HYBRID VEHICLE DRIVE CONTROL DEVICE

Abstract
A drive control device for a hybrid vehicle is provided with a differential device including four rotary elements; an engine, first and second electric motors and an output rotary member which are respectively connected to the four rotary elements; and a parking lock mechanism having a parking lock pole preventing rotation of a parking lock gear connected to the output rotary member when a manually operated shifting device selects a parking range. One of the four rotary elements is constituted by a rotary component of a first differential mechanism and a rotary component of a second differential mechanism selectively connected through a clutch, and one of the rotary components is selectively fixed to a stationary member through a brake. The drive control device sets a drive mode to an engine drive mode in which the brake is placed in a released state while the clutch is placed in an engaged state when a shift change is made into the parking range to achieve a parking lock with the parking lock mechanism.
Description
TECHNICAL FIELD

The present invention relates to an improvement of a drive control device for a hybrid vehicle.


BACKGROUND ART

For example, as disclosed in the Patent Document 1, there is known a hybrid vehicle which is provided with a differential mechanism having a first rotary element connected to a first electric motor, a second rotary element connected to an engine, and a third rotary element connected to an output rotary member and connected to a second electric motor through a double reduction gear, and a crankshaft locking device for inhibiting a rotary motion of a crankshaft of the engine, and which can be run in a second motor drive mode in which both of the first and second electric motors are operated as a vehicle drive power source, as well as in an ordinary first motor drive mode in which the second electric motor is operated as the vehicle drive power source. In Patent Document 2, a hybrid vehicle is disclosed that is of a type without the crankshaft locking device and with the reduction gear formed in one stage.


PRIOR ART DOCUMENT
Patent Document

Patent Document 1: Japanese Laid-Open Patent Publication No. 2008-265600 A1


Patent Document 2: Publication of Japanese Patent No. 4038183


SUMMARY OF THE INVENTION
Problem to Be Solved by the Invention

It is considered to configure a hybrid vehicle such that the hybrid vehicle is provided with: a first differential mechanism having a first rotary element connected to a first electric motor, a second rotary element connected to an engine, and a third rotary element connected to an output rotary member; a second differential mechanism which has a first rotary element connected to a second electric motor, a second rotary element and a third rotary element, and in which one of the second and third rotary elements is connected to the third rotary element of the first differential mechanism; a clutch for selectively connecting the rotary element of the first differential mechanism and the rotary element of the second differential mechanism to each other; and a brake for selectively fixing the rotary element of the second differential mechanism to a stationary member and that the hybrid vehicle can be run in a plurality of drive modes in each of motor and hybrid drive modes. It is considered that the hybrid vehicle is provided with a parking lock mechanism having a parking lock pole preventing rotation of a parking lock gear connected to the output rotary member when a parking range is selected by a manually operated shifting device.


Particularly, in a conventional hybrid vehicle as described in Patent Document 2, for example, if SOC (stored electric energy amount) is reduced, an output torque of the second electric motor is used for cancelling a drive torque in a vehicle forward direction generated when the engine rotationally drives the first electric motor for forcible charging according to a charging request. If the output torque of the second electric motor becomes equal to or greater than a predetermined value, a backlash is closed in an output system thereof. A parking operation is performed in this state, and the parking lock gear comes into contact with a locking tooth of the parking lock pole while the output torque of the second electric motor is output.


Particularly when a foot brake is released on a slope road, if an outer circumferential tooth of the parking lock gear comes into contact with the locking tooth of the parking lock pole after a rotor of the second electric motor rotates integrally with the parking lock gear, an impact force due to inertia of the rotor of the second electric motor is also applied to the parking lock pole, possibly generating a defect in meshing between the outer circumferential teeth of the parking lock gear and the locking tooth of the parking lock pole.


The present invention was made in view of the background art described above. It is therefore an object of the present invention to provide a drive control device for a hybrid vehicle, which prevents a defect from occurring in meshing between the parking lock gear and the parking lock pole in the case of a parking lock in the parking lock mechanism.


Means for Solving the Problem

To achieve the object, the present invention provides (a) a drive control device for a hybrid vehicle provided with: a first differential mechanism and a second differential mechanism which have four rotary elements as a whole; an engine, a first electric motor, a second electric motor, and an output rotary member which are respectively connected to said four rotary elements; and a parking lock mechanism having a parking lock pole preventing rotation of a parking lock gear connected to the output rotary member when a manually operated shifting device selects a parking range, and wherein one of said four rotary elements is constituted by the rotary element of said first differential mechanism and the rotary element of said second differential mechanism which are selectively connected to each other through a clutch, and one of the rotary elements of said first and second differential mechanisms which are selectively connected to each other through said clutch is selectively fixed to a stationary member through a brake, said drive control device being characterized in that: (b) when a shift change is made into the parking range to achieve a parking lock with the parking lock mechanism, a drive mode is set to an engine drive mode in which the brake is placed in a released state while the clutch is placed in an engaged state.


Effects of the Invention

According to the drive control device for a hybrid vehicle of the present invention, when a shift change is made into the parking range to achieve a parking lock with the parking lock mechanism, a drive mode is set to an engine drive mode in which the brake is placed in a released state while the clutch is placed in an engaged state. Therefore, since the brake is placed in the released state and the parking lock gear and the rotor of the second electric motor are placed in a relatively rotatable state during the parking lock, if the outer circumferential teeth of the parking lock gear and the locking tooth of the parking lock pole come into contact with each other, the impact force due to inertia of the rotor of the second electric motor does not act on the parking lock pole via the parking lock gear. As a result, if the parking lock is achieved with the parking lock mechanism, a defect is prevented from occurring in meshing between the outer circumferential teeth of the parking lock gear and the locking tooth of the parking lock pole.


Preferably, when a shift change is made into the parking range on a climbing road, the hybrid vehicle sets the drive mode to the engine drive mode in which the brake is placed in the released state while the clutch is placed in the engaged state. Therefore, if the outer circumferential teeth of the parking lock gear and the locking tooth of the parking lock pole come into contact with each other, for example, by releasing the brake pedal, during the parking lock on the climbing road, the impact force due to inertia of the rotor of the second electric motor does not act on the parking lock pole.


Preferably, when a shift change is made into the parking range to achieve a parking lock with the parking lock mechanism while the brake is placed in the engaged state and an output torque of the second electric motor is used for cancelling a drive torque in a vehicle forward direction generated when the engine rotationally drives the first electric motor for forcible charging, a drive mode is set to the engine drive mode in which the brake is placed in the released state while the clutch is placed in the engaged state. Therefore, particularly, when the brake is placed in the engaged state and the output torque of the second electric motor is used for cancelling the drive torque in the vehicle forward direction generated when the engine rotationally drives the first electric motor for forcible charging, a defect is prevented from occurring in meshing between the outer circumferential teeth of the parking lock gear and the locking tooth of the parking lock pole when the engine rotationally drives the first electric motor for forcible charging.


Preferably, said first differential mechanism is provided with a first rotary element connected to said first electric motor, a second rotary element connected to said engine, and a third rotary element connected to said output rotary member, while said second differential mechanism is provided with a first rotary element connected to said second electric motor, a second rotary element, and a third rotary element, one of the second and third rotary elements being connected to the third rotary element of said first differential mechanism, said clutch is configured to selectively connect the second rotary element of said first differential mechanism, and the other of the second and third rotary elements of said second differential mechanism which is not connected to the third rotary element of said first differential mechanism, to each other, while said brake is configured to selectively fix the other of the second and third rotary elements of said second differential mechanism which is not connected to the third rotary element of said first differential mechanism, to said stationary member. Consequently, the same effect as the first aspect of the invention is acquired.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic view for explaining an arrangement of a hybrid vehicle drive system to which the present invention is suitably applicable;



FIG. 2 is a perspective view for explaining a parking lock mechanism provided with the drive system of FIG. 1;



FIG. 3 is a view for explaining major portions of a control system provided to control the drive system of FIG. 1;



FIG. 4 is a table indicating combinations of operating states of a clutch and a brake, which correspond to respective five drive modes of the drive system of FIG. 1;



FIG. 5 is a collinear chart having straight lines which permit indication thereon of relative rotating speeds of various rotary elements of the drive system of FIG. 1, the collinear chart corresponding to the EV-1 mode and HV-1 mode of FIG. 4;



FIG. 6 is a collinear chart having straight lines which permit indication thereon of relative rotating speeds of various rotary elements of the drive system of FIG. 1, the collinear chart corresponding to the EV-2 mode of FIG. 4;



FIG. 7 is a collinear chart having straight lines which permit indication thereon of relative rotating speeds of various rotary elements of the drive system of FIG. 1, the collinear chart corresponding to the HV-2 mode of FIG. 4;



FIG. 8 is a collinear chart having straight lines which permit indication thereon of relative rotating speeds of various rotary elements of the drive system of FIG. 1, the collinear chart corresponding to the HV-3 mode of FIG. 4;



FIG. 9 is a functional block diagram for explaining major control functions of an electronic control device of FIG. 3;



FIG. 10 is a flowchart for explaining major portions of a control operation of preventing a defect in meshing between the parking lock gear and the parking lock pole after a shift change into the parking range on a slope road in the electronic control device of FIG. 3;



