This disclosure is related to riser control systems. More specifically, this disclosure is related to a riser tensioning control system having electrical tensioners.
Safety and performance are important considerations in a drilling riser. With trends over the past decades to exploit resources in deeper waters and harsher environments, ensuring the safety and performance of drilling risers has become a challenging task.
A riser tensioning system aims to compensate for relative motions between a floating drilling rig and the seabed, which are joined by a rigid riser string. In conventional systems, the most widely used riser tensioning system is a hydro-pneumatic riser tensioning system consisting of hydro-pneumatic cylinders, air/oil accumulators, and air pressure vessels. However, there are short-comings in hydro-pneumatic tensioning systems.
First, the response time for a hydro-pneumatic tensioning system is too slow for certain situations. The relatively slow operation of pneumatic systems results in a long control response time, which is the time between issuing a command and force being applied by the tension system. In certain situations, such as during an emergency riser disconnect, the tension changing response may be too slow. The slow, large over-pulling force may accelerate free riser pipes outward, allowing them to jump out, and consequently damage the drilling rig floor and riser pipes.
Second, increasing longitudinal over-pull tension, the conventional method in hydro-pneumatic tensioning systems used to suppress destructive vortex-induced vibration (VIV), causes stress on the supporting equipment, increases wear and tear on the tensioning system, and increases riser pipe fatigue. Furthermore, increasing longitudinal over-pull tension raises safety concerns in situations where a pair of hydro-pneumatic tensioners are receiving maintenance while the drilling rig is experiencing high wave conditions.
Third, a hydro-pneumatic tensioning system is a relatively complex and costly system that requires a significant amount of maintenance and is at risk for hydraulic fluid leakage. A hydro-pneumatic tensioning system includes a hydro-pneumatic cylinder rod and a seal that are exposed to bending due to factors such as vortex-induced vibration (VIV) or unequal and non-linear loading caused by vessel roll and pitch. These factors may cause high failure risk and may require a high maintenance cost to avoid hydraulic fluid leakage and risks of environmental pollution. Furthermore, the complex hydro-pneumatic system includes a significant volume of air accumulators and reservoirs that consume useful floor space on a drilling rig.
An enhanced riser tensioning system having an electrical tensioner may provide additional stability and performance over conventional riser tensioning systems having only hydro-pneumatic tensioners. The system may enhance the overall safety and reliability of a deepwater riser system. Electric tensioners have quicker response times than hydro-pneumatic tensioners. With quicker response times, electric tensioners may apply variable tensions to provide more accurate heave compensation control, safer anti-recoil control and reducing the fatigue damage by vortex-induced vibration (VIV) on riser string. This riser hybrid tensioning system also brings new functionalities for simplifying the riser operation process, such as (1) a new riser position control operation mode, (2) a new functionality of vessel motion stabilizer and (3) a new functionality of moving riser string between dual drilling stations
According to one embodiment, an apparatus includes a first and second electrical tensioner mechanically coupled to a drilling riser via a first and a second wire of a plurality of wires and electrically coupled to a direct current (DC) power distribution bus. The apparatus may also include an energy storage system and a power dissipater, both of which are also coupled to the DC power distribution bus. The apparatus may further include a hydro-pneumatic tensioner mechanically coupled to the drilling riser via a third wire of the plurality of wires. Further, the apparatus may include a controller configured to measure the tension and speed delivered by both the electrical and hydro-pneumatic tensioner. The controller may also be configured to determine the tension for the first and second electrical tensioners based, in part, on the riser load and the measured tension of the hydro-pneumatic tensioner. The controller may be configured to distribute tension to the first and second electrical tensioners, and to control the first and second electrical tensioners to adjust the length of the first and second wires.
The electrical tensioner within the apparatus may include a motor configured to act as a motor or a generator and an energy inverter. The energy inverter may be coupled to the motor and also to the DC power distribution bus. The electrical tensioner may further include a gear box coupled to the motor and include a winch. The winch may be coupled to the gearbox and may be coupled to the drilling riser via the drilling riser wire. The energy inverter within the electrical tensioner may invert AC energy to DC energy or DC energy to AC energy. The controller may be further configured to regulate the torque and power flow in a plurality of energy inverters.
Energy management may be improved on a vessel through the use of energy storage system. For example, energy may be stored in the storage system when the electric tensioner operates as a generator to regenerate energy in the half wave motion of the vessel; and vice versa.
