This application is a 35 U.S.C. § 371 national stage application of PCT International Application No. PCT/KR2017/012626 filed on Nov. 8, 2017, the disclosure and content of which is incorporated by reference herein in its entirety.
The present disclosure relates to a hydraulic circuit and, more particularly, to a hydraulic circuit having a confluence valve.
A variety of machines obtaining power by supplying pressurized fluid are used in construction sites, industrial sites, and the like. For example, such machines supply pressurized fluid to actuators, which in turn perform work using the pressure of the fluid.
A hydraulic circuit is generally provided with a plurality of working fluid supplies, each of which is configured to supply working fluid to a corresponding actuator. Some hydraulic circuits are provided with confluence valves, each of which can direct working fluid provided by a corresponding working fluid supply to an actuator corresponding to another working fluid supply. Thus, sufficient amounts of working fluid can be supplied to two or more actuators corresponding to different working fluid supplies when the two or more actuators are simultaneously driven.
However, a hydraulic circuit of the related art has a complexified structure and requires a large number of components, thereby increasing fabrication costs, lowering productivity, and making repairs difficult, which are problematic.
Accordingly, the present disclosure has been made in consideration of the above-described problems occurring in the related art, and the present disclosure proposes a hydraulic circuit having a simple structure and excellent operational reliability.
According to an aspect of the present disclosure, a hydraulic circuit may include: a first working fluid supply; a second working fluid supply; a confluence valve connected to the first working fluid supply to control a flow of working fluid provided by the first working fluid supply; a first control valve and a second control valve connected to the second working fluid supply to control a flow of working fluid provided by the second working fluid supply; a first fluid passage including a first portion and connected to the confluence valve to move the confluence valve; a second fluid passage including a second portion fluidly communicating with the first portion of the first fluid passage, the second fluid passage extending from the second portion through the second control valve; a third fluid passage including a third portion fluidly communicating with the first portion of the first fluid passage and the second portion of the second fluid passage, the third fluid passage extending from the third portion; a first valve opening and closing the third fluid passage; a fourth fluid passage including a fourth portion and connected to the first valve to move the first valve; a fifth fluid passage including a fifth portion fluidly communicating with the fourth portion of the fourth fluid passage, the fifth fluid passage extending from the fifth portion through the first control valve. When the first control valve and the second control valve are in non-neutral positions, respectively, the fifth fluid passage and the second fluid passage may be closed, thereby generating a first pressure within the fifth portion of the fifth fluid passage and a second pressure within the second portion of the second fluid passage, so that the first pressure is applied to the first valve through the fourth fluid passage to move the first valve to close the third fluid passage and the second pressure is applied to the confluence valve through the first fluid passage to move the confluence valve to a confluence position. When the confluence valve is in the confluence position, the confluence valve may direct working fluid from the first working fluid supply to the second control valve.
The hydraulic circuit may further include: a third working fluid supply; and a third control valve and a fourth control valve connected to the third working fluid supply to control a flow of working fluid provided by the third working fluid supply. The second fluid passage may extend from the second portion to serially pass through the second control valve and the fourth control valve. The fifth fluid passage may extend from the fifth portion to serially pass through the first control valve and the third control valve. When at least one of the first control valve and the third valve is in a non-neutral position and at least one of the second control valve and the fourth control valve is in a non-neutral position, the fifth fluid passage may be closed to generate the first pressure within the fifth portion of the fifth fluid passage and the second fluid passage is closed to generate the second pressure within the second portion of the second fluid passage. When the confluence valve is in the confluence position, the confluence valve may direct working fluid from the first working fluid supply to one of the second control valve and the fourth control valve.
The hydraulic circuit may further include: a second valve provided on the first fluid passage; and a seventh fluid passage extending from the second valve. The second valve may have at least a first position and a second position. The second valve may allow fluid flow between the first fluid passage and the seventh fluid passage in the first position and blocks fluid flow between the first fluid passage and the seventh fluid passage in the second position.
Hereinafter, exemplary embodiments of the present disclosure will be described in detail with reference to the accompanying drawings.
