The invention relates to a hydraulic brake system. More particularly, the invention relates to a hydraulic brake actuation mechanism used with a hydraulic brake for engaging a wheel of a vehicle, such as for example, a bicycle.
Many vehicles, such as for example bicycles, utilize a hydraulic brake system that applies pressure to a rotating wheel, or a disc mounted to a rotating wheel. Some of these braking systems utilize a mechanism including a hand lever, to generate pressure in a hydraulic fluid. This pressure is transferred through a hydraulic line or conduit to a brake assembly, which may include a caliper having pads, such that the hydraulic pressure is applied to the pads to squeeze the pads against the rotating part to impart a braking force.
In light of the present need for an improved hydraulic brake actuation mechanism, and in particular a mechanism that is provided in an overall ergonomic package, a brief summary of various exemplary embodiments is presented. Some simplifications and omissions may be made in the following summary, which is intended to highlight and introduce some aspects of the various exemplary embodiments, but not to limit the scope of the invention. Detailed descriptions of a preferred exemplary embodiment adequate to allow those of ordinary skill in the art to make and use the inventive concepts will follow in later sections.
In one aspect of some embodiments of the invention a hydraulic brake mechanism is mountable to a bicycle handlebar. The hydraulic brake mechanism includes a housing having a base portion and an extension portion, the base portion including first and second ends, the base portion including a handlebar clamp at the first end, the base portion extending generally horizontally and the extension portion extending forwardly of the base portion at the second end and angled generally upwardly from the base portion when the hydraulic brake mechanism is mounted to the bicycle handlebar, the housing sized and shaped to be grasped by a user's hand, the housing having a fluid outlet port in the extension portion. The hydraulic brake mechanism may also include a shift device disposed in the housing, a fluid chamber disposed in the extension portion of the housing in fluid communication with a fluid reservoir and the fluid outlet port, and a piston movably disposed within the fluid chamber. The hydraulic brake mechanism may also include a lever pivotally disposed at the second end of the base portion, the lever operatively connected to the piston to slidably displace the piston within the fluid chamber. The hydraulic brake mechanism may also include a fluid line attached to the fluid outlet port and disposed in a groove formed along a length of the extension portion and the base portion of the housing.
In another aspect of some embodiments of the invention a housing for a hydraulic brake mechanism sized and shaped to be grasped by a user's hand and mountable to a bicycle handlebar. The housing includes a base portion including first and second ends, the base portion including a handlebar clamp at the first end, the base portion extending generally horizontally, and an extension portion extending forwardly of the base portion at the second end and angled generally upwardly from the base portion when the housing is mounted to the bicycle handlebar. The housing also may include a fluid outlet port in the extension portion, a fluid reservoir, and a fluid outlet port. The housing may also include a shift device space configured for the inclusion of a shift device, and a lever attachment portion disposed at the second end of the base portion, the lever attachment portion configured to be operatively connected to the piston to slidably displace the piston within the fluid chamber. The housing may also include a fluid chamber configured to include a piston movably disposed therein, the fluid chamber disposed in the extension portion of the housing and in fluid communication with the fluid reservoir and the fluid outlet port, and a groove formed along a length of the extension portion configured to house a fluid line attached to the fluid outlet port.
In order to better understand various exemplary embodiments, reference is made to the accompanying drawings, wherein:
Various embodiments of the invention provide for a hydraulic brake actuation mechanism, which may in some cases include another component such as, for example, a shift actuation mechanism. The mechanism described herein is well suited for use in handlebar-steered vehicles such as, for example, bicycles. It will be understood that the positional/directional references will be used herein according to their ordinary meaning unless specifically set out hereinbelow, with the hydraulic brake actuation mechanism of the invention mounted to a vehicle, and wherein the vehicle is oriented according to normal use. One embodiment will now be described futher below, with reference to the drawing figures.
Referring to
Generally, the housing 22 may be considered to include a housing body 27. The housing body 27 is a single-piece molded construction or formed of more than one piece. The housing body 27 may be considered to include a base portion 23 and an extension portion 25. The housing 22 is mountable to a part of the handlebar-steered vehicle, for example by a clamp 24 attached to the base portion 23 of the housing body 27. The housing 22 may be arranged on a handlebar of the vehicle pointing in the forward direction, i.e., pointing in the forward travel direction (F) of the vehicle during normal use, oriented generally along the longitudinal axis of the vehicle, with the base portion 23 generally aligned horizontally and the extension portion 25 generally forward of the base portion and angled generally upwardly from the base portion when mounted.
The housing 22 also may include a first cover part 29 that closes the housing body 27 on at least one flank or lateral side thereof and a second cover part 31 that closes the housing body on a top or upper side thereof. The first cover 29 permits access to the interior of the housing body 27 for installation, removal, and maintenance of elements of the hydraulic brake actuation mechanism 20 that are reachable through the side of the housing body. The first cover 29 may also cover part of the top surface 70 of the housing body 27 (
The second cover part 31 permits access to the interior of the housing body 27 for installation, removal, and maintenance of elements of the hydraulic brake actuation mechanism 20 that are reachable at or through the top of the housing body. The covers 29, 31 also may complete an ergonomic shape with the housing body 27, and when assembled to form the housing 22 may receive a hood cover 62, which may be an elastomeric material.