A method for controlling a tension of a riser tensioning system includes measuring a tension delivered by a tensioner. The method may also include determining a tension for a plurality of electrical tensioners based, in part, on the measured tension. The method may further include distributing the determined tension to the plurality of electrical tensioners. The method may also include controlling the plurality of electrical tensioners based, in part, on the determined tension. The method for controlling a tension of a riser tensioning system that includes distributing the determined tension to the plurality of electrical tensioners may be useful in stabilizing a riser in a drilling vessel.
In an embodiment, the delivered tension that is measured may be the tension of a hydro-pneumatic tensioner or an electrical tensioner. In such an embodiment, the tensioning system may be a riser hybrid tensioning system, which is a riser tensioning system that integrates an electrical tensioning system with hydro-pneumatic tensioners.
The foregoing has outlined rather broadly the features and technical advantages of the present disclosure in order that the detailed description of the disclosure that follows may be better understood. Additional features and advantages of the disclosure will be described hereinafter which form the subject of the claims of the disclosure. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the disclosure as set forth in the appended claims. The novel features which are believed to be characteristic of the disclosure, both as to its organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present disclosure.
For a more complete understanding of the disclosed system and methods, reference is now made to the following descriptions taken in conjunction with the accompanying drawings.
The safety and performance of a deepwater riser tensioning system may be improved by using electrical components to control a tension of a riser. A riser hybrid tensioning system may integrate a riser electrical tensioning system with existing hydro-pneumatic tensioners to improve safety and functionality over conventional riser tensioning systems. A riser tensioning system may also include only electric tensioners. Electrical components, such as an electrical machine, can provide a control response in the range of milliseconds, which is a nearly instantaneous control response. Use of electrical components allows quick response that improves safety and functionality by allowing the tensioning system to respond to different conditions faster. Moreover, additional functionality of a riser hybrid tensioning system may provide enhanced modes of operation to solve numerous problems encountered on deepwater riser tensioning systems.
Although
The electrical tensioner 210 may be coupled to a common DC power distribution bus 270, which may be shared with other electrical tensioners. The DC bus 270 provides a physical link for the energy flowing into and out of the tensioning system 200, as well as for other power devices. The DC bus 270 may be coupled to an active front end (AFE) rectifier 260 that converts power from an AC bus 272 powered by one or more generators 274. The power module of the AFE rectifier 260 may be controlled by a power management system 250 through an AFE controller 260a.
The electrical tensioner 210 may include a variable frequency drive (VFD) 211 to invert energy from AC to DC or from DC to AC. The VFD-type inverter 211 may be controlled by the tension controller 202 through a VFD controller 211a. In one direction, the inverter 211 may convert DC energy from the DC bus 270 to AC energy for use by the electrical tensioner 210. In another direction, the inverter 211 may convert AC energy from the electrical tensioner 210 to DC energy that is transferred onto the DC bus 270.
The electrical tensioner 210 may also include a motor 212 coupled by the wire 231 to a sheave 214 and to the riser 230. The motor 212 may be, for example, a high-torque low-speed machine. The motor 212 may be a direct-drive motor, such as an axial-flux permanent magnet disc motor. The motor 212 may controlled by the VFD 211. A position sensor (PS) 216 may be coupled to the electrical tensioner 210 to measure the motor rotating position 231 and to report the position to a tension controller 202. A temperature sensor 218 may be located inside or on the motor 218 and provide feedback to a VFD controller 211a. For example, when a temperature measured by the sensor 218 exceeds a safe level, the circulation of an auxiliary cooling system may be increased, or the motor 212 may be shut down to reduce its temperature.
In an all-electric tensioning system, such as illustrated in
The tension controller 202 may be configured to perform many tasks within a hybrid or electrical riser tensioning system and provide feedback to the power management controller 250. For example, the controller 202 may regulate the torque in the motor 212 for different control purposes through different control algorithms. As another example, the controller 202 may be used as a load sharing controller that distributes tension between the hydro-pneumatic tensioner 252 and the electrical tensioner 210. Furthermore, the controller 202 may be configured to dynamically control the wireline 231 tension. For monitoring and control purposes, status feedback of the electrical tensioners 210, the hydro-pneumatic tensioners 252, the riser 230 and the drilling vessel on which the riser tensioning system is employed may be sent to the controller 202. Alternatively, the controller 202 may calculate the reference signals for both electrical and the hydro-pneumatic tensioners using different control algorithms. The algorithms may be based, in part, on the riser top and the drilling vessel heave relative positions to the seabed, velocity and acceleration from the motion reference unit (MRU) 232, a MRU on the vessel (not shown), and tension measurements of the electrical tensioner 210 and the hydro-pneumatic tensioner 252. Moreover, the controller 202 may be configured to monitor the routing of energy in and out of the electrical tensioner 202 and send this energy signal into the power management controller 250.
