Hydraulic apparatus

Information

  • Patent Grant
  • 6183229
  • Patent Number
    6,183,229
  • Date Filed
    Wednesday, December 2, 1998
    26 years ago
  • Date Issued
    Tuesday, February 6, 2001
    24 years ago
Abstract
The invention is embodied in a hydraulic gear machine, such as for example a pump or motor, with at least one multistage pressure building slot in an axial plate of the housing. The slot is designed to facilitate a gradual rise of fluid pressure between the mating teeth of the gears and to reduce the noise being generated by the machine as a result of advancement of fluid from a suction inlet to an outlet for pressurized fluid.
Description




BACKGROUND OF THE INVENTION




The invention relates to hydraulic gear machines, such as pumps or motors, especially internal gear machines or spur gear machines of the type having a first gear which is rotatably journalled in a housing and a second gear which drives the first gear, as well as with at least one pressure building slot which is provided in the housing.




Hydraulic gear machines of the above outlined character are known, for example, from published German patent application Serial No. 2942417, U.S. Pat. No. 4,472,123 and published German patent application Serial No. 1553014. These gear machines have pressure building slots which are provided in the axial plates of the housing and, in a plan view, have a triangular outline. The pressure building slots in the axial plates of the housing in a gear machine serve to ensure a more uniform pressure application or pressure rise which is effected all the way to a plenum chamber and, in the event that the gear machine is used as a pump, there takes place a pressure rise and a rise in the rate of delivery from a suction chamber to a plenum chamber. When such gear machine is in use, it conveys a fluid from the suction chamber to the plenum chamber.




When such gear machines are used as pumps for motor vehicle aggregates, and especially for the transmissions of motor vehicles, such as for continuously variable speed transmissions with pulleys employing conical flanges, for example to convey a fluid, such as oil, from a sump to act upon adjusting members and/or for lubrication and/or cooling, the pump draws from the sump—during certain stages of operation of the vehicle—oil which contains a relatively high percentage of air, for examples a mixture of air and oil whereas, during other stages of operation of the vehicle, there is conveyed oil or an oil-air mixture which contains a relatively low percentage of air.




In known prior art pumps, the above brings about the drawback that the preliminary compression or the regulation of pressure by way of pressure building slots which—when looked at from above—have a triangular outline, and when the oil contains a relatively high percentage of air, takes place abruptly, i.e., in response to a relatively small angular displacement of the pinion. On the other hand, when the oil contains a relatively small percenage of air, the regulation of pressure takes place in response to a relatively larger angular displacement of the pinion, namely an angular displacement corresponding to the extension of the pressure building slot.




Pressure equalization during a relatively small angular displacement when the oil contains a high percentage of air entails a rather unsatisfactory acoustic behavior of the pump because, when the percentage of air in oil is relatively high, this causes the pressure rise to take place at a relatively high speed which, in turn, generates pressure waves causing a reduced acoustic quality.




OBJECT OF THE INVENTION




An object of the invention is to provide a hydraulic gear machine which exhibits improved acoustic characteristics by causing relatively low-velocity pressure rises even if the percentage of air or outside air in the oil to be conveyed varies, for example, under different operational conditions.




SUMMARY OF THE INVENTION




This object is achieved in the novel hydraulic gear machine by the provision of at least one pressure building slot which is of a multistage design and has at least two sections, an increase of the cross sections of individual sections taking place at different rates as a function of their extension. The extension can be interpreted as the length of the slot and/or for example also the extent of angular displacement of the gear which sweeps over or rotates along the slot.




Furthermore, it is possible to achieve the object in a hydraulic gear machine, such as a pump or motor, with a first gear which is rotatably journalled in the housing and a second gear which drives the first gear, with at least one filler piece disposed in a cavity between the first and second gears and a filler pin serving as an abutment for the filler piece, as well as with at least one pressure building slot provided in the housing. The slot is of a multistage design and comprises at least two sections with the cross sections of individual sections increasing at different rates as a function of their extension. If one employs conventional pressure building slots, an increase of the slots, as considered along their extension, is uniform in that each slot has a triangular shape or the area of the slot is even constant along its extension.




In accordance with another inventive concept, it is advisable that at least one pressure building slot comprise at least two first and second sections, the first sections of the pressure building slot exhibiting a divergent cross section and the second sections of the pressure building slot exhibiting a substantially constant cross section.