The hydraulic brake actuation mechanism 20 includes a master cylinder assembly 26 which may be disposed within the housing body 27 and may be disposed in the extension portion 25. The master cylinder assembly 26 may be generally oriented along the longitudinal axis of the extension portion 25, as will be seen in more detail hereinbelow. It will be understood that the master cylinder assembly 26 is connectable to a conventional slave cylinder (not shown) by a hydraulic line or conduit 28 which provides fluid communication therebetween.
As shown in
In the embodiment shown in
One end 48 of the second chamber portion 44, i.e. a distal end, is directly or indirectly in fluid communication with a bleed or fill port 50 formed in the housing 22. A bleed port screw 52 is removably disposed in the bleed port 50 to permit bleeding of air or the addition of fluid. The bleed port screw 52 is provided with a seal 53, which is for example an O-ring. The end 48 is also directly or indirectly in fluid communication with a fluid reservoir 40 formed in the housing body 27, for example, by way of a passageway 82 that may interconnect the bleed port 50 and the fluid reservoir.
The reservoir 40 is capped by a bladder 84, in a known fashion (
A fluid outlet port 60 is formed in the housing body 27 connecting the fluid chamber 32, in the vicinity of the transition region 46, to a fluid fitting assembly 54. The fluid fitting assembly 54 includes a hollow bolt 64 which is in fluid communication with the fluid outlet port 60, for example—threadably inserted into the fluid output port. The fluid fitting assembly 54 includes a “banjo” fitting 66, connected to and in fluid communication with the hollow bolt 64. The banjo fitting 66 is similar to conventional banjo fittings, except the bottom surface 68 of the banjo fitting is not oriented normal to the axis of the hollow bolt. In the illustrated embodiment, the angle (A) of the hollow bolt 64 (and the fluid outlet port 60) is greater than 90 degrees, angled relative to the top or upper surface 70 of the housing 22 (
Due at least in part to the construction of the fluid fitting assembly 54, the housing body 27 can closely accommodate the fitting 54, and hydraulic line 28 attached thereto, in such a way that the hydraulic line can lie parallel to the surface 70, and thus presents a low profile that permits the housing 22 to be designed ergonomically. Because of the low profile configuration, the hood cover 62 can be smoothly fitted over the housing 22, including the fluid fitting assembly 54 and hydraulic line 28, and thus the fit of hood cover and the overall shape is not interrupted or negatively affected by any projecting hydraulic lines or elements.
The housing body 27 additionally may have a groove 72 that generally runs along the length of the housing that accommodates the hydraulic line 28 such that a smooth contour is presented that conforms to the hand of the user. In the illustrated embodiment, the groove 72 is formed at or near the junction of the top surface and side surface of the housing body 27. Other positions of the groove 72 may be possible, such as along the side of the housing body 27. With respect to ergonomics, the first cover part 29 may be configured to wrap over the hydraulic line 28 and at least partially enclose the groove 72.
The piston assembly 34 includes a piston 74 reciprocally disposed within the fluid chamber 32. The piston 74 has first and second portions 76, 78. A first seal 36, in this embodiment, a combination of a glide ring and an O-ring, is disposed on the first portion 76 of the piston 74 and a second seal 38 is disposed on the second portion 78 of the piston 74. Other types of suitable seals are contemplated. In an alternative embodiment, the seals 36, 38 may be positioned in the walls of the fluid chamber 32, and contact the piston 74.
The first and second portions 76, 78 carrying respective first and second seals 36, 38 are configured to sealingly engage respective first and second chamber portions 42, 44 of the fluid chamber 32. When so engaged, first and second seals 36, 38 define an output chamber 80 therebetween (
The piston 74 is slidably displaceable between an open fluid circuit position that permits fluid flow between the first and second chamber portions 42, 44 of the fluid chamber 32 and a closed fluid circuit position (
When the piston 74 creates the closed circuit position, i.e., when both first and second seals 36, 38 are engaged with respective first and second chamber portions 42, 44 of the fluid chamber 32, fluid in the second chamber portion 44 is advanced into the reservoir 40. The movement of fluid into (and out of) the reservoir 40 tends to displace the bladder 84. Air above the bladder 84 may be vented to atmosphere through the second cover 31 to permit movement of the bladder as a result of the change of volume of fluid in the reservoir 40.
The piston assembly 34 also includes a return spring 86, which may be disposed in the fluid chamber 32 between the housing body 27 and the piston 74 and functions to return the piston 74 and lever 30 to a start position generally corresponding to the open circuit position. A plate 88 is attached to the housing body 27 to close the first chamber portion 42 of the fluid chamber 32, retain the piston assembly 34 within the fluid pressure chamber, and provide access to the piston 74 via a plate hole 90.
A pushrod 92 may be disposed in the plate hole 90 and acts upon the piston assembly 34 via the lever 30. The pushrod 92 may include a threaded portion 96 proximate one end and a head 94 proximate the other end. The head 94 may include a rounded surface 112, which is received in a corresponding cup surface 114 in the piston 74. The threaded portion 96 of the pushrod 92 is threadably received in cross dowel 98.
