The present invention relates to a hydraulic auto-tensioner used for tension adjustment of an engine accessory driving belt for driving vehicle engine accessories such as an alternator, a water pump and a compressor of an air-conditioner.
As shown in
A conventional hydraulic auto-tensioner A used in such a belt transmission device is disclosed in either of the below-identified patent document 1 and patent document 2. In such a hydraulic auto-tensioner, a lower part of a rod is slidably inserted in a sleeve upstanding from a bottom surface of a bottomed cylinder accommodating a hydraulic oil to define a pressure chamber in the sleeve. A return spring is incorporated between a spring washer provided at an upper part of the rod and the bottom surface of the cylinder to bias the rod and the cylinder in the direction in which the rod protrudes from the cylinder.
Furthermore, a tubular spring cover that covers an upper part of the return spring is provided at a lower part of the spring washer, and a seal member is mounted in an upper part opening of the cylinder such that its inner periphery is in elastic contact with the outer periphery of the spring cover, thereby defining a sealed reservoir chamber between the cylinder and the sleeve. The reservoir chamber communicates with the pressure chamber through oil passages formed at a bottom portion of the cylinder. A check valve is mounted in a lower end opening of the sleeve so as to close when the pressure in the pressure chamber increases, thereby disconnecting communication between the pressure chamber and the oil passages.
This hydraulic auto-tensioner farther includes a coupling piece provided at a lower surface of the cylinder and configured to be pivotally coupled to an engine block, and a coupling piece provided at an upper surface of the spring washer and configured to be coupled to the pulley arm 83 shown in
In the hydraulic auto-tensioner described in patent document 2, the rod includes a valve fit-in hole opened at a lower end thereof and an oil path through which an upper part of the valve fit-in hole communicates with the reservoir chamber. A relief valve is mounted in the valve fit-in hole, and is configured such that a valve body of the relief valve is opened if the pressure in the pressure chamber becomes higher than a set pressure of the relief valve, thereby allowing hydraulic oil in the pressure chamber to flow through the oil path into the reservoir chamber.
In the hydraulic auto-tensioner according to patent document 2, the pressure in the pressure chamber can be held at a value not exceeding the set pressure of the relief valve, and hence the belt can be prevented from becoming over-tensioned.
Patent document 1: JP 2009-275757 A
Patent document 2: JP 2009-191863 A
In either of the hydraulic auto-tensioners described in patent document 1 and patent document 2, the sleeve fit-in hole is formed at the bottom surface of the cylinder, and a lower end portion of the sleeve is press-fitted into the sleeve fit-in hole to hold the assembled state, and thus the interference due to press-fitting is relatively large and the sleeve is press-fitted while rubbing against the sleeve fit-in hole when press-fitting the sleeve, whereby press-fitting burrs may form at the outer peripheral portion of the lower end face of the sleeve by such press-fitting.
In an hydraulic auto-tensioner, the lower end face of the sleeve is positioned at a higher level than the lower surface of the valve seat of the check valve incorporated in the lower end portion of the sleeve, and a gap is formed between the lower end face of the sleeve and the bottom surface of the sleeve fit-in hole, and hence when burrs formed at the time of press-fitting drop, the burrs flow into the oil passages through the gap and mix into and float in the hydraulic oil. Burrs thus may get stuck in the leakage gap or the check valve, inhibiting the damper function when damping the pushing force applied on the hydraulic auto-tensioner.
An object of the present invention is to provide a hydraulic auto-tensioner for use with an engine accessory that prevents press-fitting burrs produced when fitting the sleeve from mixing into the hydraulic oil.