It is also particularly advantageous, in a hydraulic gear machine with a first gear which is rotatably journalled in a housing and a second gear which drives the first gear, with at least one filler disposed between the first and second gears and a filler pin serving as an abutment for the filler, as well as with at least one pressure building slot provided in the housing, if the at least one pressure building slot comprises first and second sections, the first sections of the pressure building slot having a divergent cross section and the second sections of the pressure building slot having an essentially constant cross section.




It is equally advisable that at least one pressure building slot comprise at least two sections having essentially different cross sections.




Furthermore, it is advisable that the first gear be an internally toothed hollow gear and the second gear constitute an externally toothed pinion.




It is also of advantage if each of the first and second gears constitutes an externally toothed gear.




It is further particularly advantageous if the hydraulic gear machine is provided with a radially inner and a radially outer pressure building slot.




It is equally advisable if at least one pressure building slot comprises three different sections.




Furthermore, it can be of advantage in accordance with a further embodiment of the invention if the filler consists of two filler portions and pressure zones are formed between the filler portions by seals, at least some of the pressure zones being connected, by a single channel, with a section of the pressure building slot.




In accordance with a further embodiment, it is of particular advantage if at least some plenum chambers are conected, by a single channel, with a section of a pressure building slot. The plenum chambers can be provided in the housing and/or in the axial plates.




The invention will be described, in greater detail, by way of example and without limiting its broadest aspects, with reference to the drawings,











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

shows a gear machine in accordance with the state of prior art,





FIG. 2

shows a portion of a gear machine in accordance with one embodiment of the invention,





FIG. 2



a


is a plan view of a pressure building slot in the machine of

FIG. 2

,





FIG. 2



b


is a sectional view of the pressure building slot shown in

FIG. 2



a,







FIG. 3

shows a modified gear machine according to the invention,





FIG. 3



a


shows a pressure building slot in a sectional view as seen in the direction of arrows from the line IIIa—IIIa in

FIG. 3

,





FIG. 4

is a plan view of an axial plate in the housing of the machine shown in

FIG. 3

,





FIG. 4



a


is a sectional view as seen in the direction of arrows from the line IVa—IVa in

FIG. 4

, and





FIG. 5

is a sectional view showing another embodiment according to the present invention.











DESCRIPTION OF PREFERRED EMBODIMENTS





FIG. 1

shows a gear machine


1


in accordance with the state of art wherein an internally toothed hollow gear


2


and an externally toothed pinion


3


are rotatably mounted in a bore


4


of a housing


5


. The pinion


3


is rotatably mounted in the housing


5


by way of a pinion shaft


6


and is adapted to be driven by this shaft. The housing


5


preferably comprises several parts including two axial plates and a central housing portion having the bore


4


and being disposed between the axial plates. These component parts define the internal space of the pump, in which the gears are installed, and such component parts seal the internal space with the exception of a connection and an outlet. The direction of rotation of the pinion is indicated by the arrow


7


.




Between the teeth of the internally toothed hollow gear


2


and the externally toothed pinion


3


, there is provided a sickle-shaped cavity


8


in which is disposed a one-piece filler or a divided filler


9


with filler portions


9




a,




9




b


abutting and/or being supported by the filler pin


10


. The filler pin


10


extends across the cavity


8


and is held in, preferably in the bores of, the axial plates.




The filler portions


9




a


,


9




b


comprise lateral surfaces which are adjacent each other. Such neighboring lateral surfaces of the two filler portions are provided with spaced apart recesses


11


,


12


in which are installed seals or sealing elements


13


,


14


. A channel


16


is in fluid-conveying communication with the intermediate space


15


between the sealing elements.




The axial plates are provided with pressure building or prefilling slots


20


,


21


. These slots are provided in the region of the front sides of the teeth of the hollow gear


2


and pinion


3


. Such pressure building or prefilling slots


20


,


21


define prefilling zones wherein a pressure regulation takes place between the tooth spaces of the hollow gear and/or pinion all the way to a plenum chamber in response to rotation of the shaft


6


. These pressure building slots


20


,


21


are connected with each other by way of the channel


16


and are also connected with the space


15


.