The power management controller 250 may be configured to monitor the DC bus 270 voltage and the AC bus 272 frequency. Furthermore, the controller 250 may coordinate power among other power components, such as the electrical tensioner 210, the ultra-capacitor bank 222, and the power dissipater 242.
Referring back to
The energy storage elements 220 may be coupled to the DC bus 270. Each energy storage element 222 may be coupled to a DC/DC power chopper (DDPC) 221. The specific number and type of energy storage devices 222 used for the energy storage elements 220 may depend on application specific parameters, such as the type of vessel used or the space available for the energy storage elements 220. An energy storage device 222 may be, for example, an ultracapacitor bank (UCB) a battery bank, or a flywheel. When the UCB is used for the energy storage device 222, the UCB may be selected to have a capacity at least 1.2 times the maximum of both the vessel heave of the most significant sea state criterion and five times of the UCB's capacity de-rating.
The tensioning system 200 may also include a power dissipater 242 coupled to the DC bus 270 through a unidirectional power chopper 241. The unidirectional power chopper 241 which may regulate the amount of energy to be dissipated by the power dissipater 242. The power dissipater 242 may be any device that consumes energy, such as a resistor or a heat sink. Operation algorithms within the power management system 250 may route energy into power dissipaters 242 when the energy storage devices 222 are fully charged or when the operating voltages of the UCBs exceed a maximum operating voltage.
At block 304, a desired tension for a plurality of electrical tensioners may be determined based, in part, on the measured tension at block 302. Other parameters that may be used to determine the desired tension for a plurality of electrical tensioners include the tension delivered by a hydro-pneumatic or electrical tensioner, a total required tension of the entire riser tensioning system, a total number of hydro-pneumatic tensioners in a riser hybrid tensioning system, and/or a total number of electrical tensioners in the system. Furthermore, the controller 202 of
At block 306, the desired tension of block 304 may be distributed to the plurality of electrical tensioners. The plurality of electrical tensioners may then be controlled to deliver the determined tension by evenly rolling in or rolling out a wire coupled to a respective electrical tensioner of the plurality of electrical tensioners.
According to one embodiment, the desired tension of an electrical tensioner, or a plurality of electrical tensioners, may be calculated using the following equation:
where TETi may denote the desired tension of an individual electrical tensioner i, and THTi may be the tension delivered by hydro-pneumatic tensioner i at any given time, and TTotal may represent the total desired tension of the entire riser hybrid tensioning system. The nHT and nET parameters may be the total number of hydro-pneumatic and electrical tensioners, respectively, in the system.
At block 308, the plurality of tensioners may be controlled based, in part, on the tension that was determined at block 304 and that was distributed at block 306. For example, the tensioners may apply a tension to the wires. The plurality of electrical tensioners may be controlled and coordinated to satisfy different control purposes. This may assist in stabilizing a riser in an offshore drilling vessel. For example, the measuring of the tension delivered by tensioners may be performed continuously to dynamically calculate the desired tension of a tensioner and control the tension being delivered by tensioners. This may ensure that the total delivered tension by the hydro-pneumatic and/or electrical tensioners remains nearly constant. In one embodiment, the controller 202 of
At block 320, it is determined whether a vessel has moved vertically up or down. In one embodiment, the vessel being monitored for vertical movement may be an offshore drilling vessel on which a riser tensioning system, as in
At block 320, when the vessel has moved down, the method 350 may proceed to block 330 where energy may be transferred from an electrical tensioner to energy storage devices. That is, the motor of the electrical tensioning system may act as a generator when the vessel moves down. At block 330, the energy from an electrical tensioner may be transferred to the energy storage system or to power dissipaters for dissipating the energy generated by the electrical tensioner. The energy transferred from an electrical tensioner may be energy that has been generated by the electrical tensioner. For example, when the vessel moves down, the wire coupled to the electrical tensioner may roll in. As the wire rolls in, the motors may act as generators converting potential energy to AC electrical energy. The generated AC electrical energy may be inverted to DC energy by an AC/DC inverter and flow onto a common DC power distribution bus where it may then be transferred to the energy storage devices for storage.