FIG. 11 is a diagram for explaining a meshing state between the parking lock gear and the parking lock pole, for example, when a brake pedal is released, in a parking lock state in the parking lock mechanism of FIG. 2, the diagram corresponding to the HV-1 mode of FIG. 4;



FIG. 12 is a diagram for explaining a meshing state between the parking lock gear and the parking lock pole, for example, when a brake pedal is released, in a parking lock state in the parking lock mechanism of FIG. 2, the diagram corresponding to the HV-2 mode of FIG. 4;



FIG. 13 is a functional block diagram for explaining major control functions of an electronic control device according to another preferred embodiment of this invention;



FIG. 14 is a flowchart for explaining major portions of a control operation of preventing a defect in meshing between the parking lock gear and the parking lock pole at the time of forcible charging by the electronic control device of FIG. 13;



FIG. 15 is a schematic view for explaining an arrangement of a hybrid vehicle drive system according to another preferred embodiment of this invention;



FIG. 16 is a schematic view for explaining an arrangement of a hybrid vehicle drive system according to a further preferred embodiment of this invention;



FIG. 17 is a schematic view for explaining an arrangement of a hybrid vehicle drive system according to a still further preferred embodiment of this invention;



FIG. 18 is a schematic view for explaining an arrangement of a hybrid vehicle drive system according to a yet further preferred embodiment of this invention;



FIG. 19 is a schematic view for explaining an arrangement of a hybrid vehicle drive system according to still another preferred embodiment of this invention;



FIG. 20 is a schematic view for explaining an arrangement of a hybrid vehicle drive system according to yet another preferred embodiment of this invention;



FIG. 21 is a collinear chart for explaining an arrangement and an operation of a hybrid vehicle drive system according to another preferred embodiment of this invention;



FIG. 22 is a collinear chart for explaining an arrangement and an operation of a hybrid vehicle drive system according to a further preferred embodiment of this invention; and



FIG. 23 is a collinear chart for explaining an arrangement and an operation of a hybrid vehicle drive system according to a still further preferred embodiment of this invention.





MODE FOR CARRYING OUT THE INVENTION

According to the present invention, the first and second differential mechanisms as a whole have four rotary elements while the above-described clutch is placed in the engaged state. In one preferred form of the present invention, the first and second differential mechanisms as a whole have four rotary elements while a plurality of clutches, each of which is provided between the rotary elements of the first and second differential mechanisms and which includes the above-described clutch, are placed in their engaged states. In other words, the present invention is suitably applicable to a drive control device for a hybrid vehicle which is provided with the first and second differential mechanisms represented as the four rotary elements indicated in a collinear chart, and the engine, the first electric motor, the second electric motor and the output rotary member which are connected to the respective four rotary elements, and wherein one of the four rotary elements is selectively connected through the above-described clutch to another of the rotary elements of the first differential mechanism and another of the rotary elements of the second differential mechanism, while the rotary element of the first or second differential mechanism to be selectively connected to the above-indicated one rotary element through the clutch is selectively fixed through the above-described brake to the stationary member.


In another preferred form of the present invention, the above-described clutch and brake are hydraulically operated coupling devices operating states (engaged and released states) of which are controlled according to a hydraulic pressure. While wet multiple-disc type frictional coupling devices are preferably used as the clutch and brake, meshing type coupling devices, namely, so-called dog clutches (claw clutches) may also be used. Alternatively, the clutch and brake may be electromagnetic clutches, magnetic powder clutches and any other clutches the operating states of which are controlled (which are engaged and released) according to electric commands.


The drive system to which the present invention is applicable is placed in a selected one of a plurality of drive modes, depending upon the operating states of the above-described clutch and brake. Preferably, EV drive modes in which at least one of the above-described first and second electric motors is used as a vehicle drive power source while the engine is held at rest include an EV-1 mode to be established in the engaged state of the brake and in the released state of the clutch, and an EV-2 mode to be established in the engaged states of both of the clutch and brake. Further, hybrid drive modes in which the above-described engine is operated while the above-described first and second electric motors are operated to generate a vehicle drive force and/or an electric energy as needed, include an HV-1 mode to be established in the engaged state of the brake and in the released state of the clutch, an HV-2 mode to be established in the released state of the brake and the engaged state of the clutch, and an HV-3 mode to be established in the released states of both of the brake and clutch.


In a further preferred form of the invention, the rotary elements of the above-described first differential mechanism, and the rotary elements of the above-described second differential mechanism are arranged as seen in the collinear charts, in the engaged state of the above-described clutch and in the released state of the above-described brake, in the order of the first rotary element of the first differential mechanism, the first rotary element of the second differential mechanism, the second rotary element of the first differential mechanism, the second rotary element of the second differential mechanism, the third rotary element of the first differential mechanism, and the third rotary element of the second differential mechanism, where the rotating speeds of the second rotary elements and the third rotary elements of the first and second differential mechanisms are indicated in mutually overlapping states in the collinear charts.


Referring to the drawings, preferred embodiments of the present invention will be described in detail. It is to be understood that the drawings referred to below do not necessarily accurately represent ratios of dimensions of various elements.


First Embodiment


FIG. 1 is the schematic view for explaining an arrangement of a hybrid vehicle drive system 10 (hereinafter referred to simply as a “drive system 10”) to which the present invention is suitably applicable. As shown in FIG. 1, the drive system 10 according to the present embodiment is of a transversely installed type suitably used for an FF (front-engine front-drive) type vehicle, and is provided with a main vehicle drive power source in the form of an engine 12, a first electric motor MG1, a second electric motor MG2, a first differential mechanism in the form of a first planetary gear set 14, and a second differential mechanism in the form of a second planetary gear set 16, which are disposed on a common center axis CE. The drive system 10 is constructed substantially symmetrically with respect to the center axis CE. In FIG. 1, a lower half of the drive system 10 is not shown. This description applies to other embodiments which will be described.


The engine 12 is an internal combustion engine such as a gasoline engine, which is operable to generate a drive force by combustion of a fuel such as a gasoline injected into its cylinders. Each of the first electric motor MG1 and second electric motor MG2 is a so-called motor/generator having a function of a motor operable to generate a drive force, and a function of an electric generator operable to generate a reaction force, and is provided with a stator 18, 22 fixed to a stationary member in the form of a housing (casing) 26, and a rotor 20, 24 disposed radially inwardly of the stator 18, 22.


The first planetary gear set 14 is a single-pinion type planetary gear set which has a gear ratio ρ1 and which is provided with rotary elements (elements) consisting of: a first rotary element in the form of a sun gear S1; a second rotary element in the form of a carrier C1 supporting a pinion gear P1 such that the pinion gear P1 is rotatable about its axis and the axis of the planetary gear set; and a third rotary element in the form of a ring gear R1 meshing with the sun gear S1 through the pinion gear P1. The second planetary gear set 16 is a single-pinion type planetary gear set which has a gear ratio ρ2 and which is provided with rotary elements (elements) consisting of: a first rotary element in the form of a sun gear S2; a second rotary element in the form of a carrier C2 supporting a pinion gear P2 such that the pinion gear P2 is rotatable about its axis and the axis of the planetary gear set; and a third rotary element in the form of a ring gear R2 meshing with the sun gear S2 through the pinion gear P2.


The sun gear S1 of the first planetary gear set 14 is connected to the rotor 20 of the first electric motor MG1. The carrier C1 of the first planetary gear set 14 is connected to an input shaft 28 which is rotated integrally with a crankshaft of the engine 12. This input shaft 28 is rotated about the center axis CE. In the following description, the direction of extension of this center axis CE will be referred to as an “axial direction”, unless otherwise specified. The ring gear R1 of the first planetary gear set 14 is connected to an output rotary member in the form of an output gear 30, and to the ring gear R2 of the second planetary gear set 16. The sun gear S2 of the second planetary gear set 16 is connected to the rotor 24 of the second electric motor MG2.


Drive force output from the output gear 30 is transmitted to a pair of left and right drive wheels not shown through a counter driven gear 34 relatively non-rotatably meshing with the output gear 30, a final drive gear 36 integrally disposed on a shaft portion 34a of the counter driven gear 34, and a differential gear device and axles (drive shafts) etc. not shown. On the other hand, a torque received by the drive wheels from a roadway surface on which the vehicle is running is transmitted (input) from the output gear 30 through the differential gear device, axles etc., the final drive gear 36 and the counter driven gear 34 to the drive system 10. A mechanical oil pump 32, which is a vane pump, for instance, is connected to one of opposite end portions of the input shaft 28, which one end portion is remote from the engine 12. The oil pump 32 is operated by the engine 12, to generate a hydraulic pressure to be applied to a hydraulic control unit 60, etc. which will be described. An electrically operated oil pump which is operated with an electric energy may be provided in addition to the oil pump 32.