The space


15


serves for pressure equalization between the fluid in such space and the fluid in the pressure building slots


20


,


21


. This ensures a conformance of the effect of radial forces applied by the filler portions upon the heads of the teeth of the pinion


3


and hollow gear


2


to the pressure conditions prevailing thereat and, therefore, the operational pressure prevailing between the filler portions is not as high as that prevailing, for example, at the outlet region of the pump. If the elevated pressure were to prevail between the filler portions, the radial force acting upon the heads of the teeth would cause an excessive stressing of the heads of the teeth which would entail a shorter useful life of the pinion and the hollow gear.





FIG. 2

shows a portion of a novel gear machine


100


, such as an internal gear pump, with an internally toothed hollow gear or internal gear


101


and an externally toothed pinion


102


which drives the hollow gear. As is well known, the hollow gear


101


and the pinion


102


are rotatably mounted in a housing, the pinion being mounted on a pinion shaft and being adapted to be rotated by way of such shaft. The housing comprises a central housing body and axial plates


150


(see

FIGS. 2



a


and


2




b


). The central housing body is provided with a cavity, such as a bore, which receives the hollow gear and the pinion, and the axial plates


150


establish the boundaries of the cavity.




A sickle-shaped cavity


104


is provided in the housing between the hollow gear


101


and the pinion


102


and receives a filler pin


105


which is held by the axial plates


150


, preferably in bores in the housing of the internal gear machine. The filler pin


105


supports the two portions


106


,


107


of a composite filler. The filler portions


106


,


107


have lateral surfaces or outer surfaces


106




a,




107




a


which respectively abut the heads of teeth of the hollow gear


101


and pinion


102


. The other or inner lateral surfaces


106




b,




107




b


of the filler portions


106


,


107


are adjacent to and can abut each other, or (and as shown in

FIG. 2

) they are slightly spaced apart which makes it possible to provide between the two neighboring lateral surfaces


106




b,




107




b


a gap or space


110


.




In the region of the gap


110


, the lateral surface


106




b


and/or the lateral surface


107




b


is provided with recesses


111


which receive sealing elements


112


. In the embodiment of

FIG. 2

, there are provided four such recesses


111


and four sealing elements


112


. Between each pair of sealing elements


112


, there are provided chambers


113


,


114


,


115


. A further chamber


116


is disposed between one of the sealing elements


112


and a plenum chamber


120


. The number of seals


112


can depart from the number shown in FIG.


2


.




The axial plates


150


are further provided with pressure building slots


130


and


131


. These pressure building slots can have multiple stages or they can be stepped, and they change their cross sections as a function of the extent of angular displacement of the pinion


102


. Thus, in a first stage


132


of the slot


130


, the increases of the cross-sectional area as a function of angular displacement are smaller, in a second stage


133


the cross-sectional area as a function of the extent of angular displacement increases, and in a third stage


134


the increase of the cross-sectional area as a function of the extent of angular displacement is greatest. The same holds true for the pressure building slot


131


in the region of the hollow gear


101


. Thus, the increase of the cross-sectional area in various regions of the pressure increasing slot varies as a function of the extent of angular displacement of the pinion


102


. If one resorts to a conventional pressure increasing slot, the variation of the cross section of the slot as a function of its extension is uniform.





FIG. 2



a


shows a pressure building slot


130


in a plan view of the axial plate


150


which is not drawn to scale. The pressure building slot


130


is subdivided into sections A, B and C, the increase of the width of the slot


130


as a function of the extent of angular displacement of the pinion


102


or the extension of the slot


130


being smallest in the section A, being larger in the section B, and being largest in the section C.





FIG. 2



b


shows a pressure building slot


130


in a sectional view of the axial plate


150


which is not drawn to scale. This pressure building slot


130


is subdivided into the three sections A, B and C, and the increase of the depth of the slot as a function of the extent of angular displacement of the pinion


102


is smallest in the section A, larger in the section B, and largest in the section C.




Thus, the increase of the cross section is smallest in the section A, larger in the section B, and largest in the section C of each slot


130


.




The stages or sections or portions


132


(A),


133


(B) and


134


(C) are in fluid conveying communication with the chambers


113


,


114


and


115


by way of channels


160


,


161


,


162


in one axial plate


150


to thus ensure a pressure equalization between such portions of the slot and the chambers. This ensures that a pressure compensation in the portions


113


,


114


and


115


conforms to the pressures being established in the pressure building slots.