Decisions may be made to determine where the energy generated from an electrical tensioner should be routed. For example, at block 331, it is determined if an energy storage device has reached its maximum energy capacity. At block 332, the energy generated by an electrical tensioner may be transferred to the energy storage device for storage if it was determined at block 331 that the energy storage device had not reached its maximum capacity. Energy generated by an electrical tensioner may continue to be stored in the energy storage device or devices until the energy storage device or devices have reached their maximum energy capacity. As energy is stored in the energy storage device or devices, the energy in the energy storage device or devices may be monitored to determine at block 331 if the maximum energy capacity has been reached.
After the determination at block 331 that the energy storage devices in the electrical tensioning system have reached their maximum energy capacity, it may be determined at block 333 if a power network has reached capacity. In an embodiment, a safe operation criterion or threshold for the power network may serve as an aid in determining whether the power network has reached capacity. At block 334, the energy generated by an electrical tensioner may be transferred to the AC power network for other power consumption if it was determined at block 333 that the power network had not reached its maximum capacity. Energy generated by an electrical tensioner may continue to be transferred into the AC power network until the power network has reached its maximum energy capacity. As energy is absorbed in the power network, the frequency of the power network may be monitored to determine at block 333 if the maximum energy capacity has been reached. At block 336, the energy generated by an electrical tensioner may be transferred to a power dissipating device to dissipate excess generated energy if it was determined at block 333 that the power network had reached its maximum capacity.
If it is determined at block 320 that the vessel has moved up, the method 350 may proceed to block 340 where energy may be transferred from energy storage devices to the electrical tensioner. For example, when the vessel moves up, the wire coupled to the electrical tensioner may roll out. Energy stored in energy storage devices may be transferred onto the common DC power distribution bus where it can be transferred to an electrical tensioner. The energy transferred from the energy storage devices to the DC bus may be inverted to AC energy by the AC/DC inverter in an electrical tensioner. The inverted AC energy may be converted from AC electrical energy to potential energy by the motor in an electrical tensioner to control the tension in the wire. The energy stored in the energy storage device that is transferred to an electrical tensioner may be energy that has been stored in the energy storage device when the vessel last moved down or energy that was provided by charging from the power network.
At block 340, the energy transferred to the electrical tensioner may also be transferred from the AC power network. Furthermore, energy from a power network may also be transferred to an energy storage device to charge it at block 340.
Decisions may be made to determine from where energy for an electrical tensioner should be routed. For example, at block 341, it is determined if an energy storage device has sufficient energy stored. In an embodiment, an energy storage device that has sufficient energy stored may be one that has energy amounting to a predetermined percentage of its maximum capacity. For example, a minimum level in a UCB may be 20% of a total capacity or 40% of a nominal voltage. At block 342, energy may be transferred to an electrical tensioner from an energy storage device if it was determined at block 341 that the energy storage device had sufficient energy stored. Furthermore, at block 342, the energy transferred to an electrical tensioner may be transferred from a plurality of energy storage devices if it was determined at block 331 that the plurality energy storage devices had sufficient energy, and the energy transferred may be transferred to a plurality of electrical tensioners. Energy may continue to be transferred to an electrical tensioner from the energy storage device or devices until the energy storage device or devices have become depleted or become discharged below a predetermined percentage of the maximum capacity. As energy is transferred from the energy storage devices, the energy in the energy storage devices may be monitored to determine at block 341 if they have sufficient energy to continue operating the electric tensioners.
According to an embodiment, after the determination at block 341 that the energy storage devices in the electrical tensioning system do not have sufficient energy, at block 344, the energy transferred to an electrical tensioner may be transferred from the DC bus. For example, additional power may be transferred from generators to the DC bus through an AC-to-DC converter. Furthermore, energy may be transferred from the DC bus to the energy storage devices that are discharged or depleted to charge the energy storage devices. By charging the depleted energy storage devices, the energy required by electrical tensioners may be transferred from the energy storage devices the next cycle the vessel moves up.
Through the management of energy described in method 350 of
The riser tension versus time graph 404 provides an illustration of the total tension delivered by the hydro-pneumatic and/or electrical tensioners across time. The total tension 410 may be maintained nearly constant at all times despite the vessel's vertical position fluctuations indicated in the vessel position versus time graph 402.
