The present invention relates to control systems for dual clutch transmissions.
Examples of dual clutch transmissions are described in U.S. Pat. Nos. 5,711,409; 6,996,989; 6,887,184; 6,909,955; 2006/0101933A1; and 2006/0207655A1. A control system for a dual clutch transmission is shown in Koenig et al., U.S. Pat. No. 6,898,992 (commonly assigned). It is desirable that a control system for a dual clutch transmission prevent simultaneous engagement of synchronized gears. It is also desirable that the control system for a dual clutch transmission offer as much operational capacity as possible when a given component of the control system is non operational.
To make manifest the above noted and other desires, a revelation of the present invention is brought forth. The present invention in a preferred embodiment provides a control system for a multiple clutch transmission, the transmission having at least three synchronizers with opposed acting alpha and beta pressure chambers to alternately selectively synchronize alpha or beta gears with a rotating shaft. The control system includes a pressure source, a sump, a first multiplex valve having a first position allowing fluid communication of alpha and beta chambers for two synchronizers with the pressure source and diverting alpha and beta pressure chambers of remaining synchronizers to the sump. The first multiplex valve also has a second position reversing the above noted action. A second multiplex valve is included fluidly connected with the first multiplex valve having a first position connecting alpha and beta chambers of a given synchronizer with the pressure source and alpha and beta chambers of the other synchronizer with the sump. The second multiplex valve also has a second position reversing the above noted action. A first actuator regulator valve is included fluidly connected with the second multiplex valve for selectively connecting said alpha chamber with one of a set including the pressure source and the sump. A second actuator regulator valve is included fluidly connected with the second multiplex valve for selectively connecting said beta chamber with one of a set including the pressure source and the sump.
Other features of the invention will become more apparent to those skilled in the art as the invention is further revealed in the accompanying drawings and Detailed Description of the Invention.
A representative dual clutch transmission that may be controlled by the present invention is generally indicated at 10 in the schematic illustrated in
The dual clutch transmission 10 forms a portion of a vehicle powertrain and is responsible for taking a torque input from a prime mover, such as an internal combustion engine, and transmitting the torque through selectable gear ratios to the vehicle drive wheels. The dual clutch transmission 10 operatively routes the applied torque from the engine through the dual, coaxial clutch assembly 12 to either the first input shaft 14 or the second input shaft 16. The input shafts 14 and 16 include a first series of gears, which are in constant mesh with a second series of gears disposed on the counter shaft 18. Each one of the first series of gears interacts with one of the second series of gears to provide the different gear ratios sets used for transferring torque. The counter shaft 18 also includes a first output gear that is in constant mesh with a second output gear disposed on the output shaft 20. The plurality of synchronizers 24 are disposed on the two input shafts 14, 16 and on the counter shaft 18 and are operatively controlled by the plurality of shift actuators 26 to selectively engage one of the alternate gear ratio sets. Thus, torque is transferred from the engine to the dual, coaxial clutch assembly 12, to one of the input shafts 14 or 16, to the counter shaft 18 through one of the gear ratio sets, and to the output shaft 20. The output shaft 20 further provides the output torque to the remainder of the powertrain. Additionally, the reverse counter shaft 22 includes an intermediate gear that is disposed between one of the first series of gears and one of the second series of gears, which allows for a reverse rotation of the counter shaft 18 and the output shaft 20. Each of these components will be discussed in greater detail below.