In correspondence with the description concerning the increase of the cross-sectional area of the pressure building slot


130


, the pressure building slot


131


, too, can be of a corresponding multistage design with a varying increase of its cross-sectional area. Analogously, the channels


160


,


161


and


162


can be connected with the respective sections of the pressure building slot


131


. Furthermore, it can also be of advantage if the channels connect the respective sections of the pressure building slots


130


,


131


to thus establish fluid conveying paths to the chambers


113


,


114


and


115


.




An advantage of the improved gear machine is that the conveying of oil containing different percentages of air or outside air can take place with more or less unchanging acoustic qualities.




In vehicle transmissions, especially in continuously variable speed transmissions (CVT), such as transmissions employing pulleys with conical flanges and coupling means trained over them, oil is mixed with air at different rates during different stages of operation so that a different percentage of air is present under different operating conditions of the vehicle or the transmission. The percentages of air can amount to between a few pro mille and more than 10% which latter, in comparison with an air percentage of a few pro mille or percent during normal operation, brings about pronounced changes in the acoustic behavior of the pump.




In accordance with the invention, the pressure building slots are of a multistage or stepped design as a function of the extent of angular displacement so that, during lubrication with different compressibilities, i.e., with lubricant containing different percentages of air, the buildup of pressure in the tooth spaces can take place in a planned manner.




The design of multistage pressure building slots with a profiling of a first section is such that the first section is preceded by at least one second section and possibly a third section, and preferably also additional sections. The second section and the third section exhibit a more pronounced increase of the cross-sectional area as a function of the extent of angular displacement of the pinion than the first section. Furthermore, the increase of the cross section of the third section as a function of the extent of angular displacement of the pinion is greater than that of the second section.




The first section takes up a relatively small part of the pressure building slot. The purpose of this is that, when the oil contains a relatively small percentage of air, the pressure of oil in a tooth space should conform to or at least approximate the pressure prevailing in the compressing region. This is accomplished with the increasing cross section as a function of the extents of angular displacement of the pinion because, at such time, the tooth space moves toward the plenum chamber along a portion of the pressure building slot which has an increasing cross section.




In the case of conveyed media, namely oil, the compressibility of which is very pronounced, for example, due to a high percentage of air, the effect of small pressure building slots in the front section (A) is very small so that the filling losses attributable to the high percentage of air cannot be compensated for by the next-following flow of oil. When a tooth space reaches the region of the plenum chamber, this would entail an abrupt rise of pressure to the operating pressure. This, in turn, would result in a relatively high-velocity increase of pressure rise during operation of the vehicle.




If one employs a slot with a stepped increase of the cross section in accordance with the invention, one achieves the improvement when the tooth space is advanced into the second section (B) of the pressure building slot. As a rule, the second section of the pressure building slot is effective only when the oil contains a relatively high percentage of air because the prefilling quantities which are required are admitted into the tooth space by way of the second prefilling stage. This results in a slowed-down pressure rise to a value which, in the absence of the second stage or the second section of the slot, could be carried out only when the tooth space reaches the plenum chamber. For example, the second stage of the pressure building slot is of advantage when the oil is in a pronouncedly foamy condition.




In the event that the foaminess of oil is even more pronounced, i.e., the percentage of air is even higher, the cross section of the second section (B) might not be sufficient. This is the reason for the provision of the optional third section (C).




In addition to the narrow slit of the first section (A) and the somewhat widened slit of the second section (B), it is advisable—in the event that oil contains a high percentage of air, for example, with numerous air bubbles—to provide a third section (C) of the pressure building slot because the cross sections of the two sections A and B do not suffice to make available the required prefilling quantities and to avoid, for example, shocks which are caused by cavitation.




If one resorts to three sections A, B and C, the cross section of the slot varies basically continuously as a function of the extent of angular displacement of the gear (pinion and/or hollow gear), and the increase of cross section as a function of the extent of angular displacement is different in each of the sections. In accordance with another advantageous embodiment of the invention, it might be of advantage to interpose between the sections A, B and C partial sections having an unchanged cross section as a function of the extent of angular displacement.




The pressure building slots are preferably provided in the walls of the axial plates of the housing. In accordance with a further embodiment of the invention, it might be advisable to provide the slots radially at the filler of an internal gear pump. In accordance with an additional embodiment, it might be advisable to provide the slots radially on the housing of an internal gear pump.