The overall performance of a riser hybrid tensioning system is illustrated in
A power management controller may be used in this topology to keep energy equalized in each UCB, in order to avoid over-depletion of a certain UCB, so that the life cycles of all UCBs are balanced. When an energy surge is regenerated from the electrical tensioners, the amount of power flowing into an energy storage system may be distributed to each UCB according to the percentage of its free volume versus the total free volume of all UCBs, as shown in
where Pi with u=1, n is the power distributed to the ith UCB, PTOTAL is the total power regenerated from the tensioning system, Ci is the capacitance of the ith UCB, Vi and Vi_FULL are the actual voltage and the nominal voltage of the ith UCB. When energy is consumed by electrical tensioners, the amount of the power transferred out of the energy storage system may be withdrawn from each UCB according to the percentage of its state of charge (SOC) versus the total SOC of all UCBs, as shown in:
With the novel riser hybrid tensioning system disclosed, several control modes employed in riser control systems may be enhanced, such as active heave compensation control, anti-recoil control, vortex-induced vibration (VIV) suppression control, and riser position control. Quicker response times provide a dynamic response profile that may prevent the riser from jumping out during anti-recoil operation. Furthermore, the riser hybrid tensioning system may deliver variable tensions that may actively suppress VIV.
Several control modes may be implemented that utilize the riser hybrid tensioning system disclosed above, such as an active heave compensation control mode. In this control mode the electrical tensioning system may be set to track a desired vessel heave trajectory in the riser top reference frame to keep the tension applied at the riser top to be within a safe range.
The entire active heave compensation control algorithm may be embedded into the controller 202 in
In one embodiment, another control mode that may be used is an anti-recoil mode to bring the riser string up in a controlled manner according to a desired goal such as to achieve a desired water clearance from the riser bottom to the top of LMRP or to maintain a safe air gap distance from the drill floor to the riser top at the instant of end stop. In this control mode, the control strategy for the electrical tensioner may be a fixed relationship function between the motor output torque and the wire relevant displacement. The fixed relationship strategy may be embedded into a controller, such as the controller 202 of
An anti-recoil trigging method may be comparing the relative vertical movement between the MRU232 of
Furthermore, a riser-mounted MRU may measure second-order transient shock waves in the riser caused by riser disconnection. Because the second-order transient shock wave travels along the riser at a much faster rate than velocity of the riser main body, recoil of the riser may be detected quicker by monitoring the second-order transient shock wave. When a shock wave is detected, hydro-pneumatic tensioners may be unloaded from the riser and the electrical tensioners could adjust tension on the riser to counteract the riser recoil.
The riser hybrid tensioning system may operate in a control mode for VIV suppression that compensates the disturbances induced at the top of a riser to reduce the VIV and extend riser fatigue life. A comparison of relative horizontal position or velocity may be performed between the MRU232 of
An active riser position control may be applied using this hybrid riser tensioning system, implemented in the controller 202 of
Electric tensioners may also be used to reconnect a lower marine riser package (LMRP) at the end of a riser string back onto blowout preventer. The riser hybrid tensioning system may provide precise LMRP position control which may reduce the time consumed in reconnecting the LMRP onto a blowout preventer (BOP) in comparison a hydro-pneumatic system. The riser hybrid tensioning system may directly and securely land the LMRP back onto the BOP through the leveraging of the electrical tensioners with proper maneuver of remotely operated vehicles. Furthermore, an operator may control the appropriate distance between the LMRP and the BOP. The controller, now operating in riser reconnection mode, may be configured and operated in position control mode to control the distance between the LMRP and the BOP by compensating vessel heave motion. According to one embodiment, the LMRP may be coupled to the BOP, such that the LMRP and BOP are being placed on a well head together through the position control by the hybrid tensioners.
Electric tensioners may also facilitate movement of a riser string from a first drilling station to another drilling station on a dual-activity vessel. For example, a first drilling station may construct the well head, and a second station may construct the riser string. Then, the electric tensioners may adjust lengths of wire coupled to the riser string to move the riser string from the second drilling station to the first drilling station.
Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the present processes, disclosure, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
This application is a continuation of U.S. patent application Ser. No. 13/715,412 to Bourgeau et al. filed on Dec. 14, 2012 and entitled “Hybrid Tensioning of Riser String,” which claims the benefit of U.S. Provisional Application No. 61/579,353 to Wu et al. entitled “Enhanced Riser Control System” and filed Dec. 22, 2011, and U.S. Provisional Application No. 61/725,411 to Wu et al. entitled “Riser Hybrid Tensioning System” and filed Nov. 12, 2012, both of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61579353 | Dec 2011 | US | |
61725411 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13715412 | Dec 2012 | US |
Child | 15072206 | US |