This invention relates generally to axle driving apparatus and, more particularly, to a return to neutral mechanism adapted to be mounted to the casing of a transaxle such as zero-turn transaxle. The return to neutral mechanism disclosed herein could also be used with hydraulic pumps or other types of hydrostatic transaxles.
Transaxle and hydrostatic transmission assemblies (“HSTs”) are known in the art. Generally, an HST includes a center section on which is mounted to a rotating hydraulic pump and a rotating hydraulic motor. The hydraulic pump and the hydraulic motor each carry a plurality of reciprocating pistons which are in fluid communication through hydraulic porting formed in the center section. Rotation of the hydraulic pump against a moveable swash plate creates an axial motion of the pump pistons that forces an operating oil through the hydraulic porting to the hydraulic motor to move the motor pistons. The axial motion of the motor pistons causes the hydraulic motor to rotate as the motor pistons bear against a thrust bearing. In this manner, the rotation of the hydraulic motor may be used to drive the vehicle axles of a riding lawn mower, small tractor and the like.
To adjust the speed and direction of rotation of the hydraulic motor and, accordingly, the speed and direction of rotation of the vehicle axles, the position of the swash plate with respect to the hydraulic pump pistons may be changed. The orientation with which the swash plate addresses the hydraulic pump pistons can be changed to control whether the hydraulic motor rotates in the forward direction or in the reverse direction. Additionally, the angle at which the swash plate addresses the hydraulic pump pistons can be changed to increase or decrease the amount of operating oil that is forced from the hydraulic pump to the hydraulic motor to change the speed at which the hydraulic motor rotates.
For use in changing the position of the moveable swash plate, it is known to include a trunnion arm that is coupled to the swash plate. A speed change lever or a speed change pedal is, in turn, coupled to the trunnion arm through a wire or other driving link. In this manner, movement of the speed change lever/pedal results in movement of the trunnion arm to change the position of the swash plate to thereby control the speed and direction of the vehicle. Examples of such mechanisms for adjusting the speed of a vehicle may be seen in U.S. Pat. Nos. 6,122,996 and 5,819,537 which are incorporated herein by reference in their entirety.
For placing the swash plate in a position that neither effects the speed nor the direction of rotation of the hydraulic motor, i.e., the neutral position, known hydraulic pumps and hydrostatic transaxles provide a return to neutral mechanism that is normally implemented as an integral part of the vehicle linkage. While these return to neutral mechanisms work for their intended purpose, they do suffer disadvantages. For example, these known return to neutral mechanisms fail to allow for flexibility whereby different types and orientations of driving linkages may be used in connection with the hydraulic pumps and hydraulic transaxles.
To overcome these disadvantages, the present invention is realized in an improved speed adjusting mechanism having an integral return to neutral mechanism that is adapted to be mounted to the casing of a hydraulic pump or hydrostatic transaxle. For simplicity of explanation the invention will be described in association with an integrated zero turn transaxle (IZT). The IZT includes a hydraulic transmission mounted within the casing that includes a rotatable hydraulic pump in fluid communication with a rotatable hydraulic motor and a moveable swash plate cooperable with the rotatable hydraulic pump for controlling the speed and direction of rotation of the hydraulic motor. The rotation of the hydraulic motor is used to drive a single axle shaft.
For controlling the positioning of the swash plate, the transaxle further includes a rotatable trunnion arm coupled to the moveable swash plate. The rotatable trunnion arm extends from the casing and is coupled to the speed adjusting mechanism. The speed adjusting mechanism is mounted to the casing and is used to rotate the trunnion arm to change the orientation of the swash plate to change the speed and direction of rotation of the hydraulic motor.
More specifically, the speed adjusting mechanism includes a return arm adapted to be mounted to the casing in a fixed position indicative of a neutral position of the trunnion arm. The neutral position of the trunnion arm is the position of the trunnion arm in which the swash plate does not influence the speed and direction of rotation of the hydraulic motor. Additionally, the speed adjusting mechanism includes a control arm that is mounted to and moves the trunnion arm. A pair of scissor return arms are provided that are adapted to move the control arm in cooperation with the return arm for the purpose of moving the trunnion arm to the neutral position. To provide additional mounting flexibility, the control arm is adapted to be mounted to the trunnion arm in any one of a plurality of different positions and the return arm is capable of being mounted to the casing in a corresponding position such that the return arm can be aligned with the control arm to establish the neutral position.