A hydraulic circuit is applicable to hydraulic machinery, such as construction machines, industrial machines, and the like. The following exemplary embodiments referring to
In this specification, illustrations or descriptions of devices and/or parts that are not directly related to the essential features of the present disclosure are omitted to focus on core features of the present disclosure. For example, in
Although fluid passages mentioned herein may be entities physically independent of devices or components connected thereto, it may not be easy to physically distinguish the fluid passages from the devices or components. For example, fluid passages, such as hoses and pipes, via which a device is connected to another device, may be entities physically independent of devices connected thereto, but it may not be easy to mechanically or structurally distinguish fluid passages from valves when the fluid passages are internal fluid passages of a valve block in which a plurality of valves are assembled.
Although a fluid passage mentioned herein is referred to as a single component, the single component may, in fact, collectively refer to a combination of fluid passages that are mechanically or structurally distinguishable. For example, it will be apparent to a person having ordinary skill in the art that a fluid passage extending from a hydraulic pump toward a tank through a plurality of (directional) control valves in the neutral position is simply referred to as a center bypass passage. In contrast, although fluid passages mentioned herein are referred to as, and described as being, a plurality of components (e.g. focused on functional aspects), such fluid passages may, in fact, be portions of a conduit that are not mechanically or structurally distinguishable from the conduit.
The term “portion” of the fluid passage mentioned herein means a region considered to have a substantially uniform level of pressure. The expression “region considered to have a substantially uniform level of pressure” means that the pressure of the region is not only accurately uniform on a mathematical basis, but can also be seen to be uniform by a person having ordinary skill in the art. Thus, for example, a second portion 421 of a second fluid passage 420, in which a second pressure is formed when a second control valve 240 to be described with reference to
The term “communication” used herein means the relationship between a “portion” of a fluid passage and a “portion” of another fluid passage, by which fluid having a specific level of pressure can flow therebetween without an intended increase or decrease in pressure. Thus, when one fluid passage is connected to another fluid passage via, for example, an orifice, the two fluid passages cannot be regarded as being in communication with each other. This is because, although one fluid passage provides fluid having a pressure level of, for example, 10 psi to the other fluid passage, the fluid received by the other fluid passage may have a pressure level of 5 psi, rather than the pressure level of 10 psi provided by the one fluid passage. That is, the same fluid is not sent and received in terms of pressure. However, the two fluid passages simply connected to each other may be regarded as communicating with each other, even in the case in which the pressure in one fluid passage is not the same as the pressure in the other fluid passage due to inevitable duct pressure loss.
The terms “communicating” and/or “connected” used herein include not only directly “communicating” and/or being “connected”, but also indirectly “communicating” and/or to being “connected.” For example, a person having ordinary skill in the art will understand that a hydraulic pump and a main control valve (MCV) “connected” to each other may be indirectly “connected” to each other via an intervening fluid passage.
A construction machine, such as an excavator, includes a working part and a control part controlling the working part in electrical and mechanical communication with the working part.
The working part includes an engine 10, working fluid supplies 110, 120, 130, a pilot fluid supply 140, control valves 210-290, actuators 210′, 220′, 230′, 240′, 250′, 260′, 270′, 280′, 290′, and a tank. When a working fluid supply 110, 120, 130 is driven by the engine 10, the working fluid supply 110, 120, 130 draws fluid from the tank and directs the fluid to a control valve 210-290. When the control valve 210-290 is in a neutral position 210p0-290p0, the control valve 210-290 allows the working fluid from the working fluid supply 110, 120, 130 to return to the tank, instead of directing the working fluid to the actuator 210′, 220′, 230′, 240′, 250′, 260′, 270′, 280′, 290′. When pilot fluid is supplied to portion ‘a’ of the control valve 210-290, the control valve 210-290 is moved to direct working fluid to portion ‘A.’ In contrast, when pilot fluid is supplied to portion ‘b’ of the control valve 210-290, the control valve 210-290 is moved to direct working fluid to portion ‘B.’ The actuator 210′, 220′, 230′, 240′, 250′, 260′, 270′, 280′, 290′ performs work when provided with working fluid. The actuator 210′, 220′, 230′, 240′, 250′, 260′, 270′, 280′, 290′ returns working fluid (working fluid supplied from the control valve in the case of a motor actuator and working fluid within an opposite chamber in the case of a cylinder actuator) to the control valve through an opposite portion (i.e. portion ‘B’ or portion ‘A’). Working fluid from the actuator 210′, 220′, 230′, 240′, 250′, 260′, 270′, 280′, 290′ returns to the tank, thereby forming a closed working fluid circuit. Such a working fluid circuit is generally referred to as a main circuit. Likewise, pilot fluid can also form a closed circuit. A pilot fluid supply 140 can draw fluid from the tank and send the fluid to a remote control valve (RCV) or an electro proportional pressure-reducing valve (EPPRV). The remote control valve or the electro proportional pressure-reducing valve provides pilot fluid to portion ‘a’ or portion ‘b’ of the control valve 210-290 in response to an input through an input device (e.g. a manipulator, such as a control lever, a control pedal, or a steering wheel). The control valve 210-290 is moved by pilot fluid provided thereto. Pilot fluid discharged from the opposite portion (portion ‘b’ or portion ‘a’) returns to the tank, thereby forming a closed circuit. Such a pilot fluid circuit is generally referred to as a pilot circuit.