As depicted in FIG. 1, the shaft portion 34a of the counter driven gear 34 is integrally provided with a parking gear (parking lock gear) 38 making up a parking lock mechanism 62 described later. FIG. 2 depicts a configuration of the parking lock mechanism 62. The parking lock mechanism 62 includes: the parking gear 38; a parking pole (parking lock pole) 64 that is disposed to be rotatable to a meshing position of meshing with outer circumferential teeth 38a of the parking gear 38 and that selectively locks rotation of the parking gear 38 with a locking tooth 64a; a parking rod 68 inserted into a taper portion 66 coming in contact with the parking pole 64 to support the taper portion 66 at one end portion; a spring 70 disposed on the parking rod 68 to bias the taper portion 66 toward a smaller diameter; a detent plate 72 rotatably connected to the other end portion of the parking rod 68 and positioned at least at a parking position by a detent mechanism; a shaft 74 fixed to the detent plate 72 and supported rotatably around one axis; an electric actuator 76 rotationally driving the shaft 74; a rotary encoder 78 detecting a rotation angle of the shaft 74; and a detent spring 80 and an engaging portion 82 disposed at a tip portion thereof limiting rotation of the detent plate 72 to fix the detent plate 72 at each shift position.


The detent plate 72 is operatively connected via the shaft 74 to a drive shaft of the electric actuator 76 and is driven along with the parking rod 68 by the electric actuator 76 to act as a shift positioning member for switching a shift position. A first concave portion 72a and a second concave portion 72b are formed on a top portion of the detent plate 72. The first concave portion 72a corresponds to a parking lock position and the second concave portion 72b corresponds to a non-parking lock position. The rotary encoder 78 outputs a pulse signal for acquiring a count value (encoder count) corresponding to a drive amount, i.e., a rotation amount, of the electric actuator 76.



FIG. 2 depicts the case that the parking lock mechanism 62 is placed in a parking lock state. If the parking lock mechanism 62 is placed in the parking lock state, the locking tooth 64a of the parking lock pole 64 is meshed with the outer circumferential teeth 38a of the parking gear 38 to prevent the rotation of the parking gear 38.


Between the carrier C1 of the first planetary gear set 14 and the carrier C2 of the second planetary gear set 16, there is disposed a clutch CL which is configured to selectively couple these carriers C1 and C2 to each other (to selectively connect the carriers C1 and C2 to each other or disconnect the carriers C1 and C2 from each other). Between the carrier C2 of the second planetary gear set 16 and the stationary member in the form of the housing 26, there is disposed a brake BK which is configured to selectively couple (fix) the carrier C2 to the housing 26. Each of these clutch CL and brake BK is a hydraulically operated coupling device the operating state of which is controlled (which is engaged and released) according to the hydraulic pressure applied thereto from the hydraulic control unit 60. While wet multiple-disc type frictional coupling devices are preferably used as the clutch CL and brake BK, meshing type coupling devices, namely, so-called dog clutches (claw clutches) may also be used. Alternatively, the clutch CL and brake BK may be electromagnetic clutches, magnetic powder clutches and any other clutches the operating states of which are controlled (which are engaged and released) according to electric commands generated from an electronic control device 40.


As shown in FIG. 1, the drive system 10 is configured such that the first planetary gear set 14 and second planetary gear set 16 are disposed coaxially with the input shaft 28 (disposed on the center axis CE), and opposed to each other in the axial direction of the center axis CE. Namely, the first planetary gear set 14 is disposed on one side of the second planetary gear set 16 on a side of the engine 12, in the axial direction of the center axis CE. The first electric motor MG1 is disposed on one side of the first planetary gear set 14 on the side of the engine 12, in the axial direction of the center axis CE. The second electric motor MG1 is disposed on one side of the second planetary gear set 16 which is remote from the engine 12, in the axial direction of the center axis CE. Namely, the first electric motor MG1 and second electric motor MG2 are opposed to each other in the axial direction of the center axis CE, such that the first planetary gear set 14 and second planetary gear set 16 are interposed between the first electric motor MG1 and second electric motor MG2. That is, the drive system 10 is configured such that the first electric motor MG1, first planetary gear set 14, clutch CL, second planetary gear set 16, brake BK and second electric motor MG2 are disposed coaxially with each other, in the order of description from the side of the engine 12, in the axial direction of the center axis CE.



FIG. 3 is the view for explaining major portions of a control system provided to control the drive system 10. The electronic control device 40 shown in FIG. 3 is a so-called microcomputer which incorporates a CPU, a ROM, a RAM and an input-output interface and which is operable to perform signal processing operations according to programs stored in the ROM while utilizing a temporary data storage function of the RAM, to implement various drive controls of the drive system 10, such as a drive control of the engine 12 and hybrid drive controls of the first electric motor MG1 and second electric motor MG2. In the present embodiment, the electronic control device 40 corresponds to a drive control device for a hybrid vehicle having the drive system 10. The electronic control device 40 may be constituted by mutually independent control units as needed for respective controls such as an output control of the engine 12 and drive controls of the first electric motor MG1 and second electric motor MG2.


As indicated in FIG. 3, the electronic control device 40 is configured to receive various signals from sensors and switches provided in the drive system 10. Namely, the electronic control device 40 receives: a shift position signal Sh generated by a manually operated shifting device 41, which is indicative of a presently selected one of a neutral position, a forward drive position, a reverse drive position, etc.; an output signal of an accelerator pedal operation amount sensor 42 indicative of an operation amount or angle ACC of an accelerator pedal (not shown), which corresponds to a vehicle output required by a vehicle operator; an output signal of an engine speed sensor 44 indicative of an engine speed NE, that is, an operating speed of the engine 12; an output signal of an MG1 speed sensor 46 indicative of an operating speed NMG1 of the first electric motor MG1; an output signal of an MG2 speed sensor 48 indicative of an operating speed NMG2 of the second electric motor MG2; an output signal of an output speed sensor 50 indicative of a rotating speed NOUT of the output gear 30, which corresponds to a running speed V of the vehicle; an output signal of wheel speed sensors 52 indicative of rotating speeds NW of the drive wheels in the drive system 10; and an output signal of a battery SOC sensor 54 indicative of a stored electric energy amount (state of charge) SOC of a battery not shown, a P-position signal from a P-switch 41a of the manually operated shifting device 41 switching the parking lock state and the non-parking lock state in the parking lock mechanism 62, a road surface grade signal from a grade sensor 55 detecting a grade θ of a road surface, a signal indicative of the rotation angle of the shaft 74 from the rotary encoder 78, a brake operation signal indicative of the presence/absence of operation of a foot brake that is a service brake detected by a foot brake switch 57, etc.


The electronic control device 40 is also configured to generate various control commands to be applied to various portions of the drive system 10. Namely, the electronic control device 40 applies to an engine control device 56 for controlling an output of the engine 12, following engine output control commands for controlling the output of the engine 12, which commands include: a fuel injection amount control signal to control an amount of injection of a fuel by a fuel injecting device into an intake pipe; an ignition control signal to control a timing of ignition of the engine 12 by an igniting device; and an electronic throttle valve drive control signal to control a throttle actuator for controlling an opening angle θTH of an electronic throttle valve. Further, the electronic control device 40 applies command signals to an inverter 58, for controlling operations of the first electric motor MG1 and second electric motor MG2, so that the first and second electric motors MG1 and MG2 are operated with electric energies supplied thereto from a battery through the inverter 58 according to the command signals to control outputs (output torques) of the electric motors MG1 and MG2. Electric energies generated by the first and second electric motors MG1 and MG2 are supplied to and stored in the battery through the inverter 58. Further, the electronic control device 40 applies command signals for controlling the operating states of the clutch CL and brake BK, to linear solenoid valves and other electromagnetic control valves provided in the hydraulic control unit 60, so that hydraulic pressures generated by those electromagnetic control valves are controlled to control the operating states of the clutch CL and brake BK.


An operating state of the drive system 10 is controlled through the first electric motor MG1 and second electric motor MG2, such that the drive system 10 functions as an electrically controlled differential portion whose difference of input and output speeds is controllable. For example, an electric energy generated by the first electric motor MG1 is supplied to the battery or the second electric motor MG2 through the inverter 58. Namely, a major portion of the drive force of the engine 12 is mechanically transmitted to the output gear 30, while the remaining portion of the drive force is consumed by the first electric motor MG1 operating as the electric generator, and converted into the electric energy, which is supplied to the second electric motor MG2 through the inverter 58, so that the second electric motor MG2 is operated to generate a drive force to be transmitted to the output gear 30. Components associated with the generation of the electric energy and the consumption of the generated electric energy by the second electric motor MG2 constitute an electric path through which a portion of the drive force of the engine 12 is converted into an electric energy which is converted into a mechanical energy.


In the hybrid vehicle provided with the drive system 10 constructed as described above, one of a plurality of drive modes is selectively established according to the operating states of the engine 12, first electric motor MG1 and second electric motor MG2, and the operating states of the clutch CL and brake BK. FIG. 4 is the table indicating combinations of the operating states of the clutch CL and brake BK, which correspond to the respective five drive modes of the drive system 10. In this table, “o” marks represent an engaged state while blanks represent a released state. The drive modes “EV-1 mode” and “EV-2 mode” indicated in FIG. 3 are EV drive modes (motor drive modes) in which the engine 12 is held at rest while at least one of the first electric motor MG1 and second electric motor MG2 is used as a vehicle drive power source. The drive modes “HV-1 mode”, “HV-2 mode” and “HV-3 mode” are hybrid drive modes (engine drive modes) in which the engine 12 is operated as the vehicle drive power source while the first electric motor MG1 and second electric motor MG2 are operated as needed to generate a vehicle drive force and/or an electric energy. In these hybrid drive modes, at least one of the first electric motor MG1 and second electric motor MG2 is operated to generate a reaction force or placed in a non-loaded free state.