FIG. 3

shows a novel gear machine


200


, such as an internal gear pump, with an internally toothed hollow gear


201


and an externally toothed pinion


202


which drives the hollow gear. As is customary, the hollow gear


201


and the pinion


202


are rotatably mounted in a housing


299


, the pinion


202


being provided on a non-illustrated pinion shaft and being adapted to be driven by such shaft. The housing


299


comprises a central housing body and axial plates


298


. The central housing body defines a cavity, such as a bore, which receives the hollow gear and the pinion.




In a substantially sickle-shaped cavity or space


204


between the hollow gear


201


and the pinion


202


, there is provided a filler pin


205


which is supported by the axial plates


298


of the internal gear machine


200


. Filler portions


206


and


207


are supported by this filler pin


205


. The filler portions


206


,


207


respectively have outer lateral surfaces


206




a


and


207




a


which respectively abut the heads of the teeth on the hollow gear


201


and pinion


202


. The other lateral surfaces


206




b,




207




b


of the filler portions


206


,


207


are adjacent and abut each other or they can define a gap


210


.




In the region of the gap


210


, the lateral surface


206




b


and/or the lateral surface


207




b


has angular or round (semispherical) recesses


211


which receive sealing elements


212


. In the embodiment of

FIG. 3

, there are provided three recesses


211


and three sealing elements


212


. Chambers


213


and


214


are provided between the respective pairs of sealing elements


212


, and a further chamber


216


is disposed between one sealing element


212


and a plenum chamber


220


.




The axial plates


298


are further provided with pressure building slots


230


and


231


. These pressure building slots are of a multistage or stepped design and their cross sections vary as a function of the extent of angular displacement of the pinion


202


, the increase of the cross section as a function of the extent of angular displacement being small in a first section


232


, the increase of the cross section as a function of the extent of angular displacement being larger in a second section


233


, and the increase of the cross section as a function of the extent of angular displacement being largest in a third section


234


. The same applies for the pressure building slot


231


in the region of the hollow gear


201


. Thus, the pronouncedness of the increase of the cross section as a function of the extent of angular displacement is different in the various sections of each pressure building slot.




Between the chambers


213


and


214


and the sections


232


and


233


, there are provided channels


260


,


261


which effect an equalization of pressure between the pressure building slots and the chambers.





FIG. 3



a


shows a section of an axial plate


298


as seen in the direction of arrows from the line IIIa—IIIa in FIG.


3


. Each pressure building slot basically comprises three sections


232


,


233


and


234


before the section


234


discharges into the plenum chamber


220


. The width and the depth of the section


232


increase continuously with increasing extent of angular movement of the pinion


202


. The widths of the sections


233


and


234


of the pressure building slots remain essentially constant, the depths of these sections increasing substantially continuously in response to increasing extent of angular movement.




Due to the stepped design of the pressure building or prefilling slots


230


,


231


, the extent of angular movement within which the pressure in a tooth space reaches the operating pressure is subject to pronounced fluctuations in dependency upon the percentage of air in the oil. This renders it desirable to conform the compensating forces between the portions of the filler to the radially acting operational pressure in leak gap compensated internal gear pumps. This is accomplished by the subdivision of the compensating surfaces


206




b,




207




b


which are disposed between the filler portions


206


,


207


in that these surfaces are separated from each other by the seals


212


and are connected with the slots


230


,


231


at the sides of gears by the channels


260


,


261


and bores (if necessary).




Due to differences between the pressures in the pressure zones, it is advisable to provide an axial compensation for the magnitude of the pressure upon the axial plates


298


. This is accomplished, see

FIGS. 4 and 4



a,


in that the plenum chambers


281


,


282


and


283


which are provided in the axial plates


298


are connected with the sections


232


,


233


and


234


by way of bores


280


, the plenum chambers


281


,


282


and


283


being sealed individually and from each other by means of seals


284


.





FIG. 5

shows another embodiment of the present invention in which a portion of a gear machine


300


is illustrated. The gear machine


300


includes a housing, generally indicated at


302


, having a first externally toothed gear


304


and a second externally toothed gear


306


rotatably mounted therein. In this embodiment, the first and second externally toothed gears


304


,


306


, respectively, are both externally toothed gears which mesh with one another. It will be understood that the housing


302


includes at least one of the novel pressure building slots described hereinbefore with reference to earlier Figures.

FIG. 5

is intended to illustrate the practice of the present invention in a gear machine


300


using a pair of externally toothed gears


304


,


306


.