Although a single working fluid circuit is illustrated and a single control valve is illustrated as being disposed within the single working fluid circuit for the sake of brevity in
Although a hydraulic machine may be provided with a single tank providing fluid to a plurality of working fluid supplies 110, 120, 130 and a pilot fluid supply 140 and storing returning fluid, the present disclosure is not limited thereto. A hydraulic machine may be provided with a plurality of tanks. Although a plurality of tanks are described and illustrated in the specification and the accompanying drawings, this is merely for convenience of description, and a person having ordinary skill in the art will understand that only a single tank may, in fact, be provided. (If a variety of working fluid lines connected to a single tank were to be illustrated in a circuit diagram, the circuit diagram would be rendered complex and difficult to understand.) When the same number of tanks as illustrated in the drawings must be provided, it will be explicitly stated in the specification. Thus, when there is no such statement herein, a plurality of tanks illustrated in the drawings may be interpreted as being a plurality of tanks as illustrated in the drawings or may be interpreted as being a single tank or any other number of tanks. It should be understood that such embodiments are included within the scope of the present disclosure.
The control part includes a controller, an input device, an output device, and the like. The controller may include an electronic control unit (ECU). The ECU may include a central processing unit, a memory, and the like. The input device may include a variety of switches (e.g. a rotary switch, a membrane switch, and a toggle switch), a touchscreen, and the like, in addition to the above-described manipulator. The output device may include, for example, a video output device, such as a display or a lamp, an audio output device outputting sound, and a tactile output device outputting vibrations or the like.
The control part can provide a variety of functions. For example, the control part can provide an automatic idling function also referred to as an automatic deceleration function. This function can switch an engine 10 from a high-speed operation to a low-speed operation when an actuator has not performed any operation for a predetermined period of time (e.g. 4 to 6 seconds) during the high-speed operation of the engine 10, while allowing the engine 10 to return to the original high-speed operation when an operator operates the actuator by moving the manipulator. Additionally or alternatively, the control part can provide a travel alarm function. When a left traveling motor and/or a right traveling motor start to operate, the control part can detect the operation and output, for example, an audio signal using the output device 33, so that the operator can be informed of the operation.
As illustrated in
In
The first working fluid supply 110 may be a hydraulic pump, and the second working fluid supply 120 may be a hydraulic pump.
The first control valve 250 and the second control valve 240 are connected to the second working fluid supply 120 to control a flow of working fluid provided by the second working fluid supply 120. When the first control valve 250 and the second control valve 240 are in a neutral position, working fluid from the second working fluid supply 120 can return to a tank (not shown) through a center bypass passage 320. Although the center bypass passage 32 in
The confluence valve 225 may be connected to the first working fluid supply 110 to control a flow of working fluid provided by the first working fluid supply 110. As illustrated in
The first fluid passage 410 is connected to the confluence valve 225 to move the confluence valve 225. It is possible to move the confluence valve 225 to the confluence position by applying pilot pressure to the confluence valve 225 through the first fluid passage 410. The first fluid passage 410 has a first portion 411.
The second fluid passage 420 has a second portion 421 communicating with the first portion 411 of the first fluid passage 410. The second fluid passage 420 extends from the second portion 421 to the sixth portion 423 through the second control valve 240. At least while the second fluid passage 420 remains open, a pressure of fluid within the sixth portion 423 of the second fluid passage 420 may be lower than the threshold pressure level.