Specifically, the dual, coaxial clutch assembly 12 includes a first clutch mechanism 32 and a second clutch mechanism 34. The first clutch mechanism 32 is, in part, physically connected to a portion of the engine flywheel (not shown) and is, in part, physically attached to the first input shaft 14, such that the first clutch mechanism 32 can operatively and selectively engage or disengage the first input shaft 14 to and from the flywheel. Similarly, the second clutch mechanism 34 is, in part, physically connected to a portion of the flywheel and is, in part, physically attached to the second input shaft 16, such that the second clutch mechanism 34 can operatively and selectively engage or disengage the second input shaft 16 to and from the flywheel. As can be seen from
In the preferred embodiment, the counter shaft 18 is a single, one-piece shaft that includes the opposing, or counter, gears to those on the inputs shafts 14, 16. As shown in
In a preferred embodiment, the reverse counter shaft 22 is a relatively short shaft having a single reverse intermediate gear 72 that is disposed between, and meshingly engaged with, the reverse input gear 48 on the second input shaft 16 and the reverse counter gear 62 on the counter shaft 18. Thus, when the reverse gears 48, 62, and 72 are engaged, the reverse intermediate gear 72 on the reverse counter shaft 22 causes the counter shaft 18 to turn in the opposite rotational direction from the forward gears thereby providing a reverse rotation of the output shaft 20. It should be appreciated that all of the shafts of the dual clutch transmission 10 are disposed and rotationally secured within the transmission 10 by some manner of bearing assembly such as roller bearings, for example, shown at 68 in
The engagement and disengagement of the various forward and reverse gears is accomplished by the actuation of the synchronizers 24 within the transmission. As shown in
To actuate the synchronizers 74, 76, 78, and 80, this representative example of a dual clutch transmission 10 utilizes hydraulically driven shift actuators 26 with attached shift forks to selectively move the synchronizers so that they engage or disengage (neutralize) the desired gears. As shown in
Referring to
Between the piston heads 82 and 84 is a gap. Positioned within the gap 95 is the shift fork 96. To actuate the synchronize 74 to the right to actuate the second gear ratio, fluid is injected into alpha expansion chamber 106 through inlet-outlet 100 to move the piston and shift fork 96 to the right causing synchronizer 80 to engage the second input gear 46 to the shaft 16. A detent mechanism (not shown) connected with the linkage with the shift fork 96 holds the shift fork 96 in to hold its actuated position. To release the second input gear 46 from its shaft 16, the beta expansion chamber 104 is pressurized through inlet 102 and the piston 98 and shift fork 96 are shifted back to a detented neutral position. A slight pressurization of the expansion chamber 106 is temporarily maintained to prevent overtravel of the piston 98 and inadvertent engagement of fourth input gear 44 to the shaft 16.
The control system for the synchronizers includes a first multiplex valve 160. The first multiplex valve 160 has a first position allowing delivery of pressurize fluid to synchronizers 74 and 76. Synchronizers 78 and 80 are diverted to the sump 120. In a second position of the first multiplex valve 160 the reverse occurs allowing delivery of pressurize fluid to synchronizers 78 and 80 with synchronizers 74 and 76 being diverted to the sump. An on/off solenoid valve 162 controls operation of the first multiplex valve 160.
A second multiplex valve 164 is fluidly connected with the first multiplex valve 160. The second multiplex valve 164 has a first position allowing pressurized fluid connection of alpha and beta chambers of the synchronizer 74 (when the first multiplex valve 160 is in the first position). The alpha and beta chambers of synchronizer 76 are diverted to the sump 120. When the second multiplex valve 164 is placed in the second position by an on/off solenoid 166, the fluid connections of the second multiplex valve 164 are reversed. The alpha chambers for the synchronizers 74, 76, 78, and 80 include pressure chambers for odd and even gear ratios.
To actuate the alpha chamber there is provided a first actuator regulator valve 170. First actuator regulator valve 170 has a biased position connecting the alpha chamber to the sump 120. In a second position, the first actuator regulator valve 170 connects the alpha chamber with the line 132. A proportional solenoid valve provided by VBS solenoid valve 174 controls the first actuator regulator valve 170. In like manner, VBS 176 controls the second actuator regulator valve 180 for the beta chamber of the synchronizer 74.
To control the synchronizer 76 the first multiplex valve 160 is in the first position and the second multiplex valve is placed in the second position. To control synchronizer 80 or synchronizer 78 the first multiplex valve 160 is placed in the second position. For synchronizer 80, the second multiplex valve 164 is in the first position. For control of the synchronizer 78, the second multiplex valve 164 is placed in the second position.
To place the second input gear 46 into engagement with the shaft 16, the first multiplex valve 160 and second multiplex valve 162 are placed in the first position. The first regulator valve 170 is turned on to pressurize the alpha expansion chamber 106 moving the piston 98 and shift fork 96 to the right. A position sensor 97 is used to inform or confirm the fact to the transmission electronic controller (not shown) that the transmission 10 is in the second gear. A major advantage of the present control system for the synchronizers is that no two gears of the transmission can be actuated at the same time. If the second input gear 46 is being actuated, all of the pressure chambers of the synchronizers 80, 78 and 76 are diverted to the sump. If a control system failure causes the second actuator regulator valve 180 to pressurize the beta expansion chamber 104 of the shift actuator 26 for synchronizer 74, the pressure within the opposing beta 104 and alpha 106 expansion chambers act against each preventing any simultaneous gear activation (however when the alpha chamber 106 is depressurized the above noted failure causes the gear (fourth input gear 44) associated with the beta chamber to be stuck on). Another advantage of the present control system is that most valve failures allow at least one odd gear and at least one even gear to still operate. Failure of the first multiplex valve 160 in the first position allows operation of synchronizer 74 providing second and fourth gears. Additionally, fifth and neutral gears of synchronizer 76 are available. Upon such a failure, the transmission controller programs the transmission 10 to operate in second, fourth and fifth gear ratios dependent upon vehicle speed in a “limp” home mode of operation.