In order to overcome the above problem, the present invention provides a hydraulic auto-tensioner for use with an engine accessory, comprising: a cylinder containing hydraulic oil and including a bottom portion having an upper surface formed with a sleeve fit-in hole; a sleeve having a lower end portion press-fitted in the sleeve fit-in hole; a rod having a lower end portion slidably inserted in the sleeve and defining a pressure chamber in the sleeve; a return spring incorporated between a spring washer provided at an upper part of the rod and the upper surface of the bottom portion of the cylinder and biasing the cylinder and the rod in a direction in which the rod protrudes from the cylinder; a tubular spring cover provided on the spring washer and covering an upper part of the return spring; a seal member incorporated in an upper side opening of the cylinder and having an inner periphery kept in elastic contact with an outer periphery of the spring cover, thereby defining a reservoir chamber between the cylinder and the sleeve; wherein at least one oil passage is defined between fitting surfaces of the sleeve and the sleeve fit-in hole such that the reservoir chamber communicates with the pressure chamber through the oil passage; and a check valve mounted in the lower end portion of the sleeve and configured to be closed, thereby disconnecting the pressure chamber from the oil passage, when a pressure in the pressure chamber becomes higher than a pressure in the reservoir chamber, wherein the sleeve has a lower end face in abutment with a bottom surface of the sleeve fit-in hole.
With this arrangement, since the lower end face of the sleeve is in abutment with the bottom surface of the sleeve fit-in hole, any burrs produced when the sleeve is press-fitted are trapped between the lower end face of the sleeve and the bottom surface of the sleeve fit-in hole and is prevented from floating in the hydraulic oil.
This in turn prevents burrs from getting stuck in the leakage gap or the check valve, thus inhibiting the damper function.
In order to bring the lower end face of the sleeve into abutment with the bottom surface of the sleeve fit-in hole, the bottom surface of the sleeve fit-in hole may be stepped so that an outer peripheral portion of the bottom surface is at an upper level than an inner peripheral portion of the bottom surface, and the lower end face of the sleeve is in abutment with the outer peripheral portion of the bottom surface. In another arrangement for this purpose, the check valve includes a valve seat having a lower surface located at a higher level than the lower end face of the sleeve, and the bottom surface of the sleeve fit-in surface is a flat surface.
The bottom surface may be stepped by placing an annular washer having a rectangular cross-section on the bottom surface.
The washer may be made of metal, but is preferably a molded article made of synthetic resin to reduce the cost. In this case, since the washer is incorporated to always be immersed in the hydraulic oil, a resin excelling in oil resistance is preferably adopted therefor. Polyamide is preferably used for such resin.
Preferably, the at least one oil passage comprises a plurality of radially extending oil passages, the bottom surface and the inner peripheral surface of the sleeve fit-in hole are divided into a plurality of circumferentially separate bottom surface portions and a plurality of circumferentially separate inner peripheral surface portions, respectively, by the plurality of oil passages, and a pocket having a fan shape in plan view is formed in each of the bottom surface portions. With this arrangement, it is possible to trap even bulky burrs produced when press-fitting the sleeve in the above pockets.
Preferably, each of the separate surface portions of the divided inner peripheral surface of the sleeve fit-in hole has a circumferential width smaller than the circumferential width of the outer peripheral portion of the corresponding one of the fan-shaped pockets so that burrs produced when the sleeve is press-fitted into the sleeve fit-in hole while rubbing against the inner peripheral surface of the sleeve fit-in hole can be reliably trapped in the pockets.
The cylinder is a die casting molded article made of aluminum alloy or an aluminum forged article, so that the stepped bottom surface and the pockets for accommodating burrs can be easily molded at the time of molding. A satisfactory cylinder without casting pores that excels in strength can be obtained by adopting a pore free die casting method (PF die casting method).
In the hydraulic auto-tensioner according to the present invention, by providing a filter on the hydraulic oil flow-in side of a valve hole formed in the check valve, when the rod protrudes from the sleeve under the biasing force of the return spring and the check valve is opened so that hydraulic oil in the reservoir chamber flows into the pressure chamber through the oil passages, the hydraulic oil is filtered by the filter so that if any foreign substances mixed in the hydraulic oil are captured by the filter.
Thus, even if burrs are produced when the sleeve is press-fitted into the sleeve fit-in hole and mixed into the hydraulic oil, such burrs are captured by the filter. This prevents foreign substances such as burrs from flowing into the pressure chamber and getting stuck in the leakage gap or the check valve, which in turn reliably prevents a failure of the hydraulic damper function.
