et al. Dec 2008 A1
20080305749 Ben-Bassat Dec 2008 A1
20080305750 Alon et al. Dec 2008 A1
20080309617 Kong et al. Dec 2008 A1
20090002077 Rohani et al. Jan 2009 A1
20090027286 Ohishi Jan 2009 A1
20090039976 McKinzie, III Feb 2009 A1
20090082017 Chang et al. Mar 2009 A1
20090109880 Kim et al. Apr 2009 A1
20090121963 Greene May 2009 A1
20090149136 Rofougaran Jun 2009 A1
20090180403 Tudosoiu Jul 2009 A1
20090184879 Derneryd Jul 2009 A1
20090215446 Hapsari et al. Aug 2009 A1
20090231220 Zhang et al. Sep 2009 A1
20090253385 Dent et al. Oct 2009 A1
20090264065 Song Oct 2009 A1
20090278685 Potyrailo Nov 2009 A1
20090295651 Dou et al. Dec 2009 A1
20090323572 Shi et al. Dec 2009 A1
20090323582 Proctor et al. Dec 2009 A1
20100041348 Wilcox et al. Feb 2010 A1
20100053009 Rofougaran et al. Mar 2010 A1
20100060531 Rappaport Mar 2010 A1
20100073103 Spears et al. Mar 2010 A1
20100085260 McKinzie Apr 2010 A1
20100085884 Srinivasan et al. Apr 2010 A1
20100105425 Asokan Apr 2010 A1
20100156552 McKinzie Jun 2010 A1
20100164640 McKinzie Jul 2010 A1
20100164641 McKinzie Jul 2010 A1
20100232474 Rofougaran et al. Sep 2010 A1
20100244576 Hillan et al. Sep 2010 A1
20100285836 Horihata et al. Nov 2010 A1
20100302106 Knudsen et al. Dec 2010 A1
20100304688 Knudsen Dec 2010 A1
20110002080 Ranta Jan 2011 A1
20110012790 Badaruzzaman Jan 2011 A1
20110014879 Alberth et al. Jan 2011 A1
20110014886 Manssen Jan 2011 A1
20110043298 McKinzie Feb 2011 A1
20110043328 Bassali Feb 2011 A1
20110053524 Manssen Mar 2011 A1
20110063042 Mendolia et al. Mar 2011 A1
20110086600 Muhammad Apr 2011 A1
20110086630 Manssen Apr 2011 A1
20110102290 Milosavljevic May 2011 A1
20110105023 Scheer et al. May 2011 A1
20110116423 Rousu et al. May 2011 A1
20110117863 Camp, Jr. et al. May 2011 A1
20110117973 Asrani et al. May 2011 A1
20110121079 Lawrence et al. May 2011 A1
20110133994 Korva Jun 2011 A1
20110140982 Ozden et al. Jun 2011 A1
20110183628 Baker Jul 2011 A1
20110183633 Ohba et al. Jul 2011 A1
20110195679 Lee et al. Aug 2011 A1
20110227666 Manssen Sep 2011 A1
20110237207 Bauder Sep 2011 A1
20110249760 Chrisikos et al. Oct 2011 A1
20110250852 Greene Oct 2011 A1
20110254637 Manssen Oct 2011 A1
20110254638 Manssen Oct 2011 A1
20110256857 Chen et al. Oct 2011 A1
20110281532 Shin et al. Nov 2011 A1
20110299438 Mikhemar Dec 2011 A1
20110306310 Bai Dec 2011 A1
20120051409 Brobston et al. Mar 2012 A1
20120062431 Tikka et al. Mar 2012 A1
20120075159 Chang Mar 2012 A1
20120084537 Indukuru et al. Apr 2012 A1
20120094708 Park Apr 2012 A1
20120100802 Mohebbi Apr 2012 A1
20120112851 Manssen May 2012 A1
20120112852 Manssen et al. May 2012 A1
20120119843 du Toit et al. May 2012 A1
20120119844 du Toit et al. May 2012 A1
20120154975 Oakes Jun 2012 A1
20120214421 Hoirup Aug 2012 A1
20120220243 Mendolia Aug 2012 A1
20120243579 Premakanthan et al. Sep 2012 A1
20120286586 Balm Nov 2012 A1
20120293384 Knudsen et al. Nov 2012 A1