As is apparent from FIG. 4, the EV drive modes of the drive system 10 in which the engine 12 is held at rest while at least one of the first electric motor MG1 and second electric motor MG2 is used as the vehicle drive power source consist of: an EV-1 mode (drive mode 1) which is established in the engaged state of the brake BK and in the released state of the clutch CL; and an EV-2 mode (drive mode 2) which is established in the engaged states of both of the brake BK and clutch CL. The hybrid drive modes in which the engine 12 is operated as the vehicle drive power source while the first electric motor MG1 and second electric motor MG2 are operated as needed to generate a vehicle drive force and/or an electric energy, consist of: an HV-1 mode (drive mode 3) which is established in the engaged state of the brake BK and in the released state of the clutch CL; an HV-2 mode (drive mode 4) which is established in the released state of the brake BK and in the engaged state of the clutch CL; and an HV-3 mode (drive mode 5) which is established in the released states of both of the brake BK and clutch CL.



FIGS. 5-8 are the collinear charts having straight lines which permit indication thereon of relative rotating speeds of the various rotary elements of the drive system 10 (first planetary gear set 14 and second planetary gear set 16), which rotary elements are connected to each other in different manners corresponding to respective combinations of the operating states of the clutch CL and brake BK. These collinear charts are defined in a two-dimensional coordinate system having a horizontal axis along which relative gear ratios p of the first and second planetary gear sets 14 and 16 are taken, and a vertical axis along which the relative rotating speeds are taken. The collinear charts indicate the relative rotating speeds when the output gear 30 is rotated in the positive direction to drive the hybrid vehicle in the forward direction. A horizontal line X1 represents the rotating speed of zero, while vertical lines Y1 through Y4 arranged in the order of description in the rightward direction represent the respective relative rotating speeds of the sun gear S1, sun gear S2, carrier C1 and ring gear R1. Namely, a solid line Y1 represents the relative rotating speed of the sun gear S1 of the first planetary gear set 14 (operating speed of the first electric motor MG1), a broken line Y2 represents the relative rotating speed of the sun gear S2 of the second planetary gear set 16 (operating speed of the second electric motor MG2), a solid line Y3 represents the relative rotating speed of the carrier C1 of the first planetary gear set 14 (operating speed of the engine 12), a broken line Y3′ represents the relative rotating speed of the carrier C2 of the second planetary gear set 16, a solid line Y4 represents the relative rotating speed of the ring gear R1 of the first planetary gear set 14 (rotating speed of the output gear 30), and a broken line Y4′ represents the relative rotating speed of the ring gear R2 of the second planetary gear set 16. In FIGS. 5-8, the vertical lines Y3 and Y3′ are superimposed on each other, while the vertical lines Y4 and Y4′ are superimposed on each other. Since the ring gears R1 and R2 are fixed to each other, the relative rotating speeds of the ring gears R1 and R2 represented by the vertical lines Y4 and Y4′ are equal to each other.


In FIGS. 5-8, a solid line L1 represents the relative rotating speeds of the three rotary elements of the first planetary gear set 14, while a broken line L2 represents the relative rotating speeds of the three rotary elements of the second planetary gear set 16. Distances between the vertical lines Y1-Y4 (Y2-Y4′) are determined by the gear ratios σ1 and σ2 of the first and second planetary gear sets 14 and 16. Described more specifically, regarding the vertical lines Y1, Y3 and Y4 corresponding to the respective three rotary elements in the form of the sun gear S1, carrier C1 and ring gear R1 of the first planetary gear set 14, a distance between the vertical lines Y1 and Y3 corresponds to “1”, while a distance between the vertical lines Y3 and Y4 corresponds to the gear ratio “σ1”. Regarding the vertical lines Y2, Y3′ and Y4′ corresponding to the respective three rotary elements in the form of the sun gear S2, carrier C2 and ring gear R2 of the second planetary gear set 16, a distance between the vertical lines Y2 and Y3′ corresponds to “1”, while a distance between the vertical lines Y3′ and Y4′ corresponds to the gear ratio “σ2”. In the drive system 10, the gear ratio σ2 of the second planetary gear set 16 is higher than the gear ratio pl of the first planetary gear set 14 (σ2>σ1). The drive modes of the drive system 10 will be described by reference to FIGS. 5-8.


The “EV-1 mode” indicated in FIG. 4 corresponds to a first motor drive mode of the drive system 10, which is preferably the EV drive mode in which the engine 12 is held at rest while the second electric motor MG2 is used as the vehicle drive power source. FIG. 5 is the collinear chart corresponding to the EV-1 mode. Described by reference to this collinear chart, the carrier C1 of the first planetary gear set 14 and the carrier C2 of the second planetary gear set 16 are rotatable relative to each other in the released state of the clutch CL. In the engaged state of the brake BK, the carrier C2 of the second planetary gear set 16 is coupled (fixed) to the stationary member in the form of the housing 26, so that the rotating speed of the carrier C2 is held zero. In this EV-1 mode, the rotating direction of the sun gear S2 and the rotating direction in the second planetary gear set 16 are opposite to each other, so that when the second electric motor MG2 is operated to generate a negative torque (acting in the negative direction), the ring gear R2, that is, the output gear 30 is rotated in the positive direction by the generated negative torque. Namely, the hybrid vehicle provided with the drive system 10 is driven in the forward direction when the negative torque is generated by the second electric motor MG2. In this case, the first electric motor MG1 is preferably held in a free state. In this EV-1 mode, the clutches C1 and C2 are permitted to be rotated relative to each other, so that the hybrid vehicle can be driven in forward and backward directions in the EV drive mode using the second electric motor MG2 similar to an EV (electric) drive mode which is established in a vehicle provided with a so-called “THS” (Toyota Hybrid System) and in which the clutch C2 is fixed to the stationary member.


The “EV-2 mode” indicated in FIG. 4 corresponds to a second motor drive mode of the drive system 10, which is preferably the EV drive mode in which the engine 12 is held at rest while at least one of the first electric motor MG1 and second electric motor MG2 is used as the vehicle drive power source. FIG. 6 is the collinear chart corresponding to the EV-2 mode. Described by reference to this collinear chart, the carrier C1 of the first planetary gear set 14 and the carrier C2 of the second planetary gear set 16 are not rotatable relative to each other in the engaged state of the clutch CL. Further, in the engaged state of the brake BK, the carrier C2 of the second planetary gear set 16 and the carrier C1 of the first planetary gear set 14 which is connected to the carrier C2 are coupled (fixed) to the stationary member in the form of the housing 26, so that the rotating speeds of the carriers C1 and C2 are held zero. In the EV-2 mode, the rotating direction of the sun gear S1 and the rotating direction of the ring gear R1 in the first planetary gear set 14 are opposite to each other, and the rotating direction of the sun gear S2 and the rotating direction of the ring gear R2 in the second planetary gear set 16 are opposite to each other, so that when the first electric motor MG1 and/or second electric motor MG2 is/are operated to generate a negative torque (acting in the negative direction), the ring gears R1 and R2 are rotated, that is, the output gear 30 is rotated in the positive direction by the generated negative torque. Namely, the hybrid vehicle provided with the drive system 10 can be driven in the forward or reverse direction by at least one of the first electric motor MG1 and second electric motor MG2.


In the EV-2 mode, at least one of the first electric motor MG1 and second electric motor MG2 may be operated as the electric generator. In this case, one or both of the first and second electric motors MG1 and MG2 may be operated to generate a vehicle drive force (torque), at an operating point assuring a relatively high degree of operating efficiency, and/or with a reduced degree of torque limitation due to heat generation. Further, at least one of the first and second electric motors MG1 and MG2 may be held in a free state, when the generation of an electric energy by a regenerative operation of the electric motors MG1 and MG2 is inhibited due to full charging of the battery. Namely, the EV-2 mode is an EV drive mode which may be established under various running conditions of the hybrid vehicle, or may be kept for a relatively long length of time. Accordingly, the EV-2 mode is advantageously provided on a hybrid vehicle such as a plug-in hybrid vehicle, which is frequently placed in an EV drive mode.