The third fluid passage 430 has a third portion 431 communicating with the first portion 411 of the first fluid passage 411 and the second portion 421 of the second fluid passage 420. The third fluid passage 430 extends from the third portion 431 to a seventh portion 433 through the first valve 510. At least while the third fluid passage 430 remains open, a pressure of fluid within the seventh portion 433 of the third fluid passage 430 may be lower than the threshold pressure level.
In embodiments in which the first portion 411 of the first fluid passage 410 communicates with the second portion 421 of the second fluid passage 420, i) further limitation of the third portion 411 of the third fluid passage 430 communicating with the first portion 411 of the first fluid passage 410, ii) further limitation of the third portion 411 of the third fluid passage 430 communicating with the second portion 421 of the second fluid passage 420, and iii) further limitation of the third portion 411 of the third fluid passage 430 communicating with both the first portion 411 of the first fluid passage 410 and the second portion 421 of the second fluid passage 420 commonly indicate the same circuit structure. Although a fluid passage extending vertically downwardly from the confluence valve 225 is described as the first fluid passage 410, a fluid passage branched and extending rightwardly from the first fluid passage 410 is described as the second fluid passage 420, and a fluid passage branched and extending leftwardly from the first fluid passage 410 is described as the third fluid passage 430 in
The first valve 510 can open and close the third fluid passage 430. The first valve 510 may include a poppet movable between at least an open position in which the third fluid passage 430 is opened and a closed position in which the third fluid passage 430 is closed. Although the first valve 510 includes the poppet in the illustrated embodiments, the present disclosure is not limited thereto. For example, the first valve may include a spool.
The fourth fluid passage 440 is connected to the first valve 510 to move the first valve 510. The fourth fluid passage 440 has a fourth portion 441. Fluid within the third fluid passage 430 can apply an opening pressure to the poppet to move the poppet to the open position, while fluid within the fourth fluid passage 440 can apply a closing pressure to the poppet to move the poppet to the closed position. In some embodiments, the first valve 510 may be configured such that the first area of the poppet to which the opening pressure is applied is smaller than the second area of the poppet to which the closing pressure is applied. Even in the case in which the level of pressure received from the third fluid passage 430 is the same as the level of pressure received from the fourth fluid passage 440, the higher level of closing force is applied to the poppet, thereby closing the first valve 510. Although the first valve 510 movable by hydraulic pressure is illustrated, the present disclosure is not limited thereto. For example, the first valve may include a solenoid such that the first valve can be electrically moved.
The fifth fluid passage 450 has a fifth portion 451 fluidly communicating with the fourth portion 441 of the fourth fluid passage 440. The fifth fluid passage 450 extends from the fifth portion 451 to an eighth portion 453 through the first control valve 250. For example, when the first control valve 250 and the second control valve 240 are moved to non-neutral positions in response to an input device (e.g. in response to a manipulator, such as a control lever, a control pedal, or a steering wheel) being manipulated by an operator, the fifth fluid passage 450 and the second fluid passage 420 are closed, thereby generating a first pressure and a second pressure in the fifth portion 451 of the fifth fluid passage 450 and the second portion 421 of the second fluid passage 420, respectively. The first pressure is applied to the first valve 510 through the fourth fluid passage 440, thereby closing the first valve 510, while the second pressure is applied to the confluence valve 225 through the first fluid passage 410, thereby moving the confluence valve 225 to a confluence position. In some embodiments, the second pressure may be equal to or higher than the threshold pressure level. While the first control valve 250 remains in the neutral position, even in the case in which the second control valve 240 is moved to the non-neutral position, the first valve 510 is opened by pressure of fluid within the third fluid passage 430, since the first pressure is not generated within the fifth portion 451 of the fifth fluid passage 450, and the second pressure is not generated within the first fluid passage 410, since pressure within the third portion 431 of the third fluid passage 430 (consequently, pressure within the second portion 421 of the second fluid passage 420 and pressure within the first portion 411 of the first fluid passage 410) is discharged through the third fluid passage 430 to the seventh portion 433. In this regard, a product of the second pressure and the first area of the poppet of the first valve 510 can be greater than a product of the level of pressure of fluid within the eighth portion 453 of the fifth fluid passage 450 during opening of the fifth fluid passage 450 and the second area of the poppet of the first valve 510.