The invention further relates to earlier published German patent applications Serial Nos. 1553014 and 2942417, U.S. Pat. Nos. 4,472,123, 3,890,066, 3,912,427 and 4,132,514, and UK patent GB 1 453 318 the disclosures of all of which are incorporated herein by reference.



Claims
  • 1. A hydraulic gear machine comprising a housing; a first toothed gear rotatably mounted in said housing; and a driven second toothed gear rotatably mounted in said housing and meshing with said first gear to jointly convey a fluid from the fluid-admitting inlet of said housing to an outlet for pressurized fluid provided in said housing, said housing having at least one pressure building slot for the fluid flowing from said inlet to said outlet, at least a portion of said at least one slot having a cross-sectional area which increases in the direction of fluid flow from said inlet to said outlet, wherein said slot has a plurality of successive sections, as seen in said direction, and the cross-sectional areas of said successive sections increase at different rates.
  • 2. The machine of claim 1, wherein the teeth of said gears define a cavity which narrows in said direction, and further comprising at least one filler provided in said cavity and a filler pin provided in said cavity and abutting said at least one filler, said at least one slot having at least two successive sections as seen in said direction and the cross-sections of said sections varying at different rates.
  • 3. The machine of claim 1, wherein said at least one slot includes a second portion having an at least substantially constant cross-sectional area.
  • 4. The machine of claim 1, wherein the teeth of said gears define a cavity which narrows in said direction, and further comprising at least one filler provided in said cavity and a filler pin provided in said cavity and abutting said at least one filler, said at least one slot including at least one second portion having a substantially constant cross-sectional area.
  • 5. The machine of claim 1, wherein said portion of said at least one slot includes at least two successive sections, as seen in said direction, and the cross-sectional areas of said at least two sections varying at different rates.
  • 6. The machine of claim 1, wherein one of said gears is an internal gear and the other of said gears is an externally toothed gear.
  • 7. The machine of claim 1, wherein said gears are externally toothed gears.
  • 8. The machine of claim 1, wherein said housing has a central axis and includes two pressure building slots including a first slot nearer to and a second slot more distant from said axis.
  • 9. The machine of claim 1, wherein said portion of said at least one slot includes three sections having cross-sectional areas which vary at different rates.
  • 10. The machine of claim 1, wherein the teeth of said gears define a cavity which narrows in said direction, and further comprising at least one filler provided in said cavity and a filler pin provided in said cavity and abutting said filler, said filler having portions defining a gap and further comprising sealing means provided in said gap and defining a plurality of chambers, said housing having at least one channel connecting at least one of said chambers with said at least one slot.
  • 11. The machine of claim 1, wherein said housing has a central body surrounding said gears and two end walls, at least one of said end walls having at least one Plenum chamber and said housing having at least one channel connecting said at least one plenum chamber of said at least one end wall with said portion of said slot.
  • 12. The machine of claim 1, wherein said housing has plenum chambers to compensate for leakage and at least one channel connecting at least one of said plenum chambers with said at least one pressure building slot.
  • 13. The machine of claim 1, wherein said housing and said gears form part of a pump.
  • 14. The machine of claim 1, wherein said housing comprises a body portion surrounding said gear and two end walls flanking said body portion, said at least one slot being provided in one of said end walls.
  • 15. The machine of claim 1, wherein one of said gears is an internal gear and the other of said gears is a spur gear surrounded by said internal gear.
  • 16. The machine of claim 1, wherein the teeth of said gears define tooth spaces and said at least one slot communicates with several tooth spaces of one of said gears.
  • 17. The machine of claim 16, wherein said housing has a second pressure building slot in communication with the tooth spaces of the other of said gears.
  • 18. The machine of claim 1, wherein the fluid is oil.
Priority Claims (1)
Number Date Country Kind
197 53 558 Dec 1997 DE
US Referenced Citations (6)
Number Name Date Kind
3890066 Eckerle Jun 1975
3912427 Eckerle et al. Oct 1975
4132514 Eckerle Jan 1979
4472123 Eckerle et al. Sep 1984
4740142 Rohs et al. Apr 1988
5499910 Hundt et al. Mar 1996
Foreign Referenced Citations (3)
Number Date Country
1553014 Aug 1969 DE
29 42 417 A1 Aug 1981 DE
1 453 318 Oct 1976 GB