The “HV-1 mode” indicated in FIG. 4 corresponds to a first engine (hybrid) drive mode of the drive system 10, which is preferably the HV drive mode in which the engine 12 is used as the vehicle drive power source while the first electric motor MG1 and second electric motor MG2 are operated as needed to generate a vehicle drive force and/or an electric energy. FIG. 5 is the collinear chart corresponding to the HV-1 mode. Described by reference to this collinear chart, the carrier C1 of the first planetary gear set 14 and the carrier C2 of the second planetary gear set 16 are rotatable relative to each other, in the released state of the clutch CL. In the engaged state of the brake BK, the carrier C2 of the second planetary gear set 16 is coupled (fixed) to the stationary member in the form of the housing 26, so that the rotating speed of the carrier C2 is held zero. In this HV-1 mode, the engine 12 is operated to generate an output torque by which the output gear 30 is rotated. At this time, the first electric motor MG1 is operated to generate a reaction torque in the first planetary gear set 14, so that the output of the engine 12 can be transmitted to the output gear 30. In the second planetary gear set 16, the rotating direction of the sun gear S2 and the rotating direction of the ring gear R2 are opposite to each other, in the engaged state of the brake BK, so that when the second electric motor MG2 is operated to generate a negative torque (acting in the negative direction), the ring gears R1 and R2 are rotated, that is, the output gear 30 is rotated in the positive direction by the generated negative torque.


The “HV-2 mode” indicated in FIG. 4 corresponds to a second engine (hybrid) drive mode of the drive system 10, which is preferably the HV drive mode in which the engine 12 is used as the vehicle drive power source while the first electric motor MG1 and second electric motor MG2 are operated as needed to generate a vehicle drive force and/or an electric energy. FIG. 7 is the collinear chart corresponding to the HV-2 mode. Described by reference to this collinear chart, the carrier C1 of the first planetary gear set 14 and the carrier C2 of the second planetary gear set 16 are not rotatable relative to each other, in the engaged state of the clutch CL, that is, the carriers C1 and C2 are integrally rotated as a single rotary element. The ring gears R1 and R2, which are fixed to each other, are integrally rotated as a single rotary element. Namely, in the HV-2 mode of the drive system 10, the first planetary gear set 14 and second planetary gear set 16 function as a differential mechanism having a total of four rotary elements. That is, the HV-2 mode is a composite split mode in which the four rotary elements consisting of the sun gear S1 (connected to the first electric motor MG1), the sun gear S2 (connected to the second electric motor MG2), the rotary element constituted by the carriers C1 and C2 connected to each other (and to the engine 12), and the rotary element constituted by the ring gears R1 and R2 fixed to each other (and connected to the output gear 30) are connected to each other in the order of description in the rightward direction as seen in FIG. 7.


In the HV-2 mode, the rotary elements of the first planetary gear set 14 and second planetary gear set 16 are preferably arranged as indicated in the collinear chart of FIG. 7, that is, in the order of the sun gear S1 represented by the vertical line Y1, the sun gear S2 represented by the vertical line Y2, the carriers C1 and C2 represented by the vertical line Y3 (Y3′), and the ring gears R1 and R2 represented by the vertical line Y4 (Y4′). The gear ratios σ1 and σ2 of the first and second planetary gear sets 14 and 16 are determined such that the vertical line Y1 corresponding to the sun gear S1 and the vertical line Y2 corresponding to the sun gear S2 are positioned as indicated in the collinear chart of FIG. 7, namely, such that the distance between the vertical lines Y1 and Y3 is longer than the distance between the vertical lines Y2 and Y3′. In other words, the distance between the vertical lines corresponding to the sun gear S1 and the carrier C1 and the distance between the vertical lines corresponding to the sun gear S2 and the carrier C2 correspond to “1”, while the distance between the vertical lines corresponding to the carrier C1 and the ring gear R1 and the distance between the vertical lines corresponding to the carrier C2 and the ring gear R2 correspond to the respective gear ratios σ1 and σ2. Accordingly, the drive system 10 is configured such that the gear ratio σ2 of the second planetary gear set 16 is higher than the gear ratio σ1 of the first planetary gear set 14.


In the HV-2 mode, the carrier C1 of the first planetary gear set 14 and the carrier C2 of the second planetary gear set 16 are connected to each other in the engaged state of the clutch CL, so that the carriers C1 and C2 are rotated integrally with each other. Accordingly, either one or both of the first electric motor MG1 and second electric motor MG2 can receive a reaction force corresponding to the output of the engine 12. Namely, one or both of the first and second electric motors MG1 and MG2 can be operated to receive the reaction force during an operation of the engine 12, in other words, the amounts of work to be assigned to the first and second electric motors MG1 and MG2 can be adjusted with respect to each other. That is, in the mode 4, each of the first and second electric motors MG1 and MG2 can be operated at an operating point assuring a relatively high degree of operating efficiency, and/or with a reduced degree of torque limitation due to heat generation.


The “HV-3 mode” indicated in FIG. 4 corresponds to a third engine (hybrid) drive mode of the drive system 10, which is preferably the hybrid drive mode in which the engine 12 is operated as the vehicle drive power source while the first electric motor MG1 is operated to generate an electric energy, with a continuous change of the speed ratio, and with an operating point of the engine 12 being moved along a predetermined optimum operating curve. In this HV-3 mode, the engine 12 and first electric motor MG1 may be operated to generate a vehicle drive force, with the second electric motor MG2 being disconnected from a drive system. FIG. 8 is the collinear chart corresponding to this HV-3 mode. Described by reference to this collinear chart, the carrier C1 of the first planetary gear set 14 and the carrier C2 of the second planetary gear set 16 are rotatable relative to each other in the released state of the clutch CL. In the released state of the brake BK, the carrier C2 of the second planetary gear set 16 is rotatable relative to the stationary member in the form of the housing 26. In this arrangement, the second electric motor MG2 can be held at rest while it is disconnected from the drive system (power transmitting path).


In the HV-1 mode in which the brake BK is placed in the engaged state, the second electric motor MG2 is kept in an operated state together with a rotary motion of the output gear 30 (ring gear R2) during running of the vehicle. In this operating state, the operating speed of the second electric motor MG2 may reach an upper limit value (upper limit) during running of the vehicle at a comparatively high speed, or a rotary motion of the ring gear R2 at a high speed is transmitted to the sun gear S2. In this respect, it is not necessarily desirable to keep the second electric motor MG2 in the operated state during running of the vehicle at a comparatively high speed, from the standpoint of the operating efficiency. In the HV-3 mode, on the other hand, the engine 12 and the first electric motor MG1 may be operated to generate the vehicle drive force during running of the vehicle at the comparatively high speed, while the second electric motor MG2 is disconnected from the drive system, so that it is possible to reduce a power loss due to dragging of the unnecessarily operated second electric motor MG2, and to eliminate a limitation of the highest vehicle running speed corresponding to the permissible highest operating speed (upper limit of the operating speed) of the second electric motor MG2.


It will be understood from the foregoing description, the drive system 10 is selectively placed in one of the three hybrid drive modes in which the engine 12 is operated as the vehicle drive power source while the first and second electric motors MG1 and MG2 are operated as needed to generate a vehicle drive force and/or an electric energy, namely, in one of the HV-1 mode, the HV-2 mode and the HV-3 mode, which are selectively established by respective combinations of the engaged and released states of the clutch CL and brake BK. Accordingly, a transmission efficiency can be improved to improve the fuel economy of the vehicle, by selectively establishing one of the three hybrid drive modes according to the vehicle running speed and the speed ratio, in which the transmission efficiency is the highest.



FIG. 9 is the functional block diagram for explaining major control functions of the electronic control device 40 depicted in FIG. 3. In FIG. 9, a slope road determining means, i.e., a slope road determining portion 84 determines whether a road is a slope road based on whether the road surface grade θ detected by the grade sensor 55 is equal to or greater than zero. If the slope road determining portion 84 determines that a road is a slope road, a drive torque in the vehicle forward direction is output from the first electric motor MG1 and/or the second electric motor MG2 so as to prevent backward movement on a climbing road.


A P-range determining means, i.e., a P-range determining portion 86 determines whether a parking range (P-range) is selected, based on the P-position signal from the P-switch 41a of the manually operated shifting device 41 and the brake operation signal from the foot brake switch 57. Therefore, the P-range determining portion 86 determines whether the P-switch 41a is pressed while the footbrake is depressed.


If a slope road determining portion 84 determines that a road is a slope road, and a P-range determining portion 86 determines that a parking range is selected, a mode determining means i.e., a mode determining portion 88 is configured to determine a presently established one of the five modes consisting of the EV-1 mode, the EV-2 mode, the HV-1 mode, the HV-2 mode and the HV-3 mode, on the basis of vehicle parameters such as the required vehicle drive force, the vehicle running speed V, the accelerator pedal operation amount ACC, the stored electric energy amount SOC and operating temperatures, or on the basis of output states of the engine control device 56 and the inverter 58, an output state of a mode switching control portion 90 described later, or an already set state of an appropriate memory flag.


