Hydraulic circuits for internal combustion engines

Abstract
A hydraulic circuit includes first and second pumps, a first discharge passage receiving hydraulic fluid discharged from the first pump and communicating with a main gallery, a second discharge passage receiving hydraulic fluid discharged from the second pump and communicating with an actuator, a communication passage ensuring communication between the first and second discharge passages, and a relief valve arranged with the communication passage to be opened at a predetermined pressure for the second discharge passage.
Description




BACKGROUND OF THE INVENTION




The present invention relates to hydraulic circuits for supplying hydraulic fluid to slide portions and valve controllers of internal combustion engines.




One of the hydraulic circuits is disclosed, for example, in JP-A 4-175431. This hydraulic circuit includes first and second hydraulic pumps arranged independently. The first pump sucks hydraulic fluid within an oil pan to discharge it to a first discharge passage that communicates with a main gallery, whereas the second hydraulic pump sucks hydraulic fluid within the discharge passage to discharge it to a second discharge passage that communicates with a valve controller.




Connected to each discharge passage is a relief passage communicating with the oil pan and having a relief valve for opening the relief passage at a predetermined pressure. The relief valve serves to maintain the pressure within the corresponding discharge passage at a predetermined value.




Specifically, connected to the first discharge passage is the first relief passage communicating with the oil pan and having the first relief valve for opening the first relief passage at a predetermined pressure for the first discharge passage. The first relief valve carries out relief action to maintain the pressure within the first discharge passage at a predetermined value. Connected to the second discharge passage is the second relief passage communicating with the oil pan and having the second relief valve for opening the second relief passage at a predetermined pressure for the second discharge passage. The second relief valve carries out relief action to maintain the pressure within the second discharge passage at a predetermined value.




Hydraulic fluid discharged to the first discharge passage is supplied, through the main gallery, to the slide portions for lubrication thereof. On the other hand, hydraulic fluid discharged to the second discharge passage is supplied to the valve controller for operation thereof.




With the known hydraulic circuit, however, in view of the fact that the first relief passage connected to the first discharge passage communicates with the oil pan, and the second relief passage connected to the second discharge passage also communicates with the oil pan, the first hydraulic pump needs a discharge capacity Q


1


required to lubricate the slide portions, and the second hydraulic pump needs a discharge capacity Q


2


required to operate the valve controller.




The valve controller is operated under a predetermined operating condition of the internal combustion engine, and is not operated in the normal operating condition thereof. And the pressure within the second discharge passage is maintained at a predetermined value by relief action of the second relief valve. Specifically, the second hydraulic pump always discharges the quantity Q


2


of hydraulic fluid required to operate the valve controller, while when the valve controller is not operated, the second relief valve is opened to ensure hydraulic circulation to the oil pan.




Therefore, when the valve controller is not operated, the second hydraulic pump carries out needless work of circulating hydraulic fluid within the second discharge passage to the oil pan, resulting in a waste of power.




It is, therefore, an object of the present invention to provide hydraulic circuits for internal combustion engines, which include hydraulic pumps with saved power and reduced size.




SUMMARY OF THE INVENTION




One aspect of the present invention lies in providing a hydraulic circuit, comprising:




first and second pumps;




a first discharge passage receiving hydraulic fluid discharged from said first pump, said first discharge passage communicating with a main gallery; a second discharge passage receiving hydraulic fluid discharged from said second pump, said second discharge passage communicating with an actuator;




a communication passage ensuring communication between said first and second discharge passages; and




a relief valve arranged with said communication passage, said relief valve being opened at a predetermined pressure for said second discharge passage.




Another aspect of the present invention lies in providing a hydraulic circuit, comprising:




a pump with first and second ports;




a first discharge passage receiving hydraulic fluid discharged through said first port of said pump, said first discharge passage communicating with a main gallery;




a second discharge passage receiving hydraulic fluid discharged from said second port, said second discharge passage communicating with an actuator;




a communication passage ensuring communication between said first and second discharge passages; and




a relief valve arranged with said communication passage, said relief valve being opened at a predetermined pressure for said second discharge passage.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a block diagram showing a first embodiment of a hydraulic circuit for an internal combustion engine according to the present invention;





FIG. 2

is a view similar to

FIG. 1

, showing a second embodiment of the present invention; and





FIG. 3

is a cross section showing a hydraulic pump shown in FIG.


2


.











DETAILED DESCRIPTION OF THE INVENTION




Referring to the drawings, a description will be made with regard to a hydraulic circuit for an internal combustion engine embodying the present invention.





FIG. 1

shows a first embodiment of the present invention. Referring to

FIG. 1

, the hydraulic circuit comprises a first hydraulic pump


1


and a second hydraulic pump


2


, which are arranged independently and driven singly or together by operation of the internal combustion engine, not shown.




A first intake passage


3


and a first discharge passage


4


are arranged for the first hydraulic pump


1


. The first intake passage


3


has an end with an oil strainer


5


to communicate with an oil pan


6


. By those, the first hydraulic pump


1


can suck hydraulic fluid within the oil pan


6


through the first intake passage


3


to discharge it to the first discharge passage


4


.