As illustrated in
At least when the second valve 520 is in the first position, a level of pressure within the seventh fluid passage 470 is lower than a threshold pressure level. The seventh fluid passage 470 may extend from the second valve 520 to a tank (not shown). For example, the seventh fluid passage 470 may be a drain line extending between the second valve 520 and the tank. The hydraulic circuit may include an eighth fluid passage 480 connected to the second valve 520 to move the second valve 520. The eighth fluid passage 480 can fluidly communicate with the second fluid passage 420. When the second pressure is applied to the second valve 520 through the eighth fluid passage 480, the second valve 520 can be moved from the first position to the second position. According to the definition of the term “communication” as described above, the eighth passage 480 may be directly connected to the first fluid passage 410 to communicate with the second fluid passage 420 via the first fluid passage 410, instead of being directly connected to the second fluid passage 420. The second valve 520 may be a valve operated by a solenoid. In this regard, the hydraulic circuit includes detectors 710 and 720 detecting the second pressure within the second portion 421 of the second fluid passage 420. When the detectors 710 and 720 detect the second pressure, the hydraulic circuit can move the second valve 520 from the first position to the second position by applying an electrical signal to the solenoid.
As illustrated in
As illustrated in
As illustrated in
The second fluid passage 420 may extend from the second portion 421 to serially (or sequentially) pass through the seventh control valve 230, the second control valve 240, the fourth control valve 270, the fifth control valve 280, and the sixth control valve 290. The fifth fluid passage 450 extends from the fifth portion 451 to serially extend through the first control valve 250 and the third control valve 260.
When at least one of the second control valve 240, the fourth control valve 270, the fifth control valve 280, the sixth control valve 290, and the seventh control valve 230 is in a non-neutral position and at least one of the first control valve 250 and the third control valve 260 is in a non-neutral position, the second fluid passage 420 is closed, thereby generating a second pressure within the second portion 421 of the second fluid passage 420, and the fifth fluid passage 450 is closed, thereby generating a first pressure within the fifth portion 451 of the fifth fluid passage 450. When the confluence valve 225 is in a confluence position, the confluence valve 225 can direct working fluid from the first working fluid supply 110 to at least one of the second control valve 240, the fourth control valve 270, the fifth control valve 280, the sixth control valve 290, and the seventh control valve 230 through confluence passages 351 and 352.
As illustrated in
As illustrated in
The hydraulic circuit includes a first detector 710 detecting the first pressure and an output device 33 generating a travel alarm when the first pressure is detected.
In some embodiments, the hydraulic circuit may include an engine 10 driving the second working fluid supply 120, the first working fluid supply 110, the third working fluid supply 130, and the pilot fluid supply 140. The engine 10 may be a single engine driving all of these fluid supplies or may include a plurality of engines. The hydraulic circuit includes a sixth fluid passage 460 extending to serially (or sequentially) pass through the first to ninth control valves 250220, detectors 710 and 720, a controller 20. When at least one of the first to ninth control valves 250 to 220 is moved to a non-neutral position 250p1-220p2, the sixth fluid passage 460 is closed, thereby generating a third pressure within the sixth fluid passage 460, and the detector 720 can detect the third pressure. When the third pressure is detected, the controller can deactivate the idling function of operating the engine 10 at a low speed.
As illustrated in
Reference symbols P1, P2, P3, and P4 indicate fluid passages, and reference symbols A, B, C, D, E, F, and G indicate a piston, a seal, a spool, a guide, a spring, a plug, and a spool of the confluence valve 225, respectively.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2017/012626 | 11/8/2017 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/093538 | 5/16/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7571558 | Horii | Aug 2009 | B2 |
8424301 | Choi | Apr 2013 | B2 |
20040261405 | Lee | Dec 2004 | A1 |
20050204734 | Oka | Sep 2005 | A1 |
20080034748 | Koo | Feb 2008 | A1 |
20080236154 | Koo | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
1306492 | May 2003 | EP |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority, PCT/KR2017/012626, dated Aug. 8, 2018, 14 pages. |
Number | Date | Country | |
---|---|---|---|
20200362537 A1 | Nov 2020 | US |