The filter may comprise a net, or may be made of a porous metal or a porous metal referred to as foam metal.
If a filter in the form of a net is used, and if its mesh size is smaller than 0.1 mm, the flowing resistance of hydraulic oil tends to be large and hydraulic oil does not smoothly flow into the pressure chamber from the reservoir chamber, thus making it difficult for the rod to smoothly protrude from the sleeve. If the mesh size is greater than 0.2 mm, burrs, and the like produced when press-fitting the sleeve cannot be captured. Preferably, therefore, the net filter has a mesh size of 0.1 mm to 0.2 mm.
If a filter made of a porous metal is used, its porosity is preferably in the range of 90 to 97% in view of the flowability of hydraulic oil and the capturing property of foreign substances.
As described in patent document 2, a hydraulic auto-tensioner is known in which an oil path through which the pressure chamber communicates with the reservoir chamber is provided in the rod, and a relief valve is incorporated in the oil path. In such a hydraulic auto-tensioner, which includes the relief valve, if a filter is provided on the hydraulic oil flow-in side of the relief valve, foreign substances such as burrs mixed in the hydraulic oil can be captured with the filter so that foreign substances can be prevented from entering the relief valve. Therefore, the drawback in which foreign substances get stuck in the relief valve does not arise, and the function of the relief valve is not inhibited by foreign substances.
In a hydraulic auto-tensioner including the relief valve, at a lower surface facing the pressure chamber of the valve seat formed with the valve hole of the relief valve, a tapered surface inclined with a rising slope from a middle toward the outer periphery is formed or a truncated conical narrow protrusion in which the cross-sectional shape of the root is an arcuate surface is arranged at the central part of the lower surface, so that when hydraulic oil flows into the oil path through the valve hole formed in the valve seat, foreign substances mixed in the hydraulic oil are guided by the tapered surface or the tapered outer periphery of the narrow protrusion to be easily flowed toward the outer periphery of the valve seat. Foreign substances are less likely to enter the valve hole and the function of the relief valve can be suppressed from being inhibited by foreign substances.
For a valve spring for biasing the valve body of the relief valve toward the valve hole, a conical coil spring in which the end facing the valve body has a small diameter, a hourglass-shaped coil spring in which the central part in the length direction has a small diameter and the diameter becomes larger toward both ends, a disc spring, or a cylindrical coil spring formed by a spring wire having an elliptical cross-sectional shape is adopted, which springs having a large spring constant compared to a cylindrical coil spring, so that the size in the length direction of the valve spring can be reduced and the relief valve can be miniaturized. Thus, a space having a long axial length does not need to be ensured to incorporate the relief valve, and the perforation process with respect to the rod can be facilitated.
As described above, in the present invention, the lower end face of the sleeve is brought into contact with the bottom surface of the sleeve fit-in hole so that the burr produced by the rubbing of the sleeve can be sandwiched between the lower end face of the sleeve and the bottom surface of the sleeve fit-in hole when press-fitting the sleeve. The drawback in which the burr floats in the hydraulic oil and gets caught in the leakage gap and the check valve thus disabling the damper function does not arise, and a hydraulic auto-tensioner having high reliability can be obtained.
a) is a cross-sectional view showing another example of a press-fitting burr sealing means;
An embodiment of the present invention will be hereinafter described based on the drawings. As shown in
The coupling piece 2 includes a shaft inserting hole 2a extending therethrough from one to the other side surface thereof. A tubular pivot shaft 2b and a slide bearing 2c rotatably supporting the pivot shaft 2b are mounted in the shaft inserting hole 2. The pivot shaft 2b is fixed in position by tightening a bolt inserted through the pivot shaft 2b and threadedly engaged in the engine block. The pivot shaft 2b thus supports the cylinder 1 so as to be pivotable about the pivot shaft 2b.
A sleeve fit-in hole 3 is formed in the upper surface of the bottom portion of the cylinder 1, and a lower end portion of a sleeve 4 made of steel is press-fitted in the sleeve fit-in hole 3. A rod 5 has its lower portion slidably inserted in the sleeve 4, thus defining a pressure chamber 6 in the sleeve 4.