In a further embodiment of this invention, the return to neutral feature is unidirectional, in that it provides a return force when the unit is stroked in one direction, either reverse or forward, but does not provide any return force when the unit is stroked in the opposite direction. In certain applications, the user may want to have such a return force only when the unit is in reverse, for operational purposes, but not want to have it in the forward direction, since the maintenance of the force needed to overcome the return force may be tiring to the user, or may be otherwise unnecessary.
A better understanding of the objects, advantages, features, properties and relationships of the invention will be obtained from the following detailed description and accompanying drawings which set forth an illustrative embodiment and which are indicative of the various ways in which the principles of the invention may be employed.
a–8h are exemplary orientations of a speed adjusting mechanism the IZTs of
Turning now to the figures, wherein like reference numeral refer to like elements, there is illustrated an integrated, zero-turn transaxle 10 (“IZT”). As described in greater detail in U.S. Pat. No. 6,152,247, which is incorporated herein by reference in its entirety, the illustrated IZT 10 operates on the principle of an input shaft driving a hydraulic pump which, through the action of its pistons, pushes oil to a hydraulic motor through a center section to cause the rotation of a motor shaft. The rotation of the motor shaft is eventually transferred through a gearing system or the like to drive a single axle shaft 12. As particularly illustrated in
For adjusting the amount of oil that is pushed from the hydraulic pump to the hydraulic motor, the IZT 10 includes a moveable swash plate against which the pump pistons travel. As will be understood by those of ordinary skill in the art, the swash plate may be moved to a variety of positions to vary the stroke of the pump pistons and the direction of rotation of the hydraulic motor. As the stroke of the pump pistons is varied, the volume of the hydraulic fluid pumped into the hydraulic porting of the center section will vary. Since the speed of rotation of the hydraulic motor is dependent upon the amount of hydraulic fluid pumped thereinto by the hydraulic pump and the direction of rotation of the hydraulic motor is dependent upon the direction of rotation of the hydraulic pump, the positioning of the swash plate is seen to control the speed and direction of rotation of the hydraulic motor and, accordingly, the speed and direction of rotation of the axle shaft 12.
For moving the swash plate, the swash plate assembly is connected to a moveable trunnion arm 14 that is rotatably supported in the casing 11 of the IZT 10. As will be appreciated, rotation of the trunnion arm 14 changes the angular orientation of the swash plate assembly with respect to the pump pistons. To rotate the trunnion arm 14 and, accordingly, move the swash plate assembly, a speed adjusting mechanism 16 is coupled to the trunnion arm 14. The speed adjusting mechanism 16 may be connected, via a driving link, to a lever or a pedal provided on a vehicle whereby movement of the lever or pedal is translated to the speed adjusting mechanism 16 to cause the rotation of the trunnion arm 14 and movement of the swash plate assembly. Since the trunnion arm 14 extends from the IZT casing 11 to engage the speed adjusting mechanism 16, a seal 30 can be placed around the trunnion arm 14 to prevent leakage of hydraulic fluid from the opening in the IZT casing 11 from which the trunnion arm 14 extends.
For use in rotating the trunnion arm 14, the speed adjusting mechanism 16, illustrated more clearly in
To provide for rotation of the trunnion arm 14, the control arm 22 is non-rotatably mounted to the end of the trunnion arm 14. The non-rotatable mating of the control arm 22 to the trunnion arm 14 is preferably accomplished by providing the control arm 22 and trunnion arm 14 with complimentary mating shapes. By way of example, the trunnion arm 14 can be provided with a square shaped end that is adapted to mate with a corresponding square shaped opening in the control arm 22. In this manner, rotation of the control arm 22 will also result in rotation of the trunnion arm 14. For moving the control arm 22 and, accordingly, the trunnion arm 14 and the swash plate assembly to thereby control the speed and direction of rotation of the axle shaft 12, the control arm 22 includes openings 22c to which hand/foot/electronically operated driving links may be attached.