A mode switching control means i.e. the mode switching control portion 90 is configured to implement a mode switching control for placing the drive system 10 in one of the drive modes which is selected by the mode determining portion 88. For instance, the mode switching control portion 90 determines whether the drive system 10 should be placed in an electric drive mode or a hybrid drive mode, depending upon whether the operator's required vehicle drive force represented by the vehicle running speed V and the accelerator pedal operation amount ACC lies in a predetermined electric drive region or an engine drive region, or on the basis of a requirement based on the stored electric energy amount SOC. If the electric drive mode is selected, the mode switching control portion 90 establishes one of the EV-1 mode and the EV-2 mode, on the basis of the requirement based on the stored electric energy amount SOC and the operator's selection. If the hybrid drive mode is selected, the mode switching control portion 90 establishes one of the drive modes the HV-1 mode, the HV-2 mode and the HV-3 mode, on the basis of an operating efficiency of the engine 12, the transmission efficiency, the required vehicle drive force, etc., so as to provide a good compromise between the vehicle drivability and the fuel economy. For example, the mode switching control portion 90 establishes the HV-1 mode at a relatively low running speed in a relatively low-gear (high speed-reduction ratio) range, the HV-2 mode at a relatively intermediate running speed in a relatively intermediate-gear (intermediate speed-reduction ratio) range, the HV-3 mode at a relatively high running speed in a relatively high-gear (low speed-reduction ratio) range. For example, when the drive mode is switched from the EV-2 mode that is a motor drive mode in which the first and second electric motors MG1 and MG2 are used as vehicle drive power sources to the HV-1 mode that is an engine drive mode, this mode switching control portion 90 releases the clutch CL through the hydraulic control unit 60 out of the clutch CL and the brake BK that have been placed in the engaged state, starts the engine 12 by the first electric motor MG1, and continues the engagement of the brake BK. Namely, the mode switching control portion 90 switches the operating state from the state shown in the collinear chart of FIG. 6 to the state shown in the collinear chart of FIG. 5.


If the mode determining portion 88 determines that the presently established mode is a mode other than the HV-2 mode, i.e., any of the EV-1 mode, EV-2 mode, HV-1 mode, and HV-3 mode, an HV-2 mode switching control means, i.e., an HV-2 mode switching control portion 92 outputs a hydraulic control command signal Sp placing the brake BK in the released state and the clutch CL in the engaged state to establish the HV-2 mode from the electronic control device 40 to the hydraulic control unit 60. The hydraulic control unit 60 controls the hydraulic pressure output from the electromagnetic valves such as linear solenoid valves in the hydraulic control unit 60 according to the hydraulic control command signal Sp to place the brake BK in the released state and the clutch CL in the engaged state.


If the mode determining portion 88 determines that the presently established mode is the HV-2 mode or if the HV-2 mode switching control portion 92 makes a switch to the HV-2 mode, i.e., if it is determined that the presently established mode is the HV-2 mode, a parking lock control means, i.e., a parking lock control portion 94 drives the electric actuator 76 of the parking lock mechanism 62 such that the locking tooth 64a of the parking pole 64 is meshed with the outer circumferential teeth 38a of the parking gear 38 to make a switch to the parking lock state.



FIG. 10 is a flowchart for explaining major portions of a control operation of preventing a defect in meshing between the outer circumferential teeth 38a of the parking gear 38 and the locking tooth 64a of the parking pole 64, for example, after a shift change into the parking range on a slope road in the electronic control device 40 of FIG. 3. The control operation is repeatedly performed with a predetermined cycle time.


In FIG. 10, first, in step S1 (“step” being hereinafter omitted) corresponding to the slope road determining portion 84, it is determined whether a road is a slope road. If a negative determination is obtained in S1, the present routine is terminated. If an affirmative determination is obtained, the control flow goes to S2 corresponding to the P-range determining portion 86, to determine whether the parking range is selected, i.e., whether the P-switch 41a is pressed while the footbrake is depressed. If a negative determination is obtained in S2, the present routine is terminated. If an affirmative determination is obtained, the control flow goes to S3 corresponding to the mode determining portion 88, to determine whether the presently established mode is the HV-2 mode.


If an affirmative determination is obtained in S3, i.e., if the presently established mode is the HV-2 mode, the control flow goes to S4 corresponding to the parking lock control portion 94. If a negative determination is obtained in S3, i.e., if the presently established mode is a mode other than the HV-2 mode (EV-1 mode, EV-2 mode, HV-1 mode, or HV-3 mode), the control flow goes to S5 corresponding to the HV-2 mode switching control portion 92 and then goes to S4.


In S5 corresponding to the HV-2 mode switching control portion 92, the mode other than the HV-2 mode determined by the mode determining portion 88 is switched to the HV-2 mode. In S4 corresponding to the parking lock control portion 94, the electric actuator 76 of the parking lock mechanism 62 is driven to mesh the locking tooth 64a of the parking pole 64 with the outer circumferential teeth 38a of the parking gear 38 to achieve the parking lock state.



FIGS. 11 and 12 are schematic views of a drive system representative of a state in which the circumferential teeth 38a and the locking tooth 64a come into contact with each other, for example, when the foot brake is released, in the parking lock state in which the outer circumferential teeth 38a of the parking gear 38 meshes with the locking tooth 64a of the parking pole 64 due to the parking lock mechanism 62 on a climbing road. FIG. 11 is a schematic view of the drive system representative of a state different from this embodiment in which the HV-1 mode is established with the brake BK placed in the engaged state and the clutch CL placed in the released state during the parking lock state. FIG. 12 is a schematic view of the drive system representative of the same state as this embodiment in which the HV-2 mode is established with the brake BK placed in the released state and the clutch CL placed in the engaged state during the parking lock state.


In FIG. 11, since the brake BK is placed in the engaged state and the rotor 24 of the second electric motor MG2 and the parking gear 38 are placed in a one-to-one connection state, if the rotor 24 of the second electric motor MG2 and the parking gear 38 are integrally rotated after a backlash is closed by the output torque of the second electric motor MG2 for canceling the torque in the vehicle forward direction when the foot brake is released, the outer circumferential teeth 38a of the parking gear 38 and the locking tooth 64a come into contact with each other and, therefore, an impact force due to inertia of the rotor 24 of the second electric motor MG2 acts on the parking pole 64 via the parking gear 38. As a result, a defect may occur in meshing between the outer circumferential teeth 38a of the parking gear 38 and the locking tooth 64a of the parking pole 64.


In FIG. 12, since the brake BK is placed in the released state and the rotor 24 of the second electric motor MG2 and the parking gear 38 are placed in a relatively rotatable state, if the outer circumferential teeth 38a of the parking gear 38 and the locking tooth 64a of the parking pole 64 come into contact with each other, the impact force due to inertia of the rotor 24 of the second electric motor MG2 does not act on the parking pole 64 via the parking gear 38. Therefore, a defect is prevented from occurring in meshing between the outer circumferential teeth 38a of the parking gear 38 and the locking tooth 64a of the parking pole 64.


As described above, according to the electronic control device 40 of the drive system 10 of this embodiment, if a shift change is made into the parking range to achieve the parking lock with the parking lock mechanism 62, the drive mode is set to the engine drive mode in which the brake BK is placed in the released state while the clutch CL is placed in the engaged state, i.e., the HV-2 mode. Therefore, since the brake BK is placed in the released state and the parking gear 38 and the rotor 24 of the second electric motor MG2 are placed in a relatively rotatable state during the parking lock, if the outer circumferential teeth 38a of the parking gear 38 and the locking tooth 64a of the parking pole 64 come into contact with each other, the impact force due to inertia of the rotor 24 of the second electric motor MG2 does not act on the parking pole 64 via the parking gear 38. As a result, if the parking lock is achieved with the parking lock mechanism 62, a defect is prevented from occurring in meshing between the outer circumferential teeth 38a of the parking gear 38 and the locking tooth 64a of the parking pole 64.


According to the electronic control device 40 of the drive system 10 of this embodiment, if a shift change is made into the parking range on a climbing road, the hybrid vehicle sets the drive mode to the engine drive mode in which the brake BK is placed in the released state while the clutch CL is placed in the engaged state, i.e., the HV-2 mode. Therefore, if the outer circumferential teeth 38a of the parking gear 38 and the locking tooth 64a of the parking pole 64 come into contact with each other while the drive torque is output from the first electric motor MG1 and/or the second electric motor MG2 so as to prevent backward movement on a climbing road, for example, by releasing the brake pedal, during the parking lock on the climbing road, the impact force due to inertia of the rotor 24 of the second electric motor MG2 does not act on the parking pole 64.


Other preferred embodiments of the present invention will be described in detail by reference to the drawings. In the following description, the same reference signs will be used to identify the same elements in the different embodiments, which will not be described redundantly.


Second Embodiment

As depicted in FIG. 13, an electronic control device 95 of the drive system 10 of this embodiment is different from the electronic control device 40 of the first embodiment in that a remaining electric energy amount determining portion 96 and a forcible charging portion 98 are added, and the other constituent elements are substantially the same.


A remaining electric energy amount determining means, i.e., the remaining electric energy amount determining portion 96 determines whether the stored electric energy amount SOC of the battery is lower than a predetermined stored electric energy amount SOCA defined in advance through experiments etc., based on the battery SOC sensor 54.


If the remaining electric energy amount determining portion 96 determines that the stored electric energy amount SOC is lower than the predetermined stored electric energy amount SOCA, a forcible charging means, i.e., the forcible charging portion 98 performs forcible charging. Therefore, if the condition is satisfied, the forcible charging portion 98 makes a switch to the HV-1 mode, in which the brake BK is placed in the engaged state while the clutch CL is placed in the released state, to use the output torque of the second electric motor MG2 for canceling the drive torque in the vehicle forward direction generated when the engine 12 rotationally drives the first electric motor MG1 for the forcible charging.