A spring washer 7 is fixed to an upper end portion of the rod 5 positioned outside the cylinder 1. A return spring 8 is mounted between the spring washer 7 and the bottom surface of the cylinder 1, biasing the cylinder 1 and the rod 5 in the direction in which the rod 5 protrudes from the cylinder 1.
The spring washer 7 has at its top end a coupling piece 9 to be coupled to the pulley arm 83 shown in
The spring washer 7 is formed by molding. When forming the spring washer 7 by molding, a tubular dust cover 10 that covers the outer circumference of the upper part of the cylinder 1 and a tubular spring cover 11 that covers the upper part of the return spring 8 are simultaneously formed by molding so as to be integral with the spring washer 7.
The spring washer 7 may be formed by die-casting an aluminum alloy or by molding a resin such as a thermosetting resin.
The spring cover 11 has the entire outer circumference covered by a tubular member 12 which is inserted in the spring washer 7 when molding the spring washer 7. The tubular member 12 is formed by pressing a steel plate.
An oil seal 13 as a seal member is fitted in the upper side opening of the cylinder 1 such that the inner periphery of the oil seal 13 is in elastic contact with the outer peripheral surface of the tubular member 12 to close the upper side opening of the cylinder 1, thus preventing hydraulic oil in the cylinder 1 from leaking to outside and preventing entry of dust.
A sealed reservoir chamber 14 is defined between the cylinder 1 and the sleeve 4 by the oil seal 13. The reservoir chamber 14 and the pressure chamber 6 are communicated with each other by way of a plurality of oil passages 15 defined between the fitting surfaces of the sleeve fit-in hole 3 and the sleeve 4, and an oil sump 16 in the form of a circular recess formed in the bottom surface of the sleeve fit-in hole 3 at its central portion.
As shown in
In the embodiment, there are four of the oil passages 15 arranged to form a cross in plan view such that the bottom surface 3a and the inner peripheral surface 3b of the sleeve fit-in hole 3 are divided into four separate surface portions, respectively, by the oil passages 15.
As shown in
The check valve 17 is configured such that when the pressure in the pressure chamber 6 becomes higher than the pressure in the reservoir chamber 14, the check ball 20 closes the valve hole 19 and disconnects the pressure chamber 6 from the oil passages 15 thus preventing hydraulic oil in the pressure chamber 6 from flowing into the reservoir chamber 14 through the oil passages 15.
As shown in
As shown in
The amount of the hydraulic oil sealed in the cylinder 1 is determined to be equal to or greater than 40% of the volume of the internal space of the tensioner when the rod 5 protrudes from the cylinder 4 to the limit, i.e. until the snap ring 25 abuts the step portion 26.
In order to adjust the tension of the engine accessory driving belt 81 shown in
In this state, the tension of the belt 81 changes due to e.g. fluctuations in loads of the engine accessory. When the tension of the belt 81 is decreasing, the cylinder 1 and the rod 5 are moved relative to each other in the direction in which the rod 5 protrudes from the cylinder 1 under the biasing force of the return spring 8 to absorb slackening of the belt 81.
When the cylinder 1 and the rod 5 are moved relative to each other in the direction in which the rod 5 protrudes from the cylinder 1, the pressure in the pressure chamber 6 becomes lower than the pressure in the reservoir chamber 14, and thus the check ball 20 of the check valve 17 opens the valve hole 19. Hydraulic oil in the reservoir chamber 14 thus smoothly flows through the valve hole 19 and the oil passages 15 into the pressure chamber 6, and the cylinder 1 and the rod 5 are smoothly moved relative to each other in the direction in which the rod protrudes from the cylinder, thus immediately absorbing slackening of the belt 81.
When the tension of the belt 81 is increasing, a pushing force that tends to push the rod 5 of the hydraulic auto-tensioner into the cylinder 1 is applied from the belt 81. Due to the pushing force, the pressure in the pressure chamber 6 becomes higher than the pressure in the reservoir chamber 14, and thus the check ball 20 of the check valve 17 closes the valve hole 19.