During assembly, the control arm 22 is mounted to the trunnion arm 14 with the return arm 20 positioned between the control arm 22 and the IZT casing 11. The inner scissor return arm 24 and the outer scissor return arm 26 are mounted adjacent to the control arm 22 before the nut 34 is mated with the end of the trunnion arm 14. A biasing means 36, such as a spring, is linked to the inner and outer scissor return arms 24/26, in particular, to arms 24b/26b of the inner and outer scissor return arms 24/26 respectively. It will be appreciated that various types of biasing means are available, as exemplified by the two different types of springs illustrated in
When the trunnion arm 14 is placed in the position that corresponds to the neutral position of the swash plate, the return arm 20 is attached to the IZT casing 11. For this purpose, an attachment device 32, such as a bolt/washer combination or the like, is inserted through an opening 20b and mated with the IZT casing 11 to trap the return arm 20 between the attachment device 32 and the IZT casing 11. The attachment device 32 cooperates with the IZT casing 11 to frictionally prevent the return arm 20 from moving. At this time, under the influence of the biasing means 36, projection 22a of the control arm 22 and projection 20a of the return arm 20 will be in alignment. This alignment of the projections 22a and 20a establishes the neutral position. In the neutral position, both the inner scissor return arm 24 and the outer scissor return arm 26 are in contact with the projection 22a of the control arm 22 as particularly illustrated in
When the speed adjusting mechanism 16 is rotated under the influence of a driving link to drive the axle shaft 12 in the reverse direction, the projection 22a of the control arm 22 will contact the arm 24a of the inner scissor return arm 24. As a result of this contact, movement of the control arm 22 will also result in the movement of the inner scissor return arm 24. Meanwhile, the arm 26a of the outer scissor return arm 26 is prevented from moving as it remains in contact with the projection 20a of the return arm 20 as is illustrated in
Once the influence of the driving link is removed from the control arm 22, the biasing means 36 will cause the inner scissor return arm 24 to move toward the outer scissor return arm 26 that is prevented from moving through its contact with the projection 20a of the return arm 20. During this movement of the inner scissor return arm 24, the inner scissor return arm 24 will contact the control arm 22 to also move the control arm 22 towards the stationary outer scissor return arm 26 and the projection 20a of the return arm 20. The movement of the inner scissor return arm 24 and the control arm 22 caused by the biasing means 36 will continue until the projection 22a of the control arm 22 aligns with the projection 20a of the return arm 20 and both the inner and outer scissor return arms 24/26 contact the projection 22a of the control arm 22. Thus, under the influence of the biasing means 36 the trunnion arm 14 is returned to the neutral position illustrated in
When the speed adjusting mechanism 16 is rotated under the influence of a driving link to drive the axle shaft 12 in the forward direction, the projection 22a of the control arm 22 will contact the arm 26a of the outer scissor return arm 26. As a result of this contact, movement of the control arm 22 will also result in the movement of the outer scissor return arm 26. Meanwhile, the arm 24a of the inner scissor return arm 24 is prevented from moving as it remains in contact with the projection 20a of the return arm 20 as is illustrated in
Once the influence of the driving link is removed from the control arm 22, the biasing means 36 will cause the outer scissor return arm 26 to move towards the inner scissor return arm 24 that is in contact with the projection 20a of the return arm 20. During this movement of the outer scissor return arm 26, the outer scissor return arm 26 will contact the control arm 22 to also move the control arm 22 towards the inner scissor return arm 24 and the projection 20a of the return arm 20. The movement of the outer scissor return arm 26 and the control arm 22 caused by the biasing means 36 will continue until the projection 22a of the control arm 22 aligns with the projection 20a of the return arm 20 and both the inner and outer scissor return arms 24/26 contact the projection 22a of the control arm 22. Thus, under the influence of the biasing means 36 the trunnion arm 14 is returned to the neutral position illustrated in
To prevent wear of the components that comprise the speed adjusting mechanism 16, the inner and outer scissor return arms 24/26 can be constructed with a hardened wear surface. By way of example, the inner and outer scissor return arms 24/26 can be provided with a Zinc DiChromate, “Nitrotec” or other corrosion and wear resistant finish. For this same purpose optional wear resistant washers 40/42 can be positioned between the control arm 22 and inner scissor return arm 24 and the inner scissor return arm 24 and the outer scissor return arm 26, respectively. Such washers can be constructed of a nylon material. Additionally, a spacer 44 can be mounted over the end of the trunnion arm 14 about which the scissor return arms 24/26 may rotate.
For allowing the speed control mechanism 16 to be placed in a plurality of different orientations, as illustrated in
For this same purpose, the control arm 22 can also be configured to allow it to be mounted on the trunnion arm 24 in a plurality of different positions. Specifically, if the control arm 22 is adapted to cooperate with the attachment device 32 to limit the degree of movement of the control arm 22, multiple cooperating elements can be provided to the control, arm 22. By way of example, the control arm 22 can be provided with an opening 22b in which is disposed the attachment device 32. In this manner, when the edges of the opening 22b contact the attachment device 32, the control arm 22 is prevented from being moved further by the driving links. Accordingly, to allow the control arm 22 to be mounted on the trunnion arm 24 in a plurality of different positions, the control arm 22 can be provided with a plurality of spaced openings 22b. The openings 22b are preferably spaced at 180 degree or 90 degree intervals. Again, this is seen to particularly useful in the case of the subject IZT which can be configured for both left-handed and right-handed drive in that it allows a single control mechanism to be manufactured and used without regard to the ultimate configuration of the IZT and without regard to the positioning of the links used to drive the control arm 22.