The dowel 98 may be pivotally disposed with a bushing 100. The lever 30 pivotally receives the bushing 100 and dowel 98. The pushrod 92 passes through the dowel 98. The pushrod 92 may include a hex opening 116 for receiving an Allen wrench for adjusting the position of the lever 30, or reach, relative to a handlebar (not shown) by threaded engagement with the dowel 98.
The lever 30 is pivotally attached to the housing body 27 by way of a pivot assembly 104. The pivot assembly 104 may include a shaft 106. The ends of the shaft 106 may include bushings 108 that enable movement between the lever 30 and the housing body 27. Clips 110 may be affixed to the shaft 106 to retain the pivot assembly 104 on the housing body 27.
Referring to
Within the reservoir 40, a flexible bladder 84 makes a barrier between the fluid and atmosphere (
The output chamber 80 and port 60 include a volume of fluid. The output chamber 80 is connected to a fitting 54 that is connected to a remote brake caliper (not shown). As the lever blade 30 is depressed further (
As is well known, a pressure increase in the brake caliper causes the caliper pistons to advance and brake pads are urged against a brake rotor to create braking forces. If used with hydraulic rim brakes, the pressure increase causes the hydraulic rim brakes to engage a bicycle rim. When the lever blade 30 is released, the piston 74 returns to its “at rest” position, at least through action of the return spring 86, the pressure in the system decreases, and the caliper pistons/brake pads retract from the rotor/rim and brake forces decrease. The second seal 38 finally becomes disengaged from the wall of the fluid chamber 32 creating the open circuit condition.
Although the various exemplary embodiments have been described in detail with particular reference to certain exemplary aspects thereof, it should be understood that the invention is capable of other embodiments and its details are capable of modifications in various obvious respects. As is readily apparent to those skilled in the art, variations and modifications can be affected while remaining within the spirit and scope of the invention. Accordingly, the foregoing disclosure, description, and figures are for illustrative purposes only and do not in any way limit the invention, which is defined only by the claims.
This application is a continuation application under 37 C.F.R. §1.53(b) of U.S. patent application Ser. No. 14/851,666, filed Sep. 11,2015, which is a continuation of U.S. patent application Ser. No. 14/226,271, filed Mar. 26, 2014, now U.S. Pat. No. 9,156,522. which is a continuation of U.S. patent application Ser. No. 13/351,000, filed Jan. 16, 2012, now U.S. Pat. No. 8,714,322, all of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3776333 | Mathauser | Dec 1973 | A |
4635442 | Bass | Jan 1987 | A |
4921081 | Chilcote | May 1990 | A |
6003639 | Buckley | Dec 1999 | A |
7377367 | Takizawa | May 2008 | B2 |
8714322 | Dunlap | May 2014 | B2 |
9156522 | Dunlap | Oct 2015 | B2 |
9187150 | Miki | Nov 2015 | B2 |
9487199 | Dunlap | Nov 2016 | B2 |
20030121262 | Lumpkin | Jul 2003 | A1 |
20040118641 | Huster | Jun 2004 | A1 |
20050115238 | Becocci | Jun 2005 | A1 |
20050126331 | Dal Pra | Jun 2005 | A1 |
20050199450 | Campbell et al. | Sep 2005 | A1 |
20060086588 | Tsumiyama | Apr 2006 | A1 |
20060185941 | Matsushita | Aug 2006 | A1 |
20070131495 | Matsushita et al. | Jun 2007 | A1 |
20070215417 | Chen | Sep 2007 | A1 |
20080155982 | Jones | Jul 2008 | A1 |
20080302101 | Dunlap | Dec 2008 | A1 |
20080314184 | Miki | Dec 2008 | A1 |
20090000878 | Lumpkin | Jan 2009 | A1 |
20090033144 | Ikeda | Feb 2009 | A1 |
20090205330 | Dunlap | Aug 2009 | A1 |
20100051400 | Yang | Mar 2010 | A1 |
20100199798 | Kouji | Aug 2010 | A1 |
20100218640 | Wen | Sep 2010 | A1 |
20110031079 | Matsushita | Feb 2011 | A1 |
20110147149 | Tetsuka | Jun 2011 | A1 |
20110192687 | Miles | Aug 2011 | A1 |
20120096850 | Dunlap | Apr 2012 | A1 |
20120160625 | Jordan | Jun 2012 | A1 |
20120240715 | Tsai | Sep 2012 | A1 |
20140174237 | Watarai | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
201999156 | Mar 2007 | CN |
69835113 | May 2007 | DE |
375436 | Jun 1990 | EP |
1816065 | Aug 2007 | EP |
S6152551 | Apr 1986 | JP |
M387056 | Aug 2010 | TW |
WO2007025984 | Mar 2007 | WO |
2007121362 | Oct 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20170036734 A1 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14851666 | Sep 2015 | US |
Child | 15294239 | US | |
Parent | 14226271 | Mar 2014 | US |
Child | 14851666 | US | |
Parent | 13351000 | Jan 2012 | US |
Child | 14226271 | US |