20120295554 Greene et al. Nov 2012 A1
20120295555 Greene et al. Nov 2012 A1
20130005277 Klomsdorf et al. Jan 2013 A1
20130052967 Black et al. Feb 2013 A1
20130056841 Hsieh et al. Mar 2013 A1
20130106332 Williams et al. May 2013 A1
20130122829 Hyvonen et al. May 2013 A1
20130137384 Desclos et al. May 2013 A1
20130154897 Sorensen et al. Jun 2013 A1
20130215846 Yerrabommanahalli et al. Aug 2013 A1
20130315285 Black et al. Nov 2013 A1
20140002323 Ali et al. Jan 2014 A1
Foreign Referenced Citations (32)
Number Date Country
101640949 Feb 2010 CN
19614655 Oct 1997 DE
102008050743 Apr 2010 DE
102009018648 Oct 2010 DE
0685936 Jun 1995 EP
0909024 Apr 1999 EP
1079296 Feb 2001 EP
1137192 Sep 2001 EP
2388925 Nov 2001 EP
1298810 Apr 2006 EP
2328233 Jun 2011 EP
2424119 Feb 2012 EP
03276901 Mar 1990 JP
02-077580 Sep 1991 JP
9321526 Dec 1997 JP
10209722 Aug 1998 JP
2000124066 Apr 2000 JP
2005-130441 May 2005 JP
100645526 Nov 2006 KR
10-0740177 Jul 2007 KR
0171846 Sep 2001 WO
2006031170 Mar 2006 WO
2008030165 Mar 2008 WO
2009064968 May 2009 WO
2009108391 Sep 2009 WO
2009155966 Dec 2009 WO
2011044592 Apr 2011 WO
2011084716 Jul 2011 WO
2011133657 Oct 2011 WO
2011028453 Oct 2011 WO
2012067622 May 2012 WO
2012085932 Jun 2012 WO
Non-Patent Literature Citations (33)
Entry
Bezooijen, A. et al., “A GSM/EDGE/WCDMA Adaptive Series-LC Matching Network Using RF-MEMS Switches”, IEEE Journal of Solid-State Circuits, vol. 43, No. 10, Oct. 2008, 2259-2268.
Du Toit, “Tunable Microwave Devices With Auto Adjusting Matching Circuit”, U.S. Appl. No. 13/302,617, filed Nov. 22, 2011.
Du Toit, “Tunable Microwave Devices With Auto-Adjusting Matching Circuit”, U.S. Appl. No. 13/302,649, filed Nov. 22, 2011.
Eiji, N. , “High-Frequency Circuit and Its Manufacture”, Patent Abstracts of Japan, vol. 1998, No. 13, Nov. 30, 1998 & JP 10 209722 A (Seiko Epson Corp), Aug. 7, 1998.
Greene, “Method and Apparatus for Tuning a Communication Device”, U.S. Appl. No. 13/108,463, filed May 16, 2011.
Greene, “Method and Apparatus for Tuning a Communication Device”, U.S. Appl. No. 13/108,589, filed May 16, 2011.
Huang, Libo et al., “Theoretical and experimental investigation of adaptive antenna impedance matching for multiband mobile phone applications”, IEEE, Sep. 7, 2005, 13-17.
Hyun, S. , “Effects of strain on the dielectric properties of tunable dielectric SrTi03 thin films”, Applied Physics Letters, vol. 79, No. 2, Jul. 9, 2001.
Ida, I. et al., “An Adaptive Impedence Matching System and Its Application to Mobile Antennas”, TENCON 2004, IEEE Region 10 Conference, See Abstract ad p. 544, Nov. 21-24, 2004, 543-547.
Katsuya, K. , “Hybrid Integrated Circuit Device”, Patent Abstracts of Japan, Publication No. 03-276901, Date of publication of application: Sep. 12, 1991.
Manssen, “Method and Apparatus for Managing Interference in a Communication Device”, U.S. Appl. No. 61/326,206, filed Apr. 20, 2010.
