Information
-
Patent Grant
-
6488285
-
Patent Number
6,488,285
-
Date Filed
Thursday, December 20, 200123 years ago
-
Date Issued
Tuesday, December 3, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Burns, Doane, Swecker & Mathis, LLP
-
CPC
-
US Classifications
Field of Search
US
- 279 207
- 279 208
- 279 401
- 279 403
- 279 91
- 279 96
- 279 102
- 279 103
- 279 158
- 279 903
- 029 450
- 029 451
- 029 446
- 029 243
- 269 20
- 269 481
- 242 5711
- 242 5712
- 242 5761
- 403 5
- 403 15
- 403 273
- 294 981
- 294 1193
-
International Classifications
- B23B31117
- B23B3130
- B23P1102
-
Abstract
A hydraulic chuck includes a center bore for receiving a tool shank. At least one closed cavity is disposed in the chuck body adjacent the bore and extend circumferentially by a distance less than 360 degrees. The cavity containing device communicates with the medium for pressurizing the medium to radially deform and expand the bore wall from a normal diameter to a larger diameter to enable the tool shank to be moved into or from the bore. A depressurizing of the medium causes the bore wall to radially retract to the normal diameter for clamping the member in the bore.
Description
BACKGROUND OF THE INVENTION
The present invention relates to a hydraulic chuck and clamping methods, wherein a sleeve is radially deformed to grip an element, such as a tool shank.
Numerous types of chucks have been devised for securely holding tools. Among those are so-called hydraulic chucks, which include a deformable center cylindrical bore for clamping a tool shank. Extending around the bore in radially spaced relationship thereto is a groove filled with an incompressible medium, such as oil. The portion of the chuck between the groove and the bore constitutes a radially deformable sleeve. A pressurizing member, such as a screw (i.e., a threaded piston), communicates with the oil to pressurize the oil when the screw is advanced. In response to the oil being pressurized, the sleeve is deformed in a manner reducing the effective diameter thereof, i.e., reducing the effective inner diameter of an inner wall of the bore, whereby the wall grips the tool shank. When the screw is retracted to depressurize the oil, the sleeve restores itself to its original shape to release the tool shank. Examples of hydraulic chucks are described in U.S. Pat. Nos. 4,387,906; 4,677,792; and 5,127,780.
A shortcoming of such chucks is that the pressure must be maintained during use of the tool. In the event of a pressure failure (e.g., oil leakage), the tool can become accidentally released during use, which not only interrupts the work, but can present a safety risk as well.
Also, the sleeve is typically a thin-walled sleeve, which presents certain additional risks. For example, if the pressure is applied without a tool being present, the sleeve is subjected to excessive deformation, which, over time, can produce enough fatigue to cause breakage (splitting) of the sleeve. If the pressure is applied with a tool only partially inserted, the location where the sleeve contacts an inner edge of the tool shank can have a ridge permanently formed therein. Another type of undesirable deformation can result if the outer surface of the tool shank includes a flat, because the area where the flat is disposed will not offer resistance to the deformation of the wall; hence a flat can become formed in the sleeve.
It is, therefore, an object of the invention to provide a reliable yet relatively inexpensive way of avoiding accidental release of the clamped member.
Another object is to provide a chuck and a clamping method wherein a chuck has a deformable sleeve, which is not prone to breakage or permanent deformations.
SUMMARY OF THE INVENTION
The present invention relates to a hydraulic chuck comprising a chuck body extending in a longitudinal direction and including radially spaced inner and outer surfaces. The inner surface defines a wall of a bore having a longitudinally extending axis. The outer surface is spaced from the bore wall in a direction extending radially outwardly with respect to the axis. At least one closed cavity is disposed in the chuck body in radially spaced relationship to the bore wall and the outer surface. The cavity extends circumferentially by a distance less than the circumference of the chuck body and contains an incompressible medium. A pressurizing device communicates with the medium for pressurizing the medium to radially deform and expand the bore wall from a normal diameter to a larger diameter for enabling a member to be moved into or from the bore. A depressurizing of the medium causes the bore wall to radially retract to the normal diameter for clamping the movable member in the bore.
Preferably, the bore wall includes a longitudinal recess at a location adjacent the at least one cavity.
Preferably there is a plurality of the cavities, and the cavities are interconnected.