If the forcible charging portion 98 performs the forcible charging; the slope road determining portion 84 determines that the road is a slope road; and the P-range determining portion 86 determines that the parking range is selected, the mode determining portion 88 determines a presently established one of the five modes consisting of the EV-1 mode, EV-2 mode, HV-1 mode, HV-2 mode, and HV-3 mode, as is the case with the first embodiment. Since the presently established mode is the HV-1 mode when the forcible charging portion 98 performs the forcible charging as in this embodiment, the mode determining portion 88 determines that the presently established mode is the HV-1 mode.



FIG. 14 is a flowchart for explaining major portions of a control operation of preventing a defect in meshing between the outer circumferential teeth 38a of the parking gear 38 and the locking tooth 64a of the parking pole 64 at the time of forcible charging by major portions of a control operation of the electronic control device 95 of this embodiment and only S6 and S7 will be described without describing S1 to S5, which are the same as FIG. 10.


In FIG. 14, first, in S6 corresponding to the remaining electric energy amount determining portion 96, it is determined whether the stored electric energy amount SOC is lower than the predetermined stored electric energy amount SOCA. If a negative determination is obtained in S6, the present routine is terminated. If an affirmative determination is obtained, the flow goes to S7 corresponding to the forcible charging portion 98, in which a switch to the HV-1 mode is made and the forcible charging is performed. Subsequently, S1 to S5 of the first embodiment is executed.


In the electronic control device 95 of the drive system 10 in this embodiment, when the forcible charging portion 98 makes a switch to the HV-1 mode and performs the forcible charging, i.e., when the forcible charging portion 98 uses the output torque of the second electric motor MG2 for canceling the drive torque in the vehicle forward direction generated when the engine 12 rotationally drives the first electric motor MG1 for the forcible charging, if the P-range determining portion 86 determines that the parking range is selected, the HV-2 mode switching control portion 92 makes a switch to the HV-2 mode, in which the brake BK is placed in the released state while the clutch CL is placed in the engaged state, and the parking lock control portion 94 achieves the parking lock with the parking lock mechanism 62.


Therefore, when the forcible charging portion 98 makes a switch to the HV-1 mode and performs the forcible charging, if the parking lock is achieved with the parking lock mechanism 62 in the HV-1 mode without change unlike this embodiment, an impact force due to inertia of the rotor 24 of the second electric motor MG2 acts on the parking pole 64 via the parking gear 38 when the outer circumferential teeth 38a of the parking gear 38 and the locking tooth 64a of the parking pole 64 come into contact with each other, as depicted in FIG. 11 of the first embodiment. Therefore, a defect may occur in meshing between the outer circumferential teeth 38a of the parking gear 38 and the locking tooth 64a of the parking pole 64. In contrast, as depicted in FIG. 12, when the forcible charging is performed in the HV-1 mode, if the drive mode is switched from HV-1 to HV-2 at the time of the parking lock, since the brake BK is placed in the released state and the rotor 24 of the second electric motor MG2 and the parking gear 38 are placed in a relatively rotatable state, the impact force due to inertia of the rotor 24 of the second electric motor MG2 does not act on the parking pole 64. Therefore, a defect is prevented from occurring in meshing between the outer circumferential teeth 38a of the parking gear 38 and the locking tooth 64a of the parking pole 64.


As described above, according to the electronic control device 95 of the drive system 10 of this embodiment, when the brake BK is placed in the engaged state and the output torque of the second electric motor MG2 is used for cancelling the drive torque in the vehicle forward direction generated when the engine 12 rotationally drives the first electric motor MG1 for forcible charging, if a shift change is made into the parking range to achieve the parking lock with the parking lock mechanism 62, the drive mode is set to the engine drive mode in which the brake BK is placed in the released state while the clutch CL is placed in the engaged state, i.e., the HV-2 mode. Therefore, particularly, when the brake BK is placed in the engaged state and the output torque of the second electric motor MG2 is used for cancelling the drive torque in the vehicle forward direction generated when the engine 12 rotationally drives the first electric motor MG1 for forcible charging, a defect is prevented from occurring in meshing between the outer circumferential teeth 38a of the parking gear 38 and the locking tooth 64a of the parking pole 64 when the engine 12 rotationally drives the first electric motor MG1 for forcible charging.


Third Embodiment


FIGS. 15-20 are the schematic views for explaining arrangements of respective hybrid vehicle drive systems 100, 110, 120, 130, 140 and 150 according to other preferred modes of this invention used instead of the hybrid vehicle drive system 10 in the first and second embodiments. The hybrid vehicle drive control device of the present invention is also applicable to drive systems such as the drive system 100 shown in FIG. 15 and the drive system 110 shown in FIG. 16, which have respective different arrangements of the first electric motor MG1, first planetary gear set 14, second electric motor MG2, second planetary gear set 16, clutch CL and brake BK in the direction of the center axis CE. The present hybrid vehicle drive control device is also applicable to drive systems such as the drive system 120 shown in FIG. 17, which have a one-way clutch OWC disposed between the carrier C2 of the second planetary gear set 16 and the stationary member in the form of the housing 26, in parallel with the brake BK, such that the one-way clutch OWC permits a rotary motion of the carrier C2 relative to the housing 26 in one of opposite directions and inhibits a rotary motion of the carrier C2 in the other direction. The present hybrid vehicle drive control device is further applicable to drive systems such as the drive system 130 shown in FIG. 18, the drive system 140 shown in FIG. 19 and the drive system 150 shown in FIG. 20, which are provided with a second differential mechanism in the form of a second planetary gear set 16′ of a double-pinion type, in place of the second planetary gear set 16 of a single-pinion type. This second planetary gear set 16′ is provided with rotary elements (elements) consisting of: a first rotary element in the form of a sun gear S2′; a second rotary element in the form of a carrier C2′ supporting a plurality of pinion gears P2′ meshing with each other such that each pinion gear P2′ is rotatable about its axis and the axis of the planetary gear set; and a third rotary element in the form of a ring gear R2′ meshing with the sun gear S2′ through the pinion gears P2′.


As described above, each of the hybrid vehicle drive systems 100, 110, 120, 130, 140 and 150 according to the present third embodiment is provided with: a first differential mechanism in the form of the first planetary gear set 14 having a first rotary element in the form of the sun gear S1 connected to the first electric motor MG1, a second rotary element in the form of the carrier C1 connected to the engine 12, and a third rotary element in the form of the ring gear R1 connected to an output rotary member in the form of the output gear 30; a second differential mechanism in the form of the second planetary gear set 16 (16′) which has a first rotary element in the form of the sun gear S2 (S2′) connected to the second electric motor MG2, a second rotary element in the form of the carrier C2 (C2′) and a third rotary element in the form of the ring gear R2 (R2′), and in which one of the carrier C2 (C2′) and the ring gear R2 (R2′) is connected to the ring gear R1 of the first planetary gear set 14; the clutch CL for selectively connecting the carrier C1 of the first planetary gear set 14 and the other of the carrier C2 (C2′) and the ring gear R2 (R2′) which is not connected to the ring gear R1, to each other; and the brake BK for selectively fixing the other of the carrier C2 (C2′) and the ring gear R2 (R2′) which is not connected to the ring gear R1, to a stationary member in the form of the housing 26.


Accordingly, by disposing the electronic control device 40 of the first embodiment, since the drive mode is set to the engine drive mode in which the brake BK is placed in the released state while the clutch CL is placed in the engaged state, i.e., the HV-2 mode when a shift change is made into the parking range to achieve the parking lock with the parking lock mechanism 62, the brake BK is placed in the released state and the parking gear 38 and the rotor 24 of the second electric motor MG2 are placed in a relatively rotatable state at the time of the parking lock and, therefore, if the outer circumferential teeth 38a of the parking gear 38 and the locking tooth 64a of the parking pole 64 come into contact with each other, the impact force due to inertia of the rotor 24 of the second electric motor MG2 does not act on the parking pole 64 via the parking gear 38, resulting in the same effect as the first embodiment. By disposing the electronic control device 95 of the second embodiment, when the brake BK is placed in the engaged state and the output torque of the second electric motor MG2 is used for cancelling the drive torque in the vehicle forward direction generated when the engine 12 rotationally drives the first electric motor MG1 for forcible charging, if a shift change is made into the parking range to achieve the parking lock with the parking lock mechanism 62, the drive mode is set to the engine drive mode in which the brake BK is placed in the released state while the clutch CL is placed in the engaged state, i.e., the HV-2 mode, and therefore, particularly, when the brake BK is placed in the engaged state and the output torque of the second electric motor MG2 is used for cancelling the drive torque in the vehicle forward direction generated when the engine 12 rotationally drives the first electric motor MG1 for forcible charging, a defect is prevented from occurring in meshing between the outer circumferential teeth 38a of the parking gear 38 and the locking tooth 64a of the parking pole 64 when the engine 12 rotationally drives the first electric motor MG1 for forcible charging, resulting in the same effect as the second embodiment.


