In general, the inventive arrangements relate to brakes and braking systems, and more specifically, to hydraulic brake master cylinders for bicycles or off-road vehicles.
The general operation of hydraulic brake master cylinders for bicycles or off-road vehicles is well known. The brake system includes a reservoir housing hydraulic fluid. The brake system operates by rotation of a lever which applies force to a piston. When force is applied, the piston slides in a longitudinal bore thereby producing an increase in hydraulic pressure in the bore which pressurizes the brake system. One or more fluid paths connect the piston bore to the reservoir. The reservoir contains a bladder that can expand and contract based on the needs of the system.
When the lever is in its free state, also known as the “home” position, its distance from the handlebar is typically adjustable. Current adjusters are difficult to use and levers typically cannot be adjusted without the use of tools, such as an allen wrench.
It is also critical to the bicycle industry to develop components that are smaller and lighter in weight. Reductions in the sizes, number of parts and weight of bike components, including the brake system, is advantageous since it reduces cost and overall weight. Reductions in weight enhance the appeal of the bike.
Bicycle master cylinders are sometimes symmetric and are typically located in close proximity to the gear shifter. Each bike rider has his or her own individual preference for the location of the gear shifter relative to the master cylinder lever. However, the shape of the master cylinder typically limits where the gear shifter may be located. It therefore is advantageous to reduce the size of the master cylinder, specifically in the area of gear shifter actuation, to provide more placement options for the location of the gear shifter relative to the master cylinder lever.
Another problem observed in the bike industry is the generation of high brake temperatures, especially during long descents. High brake temperatures expand the hydraulic fluid which requires compensation in the hydraulic fluid system. It is advantageous to make the reservoir expansion volume large enough to absorb all possible fluid expansion in the brake system.
Another problem encountered by the bicycle manufacturing industry is to provide for the easy removal of air from the hydraulic system by bleeding. Bleeding air from the system can be difficult. Additionally, reorientation of the master cylinder is generally required. Some systems require removal of the reservoir cover and bladder to access the fluid. If a bleeder screw is used for bleeding purposes, it typically has an elastomeric seal that requires special geometry in the reservoir or bladder. It would therefore be advantageous to incorporate a bleeder screw that doesn't require an elastomeric seal or special reservoir and bladder geometry located in a position where reorientation of the master cylinder during bleeding is not required.
As described, it is desirable to provide a substantially symmetric hydraulic brake master cylinder that is compact, light in weight, sculpted around the gear shifter, with reduced part numbers, sufficient fluid expansion capacity in the reservoir, and which provides for tool free adjustment of the lever, as well as a comfortable lever to use. Additionally, it is advantageous to improve the bleeding process by utilizing low cost bleeder screws located where reorientation of the master cylinder is not required.
It is an object of the present invention to provide a master cylinder for a hydraulic brake master cylinder for a bicycle that is compact and light.
It is also an object of the invention to provide a hydraulic brake master cylinder that has a reservoir shape which provides the necessary fluid volume as well as large expansion volume.
It is a further object of the invention to provide a substantially symmetric hydraulic brake master cylinder that provides gear shifter operation clearance.
It is also an object of the invention to provide a lever that has been sculpted to provide comfort throughout its stroke.
It is a further object of the invention to provide an adjustment mechanism that allows for the modification of the lever home position without the use of tools.
It is another object of the invention to provide defined increments of adjustment to the lever home position for further ease of use.
It is an object of the invention to provide a lever having defined increments of adjustment through use of a pivot pin that is symmetric and utilizes low cost retention.
It is a further object of the invention to provide a lever having a split end which allows for retention by a single, inexpensive clip.
It is another object of the invention to provide a body having a single flange to which the split end of the lever is retained, allowing for reduced weight.
It is also an object of the invention to provide for the removal of air from the brake system by bleeding without requiring reorientation of the master cylinder.
Various other features, objects and advantages of the present invention will become apparent to one of ordinary skill in the art from the following detailed description taken together with the drawings.
Preferred embodiments of the invention are described below with reference to the following drawings, which are provided for illustrative purposes only. The drawings illustrate a best mode contemplated for caring out the invention. In the drawings:
Before explaining embodiments of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
In
A lever 56 is pivotally attached to the body 50 by a pivot pin 57 and set screw 59. The pivot pin 57 is necked down towards the center so that it cannot be removed when the set screw 59 is installed. The pivot pin 57 rotates relative to the body 50 on pivot pin bushings 58. The pivot pin bushings 58 each have a flange 74 that keep them retained once the pivot pin 57 is installed and allow the lever 56 to rotate smoothly.
