Not Applicable.
Not Applicable.
The present invention relates in general to electrified vehicles such as hybrid electric vehicles, and, more specifically, to inverter-driven traction motors with reduced losses in the inverter power switching devices.
Electric vehicles, such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and full electric vehicles, use inverter-driven electric machines to provide traction torque and regenerative braking torque. A typical electric drive system includes a DC power source (such as a battery pack or a fuel cell) coupled by contactor switches to a variable voltage converter (VVC) to regulate a main bus voltage across a main DC linking capacitor. A first DC-to-AC inverter is connected between the main bus and a traction motor to propel the vehicle. The motor can be an induction motor or a permanent magnet motor, for example. A second DC-to-AC inverter is connected between the main bus and a generator to convert mechanical power from an internal combustion engine into electricity as a DC voltage for powering the traction motor (via the first inverter) or for recharging the battery. The second inverter may also be used to regenerate energy during braking to recharge the battery through the VVC.
The inverters each include transistor switches (such as insulated gate bipolar transistors, or IGBTs) connected in a bridge configuration. An electronic controller turns the switches on and off in order to invert a DC voltage from the bus to an AC voltage applied to the motor, or to invert an AC voltage from the generator to a DC voltage on the bus.
The inverter pulse-width modulates the DC link voltage to deliver an approximation of a sinusoidal current output to drive the traction motor with a desired speed and torque. The inverter outputs a series of pulse-width modulated (PWM) square wave voltages as a result of the coordinated switching of the IGBTs. The IGBTs and their reverse-recovery diodes have associated switching losses. In addition, the pulse-width modulation creates harmonic content losses in the motor.
In the circuit topology typically used in hybrid electric vehicle drives, the DC link is common to the generator inverter, battery converter, and traction motor inverter. Consequently, all three share the same substantially-constant DC voltage.
The magnitude of the DC link voltage is generally chosen to provide the best operating efficiency for the generator and battery and to be sufficiently high to enable the motor inverter to achieve the upper end of the speed and torque ranges that are specified.
Switching losses in the traction inverter are higher with higher voltages across the inverter. A characteristic of traction motors is that they do not require as high of a voltage magnitude at low angular velocity operating points as they do at higher angular velocity operating points. In order to achieve the lower speed and torque when the DC supply across the inverter is constant, the duty cycle of the pulse-width modulated switching is decreased. Since the higher voltage required for higher speed/torque operating points still appears across the inverter, the same losses are incurred at the lower speed/torque operating points. Thus, during low speed vehicle operation there would be an opportunity to reduce the losses if the DC-link voltage present at the input of the inverter was reduced. Reducing the magnitude of the DC-link voltage present at the input to the inverter would reduce switching losses in the IGBTs, reverse recovery losses in the anti-parallel diodes, and harmonic losses in the traction motor. Reducing the energy losses would improve overall fuel economy.
In one aspect of the invention, a method is provided for controlling a traction motor for an electrified vehicle, wherein the motor is driven by a pulse-width modulated inverter. A drive command from a driver of the vehicle is converted into a demanded torque. A substantially fixed DC link voltage is maintained from a DC power source (e.g., a battery and/or generator). A controller determines an input voltage for supplying to the inverter that would cause the motor to deliver the demanded torque at a transition point between a constant-torque region and a field-weakening region of torque production. The voltage from the DC link is converted to the determined input voltage at an input to the inverter. By lowering the voltage applied to the inverter, switching losses and harmonic losses are reduced.
Referring now to
Electric drive system 18 includes a variable voltage converter 20 for converting the battery voltage to a desired bus voltage. The bus voltage is controllably switched (i.e., commutated) by an inverter 21 to drive motor 13. An inverter 22 is coupled between generator 17 and converter 20 so that AC power from generator 17 during engine speed control is inverted to DC power, which is further converted by converter 20 to an appropriate voltage for recharging battery 12. In order to control the transistor switches of converter 20 and inverters 21 and 22, electric drive system 18 includes a motor-generator control unit (MGCU) 25.
In the conventional topology with a fixed DC link voltage, base speed is constant. The field weakening region 33 is important for providing a full range of desired speeds. Pulse width modulation occurring in constant torque region 32 also introduces switching losses which are generally higher than the minimum obtainable (except when operating close to the base speed) since DC-link voltages are held higher than needed for this range of speed.
The present invention reduces switching losses by decoupling the main DC link voltage from the traction inverter and instead providing an additional conversion to create a variable DC link voltage exclusively for the traction converter. In particular, the voltage to be input to the traction inverter is varied in a manner wherein the torque production tracks a transition point 34 between constant torque region 32 and field weakening region 33 (i.e., the input voltage is controlled to be a “transition” voltage corresponding to the transition point). In other words, the variable DC link voltage results in a variable base speed, and the effective base speed shifts by an amount that places the operating point of the motor at transition point 34.
PWM switching of traction inverter 41 is performed in a conventional manner by a motor controller 56 based on a measured stator current from a sensor 55. Measured stator current Is may be used by a torque calculator 57 to calculate an instantaneous motor torque, the value of which is coupled to one input of a summer 58. A desired torque is obtained from torque demand unit 60, which may include a driver input device, such as an accelerator pedal, and an engine control unit. Thus, a particular acceleration or deceleration indicated by the driver's action is used to determine how much torque should be delivered to the vehicle wheels. The calculated torque demand is coupled to another input of summer 58, and any difference between calculated instantaneous torque and the torque command is used in a duty cycle block 61 to update the duty cycle and/or operating frequency being used for switching inverter 41. A commutator 62 drives the inverter switches using the calculated duty cycle as known in the art.
An instantaneous motor speed is obtained using a motor position sensor 66 and velocity determination circuit 67. A resulting calculated motor speed ω is input to a controller 65. A calculation unit 68 in controller 65 receives the motor speed and a target motor current I*s. The target current may be obtained from motor controller 56, for example. Controller 65 uses the demanded torque (expressed as a current) in order to calculate a minimum value for the variable inverter-input voltage which would allow inverter 41 and motor 40 to generate the desired torque without entering the flux weakening region. More specifically, unit 68 calculates a DC voltage that causes the torque production to track the transition point between the constant torque region and the field weakening region. The calculation may preferably implement the following formula:
wherein Rs is resistance of the stator windings, Lq is the quadrature-axis inductance, λaf is armature flux linkage due to rotor magnets, and Is is stator current as derived from the desired torque equation. The formula captures the various elements that contribute to the voltage requirements for the motor to achieve the desired stator current, and thus the desired torque. The most significant element is the flux linkage of the rotor magnets with the stator windings and the motor speed, as represented by ωrλaf. Thus, with more stator windings, stronger rotor magnets, or higher speed, then the higher the voltage needs to be. The motor inductance interacts with changing current, resulting in the contribution shown as dIs/dtL
In order to adjust the voltage from second DC-to-DC converter 48 (i.e., the input voltage for the traction inverter) to match the calculated minimum value, a comparator 70 compares the actual voltage across inverter 41 with the desired value as obtained from calculation unit 68. Comparator 70 provides the difference as an error signal to a feedforward/proportional-integral controller 71. The feedforward portion of controller 71 receives the main DC link voltage from the bus 43. Controller 71 uses known techniques to update a duty cycle for the switching of transistors 51 and 52 in order to adjust the DC voltage across link capacitor 50 to track calculated minimum Vdc from calculation unit 68.
The corresponding method is shown in
A corresponding method is shown in