A failure of the first multiplex valve 160 in the second position still allows for operation of the reverse, six gear, third gear and first. Failure of the second multiplex valve 164 in the first position will still allow operation of the second, fourth, sixth and reverse gears. Failure of any one given actuator valve still allows for partial gear operation. Failure of the actuator regulator valve 170 in the on position will freeze (be detented) second input gear 46 with the shaft 16. To get another gear for “limp” home operation, the transmission controller opens the clutch 34. Engaged clutch 32 is utilized to rotate the shaft 14. The controller of the transmission then picks a gear ratio from a set of gear ratios associated with the shafts 14 or 20 (first, third or fifth) gear to be utilized for “limp” home mode of operation. The transmission controller then alternates between second and one gear from the set of first, third or fifth gear. As long as a forward travel gear is engaged when one of the actuator regulator valves 170, 180 fails, the transmission will have two gear ratios of forward operation in the “limp” home mode of operation.
Still another advantage of the present invention over other control systems as shown in Koenig et al. U.S. Pat. No. 6,898,992 (commonly assigned) is that only two high flow rate solenoid actuator regulator valves 170, 180 are required.
While preferred embodiments of the present invention have been disclosed, it is to be understood it has been described by way of example only, and various modifications can be made without departing from the spirit and scope of the invention as it is encompassed in the following claims.
This application claims the benefit of U.S. Provisional Application No. 60/904,698, filed 2 Mar. 2007.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2008/002687 | 2/29/2008 | WO | 00 | 8/25/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/108977 | 9/12/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3589483 | Smith | Jun 1971 | A |
4461188 | Fisher | Jul 1984 | A |
4476748 | Morscheck | Oct 1984 | A |
4513631 | Koivunen | Apr 1985 | A |
4544057 | Webster et al. | Oct 1985 | A |
4622866 | Ito et al. | Nov 1986 | A |
4711329 | Hasegawa et al. | Dec 1987 | A |
4827784 | Muller et al. | May 1989 | A |
4957016 | Amedei et al. | Sep 1990 | A |
5101942 | Pruss et al. | Apr 1992 | A |
5239897 | Zaiser et al. | Aug 1993 | A |
5445042 | Deady | Aug 1995 | A |
5445043 | Eaton et al. | Aug 1995 | A |
5486146 | Asahara et al. | Jan 1996 | A |
5588327 | Downs et al. | Dec 1996 | A |
5662198 | Kojima et al. | Sep 1997 | A |
5711409 | Murata | Jan 1998 | A |
5720203 | Honda et al. | Feb 1998 | A |
5890392 | Ludanek et al. | Apr 1999 | A |
5915512 | Adamis et al. | Jun 1999 | A |
5950781 | Adamis et al. | Sep 1999 | A |
5966989 | Reed, Jr. et al. | Oct 1999 | A |
5979257 | Lawrie | Nov 1999 | A |
6006620 | Lawrie et al. | Dec 1999 | A |
6012561 | Reed, Jr. et al. | Jan 2000 | A |
6044719 | Reed, Jr. et al. | Apr 2000 | A |
6145398 | Bansbach et al. | Nov 2000 | A |
6164149 | Ohmori et al. | Dec 2000 | A |
6286381 | Reed, Jr. et al. | Sep 2001 | B1 |
6292731 | Kirchhoffer et al. | Sep 2001 | B1 |
6364809 | Cherry | Apr 2002 | B1 |
6832978 | Buchanan et al. | Dec 2004 | B2 |
6883394 | Koenig et al. | Apr 2005 | B2 |
6887184 | Buchanan et al. | May 2005 | B2 |
6898992 | Koenig et al. | May 2005 | B2 |
6909955 | Vukovich et al. | Jun 2005 | B2 |
6953417 | Koenig | Oct 2005 | B2 |
6996989 | Dries et al. | Feb 2006 | B2 |
7073407 | Stefina | Jul 2006 | B2 |
7127961 | Braford et al. | Oct 2006 | B2 |
7155993 | Koenig et al. | Jan 2007 | B2 |
7431043 | Xiang et al. | Oct 2008 | B2 |
Entry |
---|
PCT International Search Report for International Application No. PCT/US2008/002687; 3 pages. |
Number | Date | Country | |
---|---|---|---|
20100096232 A1 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
60904698 | Mar 2007 | US |