Fourth Embodiment


FIGS. 21-23 are the collinear charts for explaining arrangements and operations of respective hybrid vehicle drive systems 160, 170 and 180 according to other preferred modes of this invention in place of the hybrid vehicle drive system 10 of the first and second embodiments. In FIGS. 21-23, the relative rotating speeds of the sun gear S1, carrier C1 and ring gear R1 of the first planetary gear set 14 are represented by the solid line L1, while the relative rotating speeds of the sun gear S2, carrier C2 and ring gear R2 of the second planetary gear set 16 are represented by the broken line L2, as described above. In the hybrid vehicle drive system 160, the sun gear S1, carrier C1 and ring gear R1 of the first planetary gear set 14 are respectively connected to the first electric motor MG1, engine 12 and second electric motor MG2, while the sun gear S2, carrier C2 and ring gear R2 of the second planetary gear set 16 are respectively connected to the second electric motor MG2 and output rotary member 30, and to the stationary member 26 through the brake BK. The sun gear S1 and the ring gear R2 are selectively connected to each other through the clutch CL. The ring gear R1 and the sun gear S2 are connected to each other. In the hybrid vehicle drive system 170, the sun gear S1, carrier C1 and ring gear R1 of the first planetary gear set 14 are respectively connected to the first electric motor MG1, output rotary member 30 and engine 12, while the sun gear S2, carrier C2 and ring gear R2 of the second planetary gear set 16 are respectively connected to the second electric motor MG2 and output rotary member 30, and to the stationary member 26 through the brake BK. The sun gear S1 and the ring gear R2 are selectively connected to each other through the clutch CL. The carriers C1 and C2 are connected to each other. In the hybrid vehicle drive system 180, the sun gear S1, carrier C1 and ring gear R1 of the first planetary gear set 14 are respectively connected to the first electric motor MG1, output rotary member 30 and engine 12, while the sun gear S2, carrier C2 and ring gear R2 of the second planetary gear set 16 are respectively connected to the second electric motor MG2, to the stationary member 26 through the brake BK, and to the output rotary member 30. The ring gear R1 and the carrier C2 are selectively connected to each other through the clutch CL. The carrier C1 and the ring gear R2 are connected to each other.


In the embodiment of FIGS. 21-23, by disposing the electronic control device 40 of the first embodiment, since the drive mode is set to the engine drive mode in which the brake BK is placed in the released state while the clutch CL is placed in the engaged state, i.e., the HV-2 mode when a shift change is made into the parking range to achieve the parking lock with the parking lock mechanism 62, the same effect as the first embodiment is acquired. Further, in the embodiment of FIGS. 21-23, by disposing the electronic control device 95 of the second embodiment, when the brake BK is placed in the engaged state and the output torque of the second electric motor MG2 is used for cancelling the drive torque in the vehicle forward direction generated when the engine 12 rotationally drives the first electric motor MG1 for forcible charging, if a shift change is made into the parking range to achieve the parking lock with the parking lock mechanism 62, the drive mode is set to the engine drive mode in which the brake BK is placed in the released state while the clutch CL is placed in the engaged state, i.e., the HV-2 mode, and therefore, the same effect as the second embodiment is acquired.


The hybrid vehicle drive control systems in the embodiment depicted in FIGS. 21 to 23 are identical with the embodiments depicted in FIGS. 5 to 8 and 15 to 20 in that each of these hybrid vehicle drive systems includes the first planetary gear set 14 acting as the first differential mechanism and the second planetary gear set 16, 16′ acting as the second differential mechanism, which have four rotary elements (which are represented as four rotary elements) on the collinear chart, as well as the first electric motor MG1, the second electric motor MG2, the engine 12, and the output rotary member (output gear 30) which are connected to the respective four rotary elements, that one of the four rotary elements is constituted by the rotary element of the first planetary gear set 14 and the rotary element of the second planetary gear set 16, 16′ which are selectively connected to each other through the clutch CL, and that the rotary element of the second planetary gear set 16, 16′ to be engaged through the clutch CL is selectively connected to the stationary member in the form of the housing 26 through the brake BK. Therefore, the hybrid vehicle drive control system of the present invention described with reference to FIG. 9, FIG. 13 etc. is preferably applied to the configurations depicted in FIGS. 21 to 23.


In the embodiments depicted in FIGS. 21 to 23, as is the case with the embodiments depicted in FIGS. 5 to 8 and 15 to 20, the first planetary gear set 14 includes a first rotary element in the form of the sun gear S1 connected to the first electric motor MG1, a second rotary element in the form of the carrier C1 connected to the engine 12, and a third rotary element in the form of the ring gear R1 connected to the output gear 30; the second planetary gear set 16 (16′) includes a first rotary element in the form of the sun gear S2 (S2′) connected to the second electric motor MG2, a second rotary element in the form of the carrier C2 (C2′), and a third rotary element in the form of the ring gear R2 (R2′); one of the carrier C2 (C2′) and the ring gear R2 (R2′) is connected to the ring gear R1 of the first planetary gear set 14; the clutch CL selectively connects the carrier C1 of the first planetary gear set 14 and the other of the carrier C2 (C2′) and the ring gear R2 (R2′) which is not connected to the ring gear R1, to each other; and the brake BK selectively fixes the other of the carrier C2 (C2′) and the ring gear R2 (R2′) which is not connected to the ring gear R1, to a stationary member in the form of the housing 26.


Although the embodiments of the present invention have been described in detail with reference to the drawings, the present invention is applied in other forms.


Although the flowcharts of FIGS. 10 and 14 are provided with S1 corresponding to the slope road determining portion 84 in the embodiments, S1 may not necessarily be provided.


Although the flowchart of FIG. 14 is provided with S3 corresponding to the mode determining portion 88 in the embodiment, S5 may be executed when it is determined that the parking range is selected in S2 corresponding to the P-range determining portion 86 without providing S3. In particular, since a switch to the HV-1 mode is made to perform the forcible charging in S7 corresponding to the forcible charging portion 98, it is always determined in S3 that the presently established mode is the HV-1 mode and a switch is made to the HV-2 mode in S5 corresponding to the HV-2 mode switching control portion 92.


The above description is merely exemplary embodiments and the present invention can be implemented in variously modified and improved forms based on the knowledge of those skilled in the art.


NOMENCLATURE OF ELEMENTS


10, 100, 110, 120, 130, 140, 150, 160, 170, 180: hybrid vehicle drive system 12: engine 14: first planetary gear set (first differential mechanism) 16, 16′: second planetary gear set (second differential mechanism) 26: housing (case, stationary member) 30: output gear (output rotary member) 38: parking gear (parking lock gear) 40, 95: electronic control device (drive control device) 41: manually operated shifting device 62: parking lock mechanism 64: parking pole (parking lock pole) MG1: first electric motor MG2: second electric motor BK: brake CL: clutch

Claims
  • 1. A drive control device for a hybrid vehicle provided with: a differential device which includes a first differential mechanism and a second differential mechanism and which has four rotary elements; an engine, a first electric motor, a second electric motor and an output rotary member which are respectively connected to said four rotary elements; and a parking lock mechanism having a parking lock pole preventing rotation of a parking lock gear connected to the output rotary member when a manually operated shifting device selects a parking range, and wherein one of said four rotary elements is constituted by a rotary component of said first differential mechanism and a rotary component of said second differential mechanism which are selectively connected to each other through a clutch, and one of the rotary components of said first and second differential mechanisms which are selectively connected to each other through said clutch is selectively fixed to a stationary member through a brake, said drive control device setting a drive mode to an engine drive mode in which the brake is placed in a released state while the clutch is placed in an engaged state when a shift change is made into the parking range to achieve a parking lock with the parking lock mechanism.
  • 2. The drive control device according to claim 1, wherein when a shift change is made into the parking range on a climbing road, the hybrid vehicle sets the drive mode to the engine drive mode in which the brake is placed in the released state while the clutch is placed in the engaged state.
  • 3. The drive control device according to claim 1, wherein when a shift change is made into the parking range to achieve a parking lock with the parking lock mechanism while the brake is placed in the engaged state and an output torque of the second electric motor is used for cancelling a drive torque in a vehicle forward direction generated when the engine rotationally drives the first electric motor for forcible charging, a drive mode is set to the engine drive mode in which the brake is placed in the released state while the clutch is placed in the engaged state.
  • 4. The drive control device according to claim 1, wherein said first differential mechanism is provided with a first rotary element connected to said first electric motor, a second rotary element connected to said engine, and a third rotary element connected to said output rotary member, while said second differential mechanism is provided with a first rotary element connected to said second electric motor, a second rotary element, and a third rotary element, one of the second and third rotary elements of the second differential mechanism being connected to the third rotary element of said first differential mechanism, and wherein said clutch is configured to selectively connect the second rotary element of said first differential mechanism, and the other of the second and third rotary elements of said second differential mechanism which is not connected to the third rotary element of said first differential mechanism, to each other, while said brake is configured to selectively fix the other of the second and third rotary elements of said second differential mechanism which is not connected to the third rotary element of said first differential mechanism, to said stationary member.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/JP2012/057821 3/26/2012 WO 00 9/24/2014