An alternative embodiment of this invention is depicted in
Another embodiment of the unidirectional return to neutral feature is shown in
While specific embodiments of the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangement disclosed is meant to be illustrative only and not limiting as to the scope of the invention which is to be given the full breadth of the appended claims and any equivalents thereof.
This application is a continuation of U.S. application Ser. No. 10/305,213 filed on Nov. 26, 2002, which is a continuation-in-part of and claims the benefit of U.S. application Ser. No. 09/789,419 filed on Feb. 20, 2001, now U.S. Pat. No. 6,487,857. Both of these applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3354981 | Swanson et al. | Nov 1967 | A |
3541878 | Hoffner | Nov 1970 | A |
3765258 | Jespersen | Oct 1973 | A |
3792744 | Gray | Feb 1974 | A |
3837235 | Peterson | Sep 1974 | A |
4018104 | Bland et al. | Apr 1977 | A |
4111062 | Calligan | Sep 1978 | A |
4167855 | Knapp | Sep 1979 | A |
4352302 | McAllife et al. | Oct 1982 | A |
4375771 | Kobelt | Mar 1983 | A |
4438660 | Kittle | Mar 1984 | A |
4600075 | Heidner et al. | Jul 1986 | A |
4606428 | Giere | Aug 1986 | A |
4845949 | Shivvers et al. | Jul 1989 | A |
4856368 | Fujisaki et al. | Aug 1989 | A |
4870820 | Nemoto | Oct 1989 | A |
4899541 | Okada et al. | Feb 1990 | A |
4905472 | Okada | Mar 1990 | A |
4914907 | Okada | Apr 1990 | A |
4934252 | Giere | Jun 1990 | A |
4955249 | Wetor | Sep 1990 | A |
4986073 | Okada | Jan 1991 | A |
5042252 | Havens et al. | Aug 1991 | A |
5044478 | Kaesgen et al. | Sep 1991 | A |
5074195 | Ohashi et al. | Dec 1991 | A |
5078222 | Hauser et al. | Jan 1992 | A |
5094077 | Okada | Mar 1992 | A |
5094326 | Schemelin et al. | Mar 1992 | A |
5136845 | Woodley | Aug 1992 | A |
5146748 | Okada | Sep 1992 | A |
5163293 | Azuma et al. | Nov 1992 | A |
5182966 | von Kaler et al. | Feb 1993 | A |
5201692 | Johnson et al. | Apr 1993 | A |
5289738 | Szulczewski | Mar 1994 | A |
5311740 | Shiba et al. | May 1994 | A |
5314387 | Hauser et al. | May 1994 | A |
5333451 | Sakikawa et al. | Aug 1994 | A |
5339631 | Ohashi | Aug 1994 | A |
5373697 | Jolliff et al. | Dec 1994 | A |
5383376 | Thorman et al. | Jan 1995 | A |
5440951 | Okada et al. | Aug 1995 | A |
5546752 | Horton et al. | Aug 1996 | A |
5555727 | Hauser et al. | Sep 1996 | A |
5588294 | Sakakura et al. | Dec 1996 | A |
5622051 | Iida et al. | Apr 1997 | A |
5771758 | Hauser | Jun 1998 | A |
5794443 | Shimizu | Aug 1998 | A |
5819537 | Okada et al. | Oct 1998 | A |
5836159 | Shimizu et al. | Nov 1998 | A |
5842532 | Fox et al. | Dec 1998 | A |
5860884 | Jolliff | Jan 1999 | A |
5873287 | Kawada | Feb 1999 | A |
5887484 | Abend et al. | Mar 1999 | A |
5918691 | Ishii | Jul 1999 | A |
6010423 | Jolliff et al. | Jan 2000 | A |
6122996 | Hauser et al. | Sep 2000 | A |
6125630 | Abend et al. | Oct 2000 | A |
6152247 | Sporrer et al. | Nov 2000 | A |
6272854 | Ishii et al. | Aug 2001 | B1 |
6314730 | Shimizu | Nov 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
Parent | 10305213 | Nov 2002 | US |
Child | 10897241 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09789419 | Feb 2001 | US |
Child | 10305213 | US |