The cavities, which can be circumferentially spaced apart and/or radially spaced apart, may have a circular cross-section or a non-circular cross-section.
The invention also pertains to a method of clamping a member utilizing the above-described hydraulic chuck.
BRIEF DESCRIPTION OF THE DRAWINGS
The objects and advantages of the invention will become apparent from the following detailed description of preferred embodiments thereof in connection with the accompanying drawings in which like numerals designate like elements and in which:
FIG. 1
is a front perspective view of a chuck body according to the present invention;
FIG. 2
is a rear perspective view of the chuck body depicted in
FIG. 1
;
FIG. 3
is an exploded side elevational view of a chuck comprised of the chuck body of
FIG. 1
, and a coupling;
FIG. 4
is a longitudinal sectional view taken along the line
4
—
4
in
FIG. 3
after the coupling has been secured to the chuck body, and showing a tool shank in the process of being inserted into a bore of the tool body;
FIG. 5
is a sectional view taken along the line
5
—
5
in
FIG. 3
without a tool shaft mounted in the tool body;
FIG. 5
a
is a view similar to
FIG. 5
showing the manner in which a wall of the bore is deformed in response to manipulation of a pressurizing device increasing the pressure;
FIG. 5
b
is an enlargement of a portion of
FIG. 5
;
FIG. 6
is a sectional view taken along the line
6
—
6
in
FIG. 4
with a tool shank installed within the chuck;
FIG. 7
is a sectional view similar to
FIG. 5
of a second embodiment of the chuck body;
FIG. 8
is a schematic view of a third embodiment of the chuck body;
FIG. 9
is a schematic view of a fourth embodiment of the chuck body;
FIG. 10
is a schematic view of a fifth embodiment of the chuck body;
FIG. 11
is a schematic view of a sixth embodiment of the chuck body;
FIG. 12
is a schematic view of a seventh embodiment of the chuck body;
FIG. 13
is a schematic view of an eighth embodiment of the chuck body;
FIG. 14
is a schematic view of a ninth embodiment of the chuck body;
FIG. 15
is a longitudinal sectional view of an other embodiment of a hydraulic chuck; and
FIG. 16
is a cross sectional view take n along the line
16
—
16
in FIG.
15
.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION
Depicted in
FIGS. 1-6
is a first embodiment of a hydraulic chuck
10
according to the invention.
The chuck
10
includes a chuck body
11
and a coupling
22
. The function of the chuck body
11
is to receive a member TS which is to be clamped, and the function of the coupling
22
is to attach the chuck body to a carrier, such as a drive spindle (not shown).
The body
11
has front and rear faces
12
,
14
. The front face
12
is defined by a cylindrical sleeve
16
, and the rear face is defined by a cylindrical flange
18
. The sleeve and flange
16
,
18
are interconnected by a frustoconical transition part
20
.
The coupling
22
is a conventional coupling
22
of any suitable type that is attached to the rear face
14
of the body (e.g., by welding, gluing, brazing, bolting, etc.) to enable the chuck to be able to be attached to a carrier (not shown).
A central bore
24
extends axially within the chuck body, the bore having an opening formed in the front face
12
. A forwardly facing radial shoulder
26
is formed inside the body
11
. The bore
24
is adapted to receive a tool shank TS (
FIGS. 4 and 6
) which abuts against the shoulder
26
. Alternatively, the shoulder
26
can be eliminated, whereby the tool shank TS abuts against an end surface
22
a
of the coupling
22
.
At least one cavity
30
extending parallel to the axis of the bore is formed in the chuck body. Four cavities
30
are shown in the embodiment depicted in
FIGS. 1-6
. Each of the cavities
30
is spaced radially from radially spaced inner and outer surfaces
32
,
16
of the chuck, the inner surface
32
defining a wall of the bore
24
.
Each cavity extends circumferentially less than 360°, i.e., no cavity completely surrounds the bore
24
. Preferably no cavity extends circumferentially by more than ninety degrees.
The cavities
30
are closed at their front and rear ends by a front-end wall
34
and the coupling
22
, respectively.
The cavities
30
are spaced apart circumferentially from one another, but communicate with one another by means of a circular connecting channel
36
. Communicating with the channel
36
is a radial hole
38
which extends from the outer surface of the chuck body and intersects the channel
36
to form therewith an interconnecting port
40
(FIG.
5
).