A pushrod 63 is pivotally attached to the lever 56 by means of an adjuster nut 60, adjuster bushings 61, and spring washer 62. One end of the pushrod 63 is a sphere and is engaged in a spherical pocket in the piston 67. A retaining ring 64 fits within a groove in the body 50 and retains a washer 65 which contains a hole having a diameter smaller than that of the spherical end of the pushrod 63. Once installed, the retaining ring 64 and washer 65 define an end stop for the pushrod 63.
The pushrod 63 is engaged with the adjuster nut 60 by threads. There are flat surfaces 63A on the pushrod 63 and corresponding flat surfaces on the adjuster bushings 61. The exterior of the adjuster bushings 61 are cylindrical and fit within a cylindrical pocket 75 in the lever 56. As seen in
An alternative embodiment for adjustment in defined increments to the mechanism of the detent spring 73 described herein is to place a detent ball 88 with the detent spring 73 into the cavity in the adjuster nut 60 where the detent ball 88 is forced by the detent spring 73 into surface interruptions in the adjuster bushings 61 to provide defined increments of adjustment.
The piston 67 has an elastomeric primary seal 68 and secondary seal 66. A spring 69 is fit at one end to the piston 67 and at the other end to the piston bore bottom 50A in the body 50. The volume of the piston bore 76 between the piston bore bottom 50A and the primary seal 68 defines a first chamber and the area between the primary seal 68 and secondary seal 66 defines a second chamber. The primary seal 68 allows fluid to flow from the second chamber to the first chamber but no flow is allowed in the reverse direction. The secondary seal does not allow any fluid passage.
When the lever 56 is released, the spring 69 pushes the piston 67 and pushrod 63 against the backstop of the washer 65 and retaining ring 64. This is the initial position of the piston 67. At this position, one or more port timing holes 79 are in the body 50 connecting the first chamber to the reservoir fluid volume. A compensating port 78 is located in the body 50 between the second chamber and the reservoir fluid volume throughout the piston 67 stroke range. A port on the body near the piston bore bottom 50A communicates any pressure in the first chamber to the brake system.
When the lever 56 is rotated relative to the body 50 (towards the handlebar), the pushrod 63 pushes the piston 67 towards the piston bore bottom 50A which compresses the spring 69. Once the primary seal 68 has passed the port timing hole 79, pressure is generated in the first chamber and transmitted to the brake hose (not shown) which is connected to the body by a compression nut 71 and then covered by a nose cone 72 (see
If the brake fluid expands due to heat generated during braking, in the initial position of the piston 67, fluid will flow through the port timing holes 79 and into the reservoir fluid volume. The bladder 53 will deform into the reservoir expansion volume and thus increase the size of the reservoir fluid volume.
In
In
It has been found through testing that a reservoir expansion volume of at least 2.5 cc is preferred, although not necessary. By including the features described herein, an expansion of more than 2.5 cc is achieved without an undesirable effect on the gear shifter position relative to the hydraulic brake master cylinder 100. Of course, other desirable effects can be achieved by obtaining a ratio of reservoir expansion volume to reservoir fluid volume in the system. Preferably, this ratio is at least 1.8 and this ratio is achieved through the invention. However, other ratios could be beneficial and are intended to be included herein.
In
As shown in
A second embodiment of the hydraulic brake master cylinder 101 is shown in
To adjust the home position of the lever 80, the pushrod 84 is rotated. The adjuster bushing 83 has a cylindrical exterior contained in a corresponding hole in the lever 80 which prevents it from rotating and thus the adjuster bushing 83 moves axially relative to the pushrod 84. As the adjuster bushing 83 travels, it pivots within the lever 80, thereby forcing the lever to rotate relative to the body 50 on the pivot pin 81 and thus modifying the home position.
A preferred embodiment of the lever 80 is shown in
A fifth embodiment is shown in
It is understood that the various preferred embodiments are shown and described above to illustrate different possible features in the invention and the varying ways these features may be combined. Apart from combining the different features of the above embodiments and varying ways, other modifications are also considered to be within the scope of the invention.
The invention is not intended to be limited to the preferred embodiments described above, but rather is intended to be limited only by the claims setout below. Thus, the invention encompasses all alternate embodiments that fall literally or equivalently within the scope of these claims.