Furthermore, hydraulic oil in the pressure chamber 6 flows through a leakage gap 27 defined between the radially inner surface of the sleeve 4 and the radially outer surface of the rod 5 and then flows into the reservoir chamber 14, and a hydraulic damper force is generated in the pressure chamber 6 due to the viscous resistance of the hydraulic oil flowing through the leakage gap 27. The hydraulic damper pressure damps the pushing force applied on the hydraulic auto-tensioner, allowing the cylinder 1 and the rod 5 to be slowly moved relative to each other in the direction in which the rod 5 is pushed into the cylinder to the position where the pushing force and the elastic force of the return spring 8 are balanced.
The hydraulic auto-tensioner shown in
In the embodiment, as shown in
This prevents the hydraulic damper function from being inhibited by burrs that may form when fitting the sleeve 4.
In
The washer 28 may be made of metal, or may be a molded article made of synthetic resin excelling in oil resistance, such as polyamide. If the washer 28 is a molded article made of synthetic resin, the cost can be reduced.
In
In this case, as shown in
In this arrangement, each of the separate surface portions of the divided inner peripheral surface 3b of the sleeve fit-in hole 3 has preferably a circumferential width W1 smaller than the circumferential width W2 of the outer peripheral portion of the corresponding one of the fan-shaped pockets 29 so that burrs produced when the sleeve 4 is press-fitted into the sleeve fit-in hole 3 while rubbing against the divided inner peripheral surface 3b can be reliably trapped in the pockets 29.
As shown in
Thus, even if burrs are produced and mixed in the hydraulic oil when the sleeve 4 is press-fitted into the sleeve fit-in hole 3, such burrs are captured by the filter 30. This arrangement prevents foreign substances such as burrs from flowing into the pressure chamber 6 and getting stuck in the leakage gap 27 or the check valve, thus reliably preventing a failure of the hydraulic damper function.
The filter 30 is a flat net in
The filter 30 is not limited to a net. The filters 30 shown in
As shown in
The spring seat 54 has a circular column shape, and is slidable along the radially inner surface of the valve fit-in hole 40. A gap 57 is defined between the sliding surfaces of the spring seat 54 and the valve fit-in hole 40.
A rod 54a is arranged in the valve spring 56 so as to be integral with the upper surface of the spring seat 54. The spring seat 54 has in its lower surface a conical recess 54b into which the upper part of the valve body 53 is fitted.
The relief valve 50 is configured such that if the pressure in the pressure chamber 6 exceeds the set pressure, which is the elastic force of the valve spring 56, the valve body 53 opens the valve hole 52.
The filter 60 is incorporated on the hydraulic oil flow-in side of the valve hole 52 formed in the valve seat 51. The filter 60 is a flat net made of stainless steel (SUS) and having a mesh size of 0.1 mm to 0.2 mm.
As shown in
This prevents entry of foreign substances into the relief valve 50, and thus prevents a failure of the relief valve 50 due to foreign substances getting stuck in the relief valve 50.
The filter 60 is a flat net in
The filter 60 is not limited to a net either. In
By forming the tapered surface 70 on the lower surface of the valve seat 51, if the relief valve 50 opens and hydraulic oil flows through the valve hole 52 formed in the valve seat 51 into the relief valve 50, foreign substances mixed in the hydraulic oil are guided by the tapered surface 70 and easily flows toward the outer circumference of the valve seat 51. Thus, foreign substances are less likely to enter the valve hole 52, which in turn reduces the possibility of a failure of the relief valve 50 due to entry of foreign substances.
The auto-tensioner shown in
In the auto-tensioner shown in
In
In
The valve spring 56 shown in
The valve spring shown in
Since all the valve springs 56 shown in
Number | Date | Country | Kind |
---|---|---|---|
2012-228899 | Oct 2012 | JP | national |
2012-255028 | Nov 2012 | JP | national |
2012-265196 | Dec 2012 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/077777 | 10/11/2013 | WO | 00 |