A pressurizing device in the form of a threaded thrust screw
42
is threadedly mounted in the hole
38
. Alternatively, an external pump could be provided, along with a suitable valve, as disclosed subsequently in connection with FIG.
15
.
The cavities
30
, the channel
36
, and the portion of the hole
38
disposed between the screw
42
and the port
40
, are filled with an incompressible medium such as a liquid or silicon gel, for example. Oil is an example of a liquid which could be used, and which can be pressurized by tightening the thrust screw
42
. It has been discovered that when the oil disposed in cavities
30
is pressurized sufficiently, the bore wall will deform in such manner that the effective diameter thereof is slightly increased. The wall deformation is shown in broken lines in the right half of
FIG. 5
a.
Longitudinal recesses or indentations
44
(see
FIGS. 5 and 5
b
) are preferably formed in the wall
32
in circumferentially spaced relationship to one another and adjacent respective cavities
30
(four such recesses
44
being disposed in the embodiment according to FIGS.
1
-
6
), to facilitate the deformation of the wall
32
.
By deforming the wall
32
to increase (expand) the effective bore diameter, a member to be clamped, such as a tool shank TS, can be inserted into the bore. If the member TS has an outer diameter less than the expanded diameter and greater than the normal (at-rest) diameter of the bore, then that member will be tightly gripped by the bore wall
32
when the hydraulic pressure is released (by retracting the thrust screw
42
) or if leakage of the medium occurs. That is, the wall
32
will retract itself to the at-rest state when the hydraulic pressure is released and will close tightly against the member TS.
Thus, it is unnecessary to maintain the hydraulic pressure to clamp the member TS, so there is no need to be concerned about a leakage of oil resulting in an accidental releasing of the member TS.
The cavity structure in the embodiment according to
FIGS. 1-6
comprises four cavities of circular cross-section spaced apart by ninety degrees. However, many other cavity structures could be employed, some of which are depicted in
FIGS. 7-14
, respectively.
In
FIG. 7
, four pairs of cavities
50
,
52
are employed, the cavities of each pair being spaced apart in a radial direction. A connecting channel (not shown) would fluidly interconnect the cavities.
In
FIG. 8
, only a single cavity
60
, of circular cross-section, is provided.
In
FIG. 9
, the cavities
70
are I-shaped. Four equidistantly spaced cavities
70
are shown, but any suitable number could be employed.
In
FIG. 10
, two I-shaped cavities
80
, spaced apart by
180
′, are provided, the cavities
80
being thinner than the cavities
70
of
FIG. 9. A
connecting channel (not shown) would interconnect the cavities
80
.
In
FIG. 11
a single pair of radially spaced, circular cavities
90
,
92
is employed, which would be interconnected by a channel.
In each of
FIGS. 12-14
the cavities are of circular cross-section and equidistantly spaced. In
FIG. 12
, three cavities
100
are employed. In
FIG. 13
, six cavities
110
are used. In
FIG. 14
, nine cavities
120
are provided. The cavities of each of
FIGS. 12-14
would be interconnected by a channel.
Another embodiment of the invention is depicted in
FIGS. 15 and 16
. That embodiment involves a relatively slim chuck
200
, which can be used in confined spaces. The chuck includes a chuck body
221
having a central bore
224
drilled in a front end thereof for receiving a tool shank (not shown). A plurality (e.g., a pair) of cavities
230
is drilled through the body
221
so as to extend parallel to and closely adjacent the center bore
224
. Rear ends of the cavities are closed by suitable plugs
232
. A lateral bore
234
is drilled partially through the body at a location behind the bore
224
to intersect both of the cavities
230
. The lateral bore
234
intersects the outer periphery of the body
211
and is connected to a conduit
236
which connects to a pump
238
capable of delivering a pressurized non-compressible medium to the lateral bore
234
, and thus to the cavities
230
(under the control of a valve
239
) in order to expand the surface
240
of the bore
224
in the manner described earlier herein.
Although the present invention has been described in connection with preferred embodiments thereof, it will be appreciated by those skilled in the art that additions, deletions, modifications, and substitutions not specifically described may be made without departing from the spirit and scope of the invention as defined in the appended claims.