Manssen, “Method and Apparatus for Tuning Antennas In a Communication Device”, U.S. Appl. No. 12/941,972, filed Nov. 8, 2010.
Manssen, “Method and Apparatus for Tuning Antennas in a Communication Device”, U.S. Appl. No. 13/005,122, filed Jan. 12, 2011.
McKinzie, “Adaptive Impedance Matching Module (AIMM) Control Architectures”, U.S. Appl. No. 13/293,550, filed Nov. 10, 2011.
McKinzie, “Adaptive Impedance Matching Module (AIMM) Control Architectures”, U.S. Appl. No. 12/293,550, filed Nov. 10, 2011.
McKinzie, “Method and Apparatus for Adaptive Impedance Matching”, U.S. Appl. No. 13/217,748, filed Aug. 25, 2011.
Mendolia, “Method and Apparatus for Tuning a Communication Device”, U.S. Appl. No. 13/035,417, filed Feb. 25, 2011.
Paratek Microwave, Inc., “Method and Appartus for Tuning Antennas in a Communication Device”, International Application No. PCT/US11/59620; Filed Nov. 7, 2011.
Patent Cooperation Treaty, “International Search Report and Written Opinion”, International Application No. PCT/US2010/046241, Mar. 2, 2011.
Patent Cooperation Treaty, “International Search Report and Written Opinion”, International Application No. PCT/US2010/056413, Jul. 27, 2011.
Patent Cooperation Treaty, “International Search Report and Written Opinion”, Nov. 16, 2011, International Application No. PCT/US/2011/038543.
Patent Cooperation Treaty, “International Search Report and Written Opinion”, PCT Application No. PCT/US08/005085, Jul. 2, 2008.
Pervez, N.K. , “High Tunability barium strontium titanate thin films for RF circuit applications”, Applied Physics Letters, vol. 85, No. 19, Nov. 8, 2004.
Petit, Laurent , “MEMS-Switched Parasitic-Antenna Array for Radiation Pattern Diversity”, IEEE Transactions on Antennas and Propagation, vol. 54, No. 9, Sep. 2009, 2624-2631.
Qiao, et al., “Antenna Impedance Mismatch Measurement and Correction for Adaptive COMA Transceivers”, IEEE, Jan. 2005.
Qiao, et al., “Measurement of Antenna Load Impedance for Power Amplifiers”, The Department of Electrical and Computer Engineering, University of California, San Diego, Sep. 13, 2004.
Spears, “Methods for Tuning an Adaptive Impedance Matching Network With a Look-Up Table”, U.S. Appl. No. 13/297,951, filed Nov. 16, 2011.
Stemmer, Susanne , “Low-loss tunable capacitors fabricated directly on gold bottom electrodes”, Applied Physics Letters 88, 112905, Mar. 15, 2006.
Taylor, T.R. , “Impact of thermal strain on the dielectric constant of sputtered barium strontium titanate thin films”, Applied Physics Letters, vol. 80, No. 11, Mar. 18, 2002.
Tombak, Ali , “Tunable Barium Strontium Titanate Thin Film Capacitors for RF and Microwave Applications”, IEEE Microwave and Wireles Components Letters, vol. 12, Jan. 2002.
Xu, Hongtao , “Tunable Microwave Integrated Circuits using BST Thin Film Capacitors with Device”, Integrated Ferroelectrics, Department of Electrical Engineering and Computer Engineering, University of California, 2005, Apr. 2005.
Zuo, S., “Eigenmode Decoupling for MIMO Loop-Antenna Based on 180 Coupler”, Progress in Electromagnetics Research Letters, vol. 26, Aug. 2011, 11-20.
Payandehjoo, Kasra et al., “Investigation of Parasitic Elements for Coupling Reduction in MultiAntenna Hand-Set Devices”, Published online Jan. 22, 2013 in Wiley Online Library (wileyonlinelibrary.com).
Related Publications (1)
Number Date Country
20140342677 A1 Nov 2014 US
Continuations (3)
Number Date Country
Parent 13886361 May 2013 US
Child 14294492 US
Parent 13484343 May 2012 US
Child 13886361 US
Parent 11800592 May 2007 US
Child 13484343 US