Claims
- 1. A hydraulic chuck comprising:a chuck body extending in a longitudinal direction and including radially spaced inner and outer surfaces, the inner surface defining a wall of a bore having a longitudinally extending axis, the outer surface spaced from the bore wall in a direction extending radially outwardly with respect to the axis; at least one closed cavity disposed in the chuck body in radially spaced relationship to the bore wall and the outer surface, the at least one cavity extending circumferentially by a distance less than 360 degrees and containing an incompressible medium; and a pressurizing device communicating with the medium for pressurizing the medium to radially deform and expand the bore wall from a normal diameter to a larger diameter for enabling a member to be moved into or from the bore, and wherein a depressurizing of the medium causes the bore wall to radially retract to the normal diameter for clamping the member in the bore.
- 2. The hydraulic chuck according to claim 1 wherein the bore wall includes a longitudinal recess at a location adjacent the at least one cavity.
- 3. The hydraulic chuck according to claim 1 wherein the chuck body includes a hole communicating with the at least one cavity, and the pressurizing device comprises a thrust screw threadedly mounted in the hole.
- 4. The hydraulic chuck according to claim 1 wherein the pressurizing device comprises a pump.
- 5. The hydraulic chuck according to claim 1 wherein the at least one cavity has a circular cross section.
- 6. The hydraulic chuck according to claim 1 wherein the at least one cavity has a non-circular cross section.
- 7. The hydraulic chuck according to claim 6 wherein the at least one cavity has a generally I-shaped cross section.
- 8. The hydraulic chuck according to claim 1 wherein the at least one cavity extends substantially parallel to the axis.
- 9. The hydraulic chuck according to claim 1 wherein the at least one cavity comprises a plurality of fluidly interconnected cavities.
- 10. The hydraulic chuck according to claim 9 wherein the bore wall includes longitudinal recesses located adjacent the respective cavities.
- 11. The hydraulic chuck according to claim 9 wherein the chuck body includes a connecting channel fluidly connected to the cavities.
- 12. The hydraulic chuck according to claim 11 wherein the shank body includes a hole communicating with the cavities and the connecting channel, and the pressurizing device comprises a thrust screw threadedly mounted in the hole.
- 13. The hydraulic chuck according to claim 9 wherein the cavities are circumferentially spaced apart.
- 14. The hydraulic chuck according to claim 9 wherein the cavities are radially spaced apart.
- 15. The hydraulic chuck according to claim 9 wherein some of the cavities are radially spaced apart and some of the cavities are circumferentially spaced apart.
- 16. The hydraulic chuck according to claim 9 wherein the cavities have a circular cross section.
- 17. The hydraulic chuck according to claim 9 wherein the cavities have a generally I-shaped cross section.
- 18. The hydraulic chuck according to claim 9 wherein the cavities extend substantially parallel to the axis.
- 19. The hydraulic chuck according to claim 1 wherein the incompressible medium comprises a liquid.
- 20. The hydraulic chuck according to claim 1 wherein the incompressible medium comprises silicon gel.
- 21. The hydraulic chuck according to claim 1 wherein the at least one cavity extends circumferentially by a distance less than ninety degrees.
- 22. The hydraulic chuck according to claim 1 wherein the at least one cavity comprises a plurality of cavities, each cavity extending circumferentially by a distance less than ninety degrees.
- 23. A method of clamping a member comprising the steps of:A. inserting the member into a longitudinally extending bore of a chuck body, the body having at least one closed cavity extending generally longitudinally therein in radially spaced relationship to a wall of the bore and to an outer surface of the body, the at least one cavity extending circumferentially by a distance less than 360 degrees and containing an incompressible medium; B. pressurizing the medium to radially deform and expand the bore wall from a normal diameter to a larger diameter for enabling a member to be moved into the bore; C. inserting the member into the deformed bore; and D. depressurizing the medium to cause the bore wall to radially retract to the normal diameter for clamping the member in the bore.
Priority Claims (1)
Number |
Date |
Country |
Kind |
9901173 |
Mar 1999 |
SE |
|
PCT Information
Filing Document |
Filing Date |
Country |
Kind |
PCT/SE00/00364 |
|
WO |
00 |
Publishing Document |
Publishing Date |
Country |
Kind |
WO00/58045 |
10/5/2000 |
WO |
A |
US Referenced Citations (7)
Foreign Referenced Citations (3)
Number |
Date |
Country |
29 26 293 |
Jan 1981 |
DE |
975232 |
Nov 1982 |
SU |
WO9832563 |
Jul 1998 |
WO |