The first discharge passage


4


communicates with a main gallery


8


through a filter


7


. Hydraulic fluid led to the main gallery


8


is supplied to slide portions


9


of the internal combustion engine for lubrication thereof.




A communication passage


10


ensures communication between the first intake passage


3


and the first discharge passage


4


. A relief valve


11


is arranged with the communication passage


10


to open it at a predetermined pressure for the first discharge passage


4


. Thus, the pressure within the first discharge passage


4


is maintained at a predetermined value by relief action of the relief valve


11


.




A second intake passage


13


and a second discharge passage


14


are arranged for the second hydraulic pump


2


. The second intake passage


13


has an end with an oil strainer


15


to communicate with the oil pan


6


. By those, the second hydraulic pump


2


can suck hydraulic fluid within the oil pan


6


through the second intake passage


13


to discharge it to the second discharge passage


14


.




The second discharge passage


14


communicates with a valve controller


19


of the internal combustion engine through a filter


17


. Hydraulic fluid supplied to the valve controller


19


serves to ensure operation thereof.




A communication passage


20


ensures communication between the second discharge passage


14


and the first discharge passage


4


. A relief valve


21


is arranged with the communication passage


20


to open it at a predetermined pressure for the second discharge passage


14


. Thus, the pressure within the second discharge passage


14


is maintained at a predetermined value by relief action of the relief valve


21


.




With such a structure, the first and second hydraulic pumps


1


,


2


are driven by operation of the internal combustion engine. The first hydraulic pump


1


sucks hydraulic fluid within the oil pan


6


through the first intake passage


3


to discharge it to the first discharge passage


4


. Hydraulic fluid discharged to the first discharge passage


4


is led to the main gallery


8


through the filter


7


, which is in turn supplied to the slide portions


9


for lubrication thereof. On the other hand, the second hydraulic pump


2


sucks hydraulic fluid within the oil pan


6


through the second intake passage


13


to discharge it to the second discharge passage


14


, which is in turn supplied to the valve controller


19


through the filter


17


for operation thereof.




When the valve controller


19


is not operated, hydraulic fluid discharged from the second hydraulic pump


2


to the second discharge passage


14


flows into the first discharge passage


4


through the communication passage


20


due to relief action of the relief valve


21


.




Thus, the first discharge passage


4


receives a predetermined flow Q


1


of hydraulic fluid discharged from the first hydraulic pump


1


and a flow Qa of hydraulic fluid derived from the second discharge passage


14


through the communication passage


20


, i.e., a total flow Qt=Q


1


+Qa. It is noted that when the valve controller


19


is not operated, the flow Qa that the first discharge passage


4


receives through the second discharge passage


14


is substantially equal to a discharge capacity Q


2


of the second hydraulic pump


2


, since an actuator of the valve controller


19


substantially constitutes a closed circuit.




As a result, hydraulic fluid supplied to the slide portions


9


through the first discharge passage


4


and the main gallery


8


amounts to Qt. It is understood that when the valve controller


19


is not operated, hydraulic fluid discharged from the second hydraulic pump


2


is led to the first discharge passage


4


, which means that the second hydraulic pump


2


does not carry out needless work.




Moreover, the first hydraulic pump


1


only needs a discharge capacity corresponding to the quantity obtained by subtracting the inflow Qa from the quantity Q


1


required to lubricate the slide portions


9


, resulting in a reduced size of the first hydraulic pump


1


.




When the valve controller


19


is operated, hydraulic fluid discharged from the second hydraulic pump


2


serves to operate the valve controller


19


, which causes a temporary reduction in the flow of hydraulic fluid led to the first discharge passage


4


. However, this does not have a substantial influence on lubrication of the slide portions


9


, since the operation of the valve controller


19


is completed in a very short time, and the pressure within the first discharge passage


4


returns to a normal value in a short time.




Therefore, the hydraulic circuit can be obtained, which includes the hydraulic pumps with saved power and reduced size.




Moreover, the filters


7


,


17


arranged in the first and second discharge passages


4


,


14


serve to filtrate hydraulic fluid, enabling a supply of clean hydraulic fluid to the slide portions


9


and the valve controller


19


.





FIGS. 2-3

show a second embodiment of the present invention. Referring particularly to

FIG. 2

, the hydraulic circuit comprises a hydraulic pump


23


having two discharge ports as will be described later and being driven by operation of the internal combustion engine, not shown.




In the second embodiment, the hydraulic pump


23


is in the form of an internal gear pump. Specifically, referring to

FIG. 3

, the hydraulic pump


23


comprises a pump housing


24


formed with a circular concavity


25


, a first gear member


27


having an internal gear


26


on the inner periphery, and a second gear member


29


having an external gear


28


engaged with the internal gear


26


of the first gear member


27


, the first and second gear members


27


,


29


being rotatably accommodated in the concavity


25


of the pump housing


24


.




The pump housing


24


comprises a body


24




a


and a cover, not shown. An intake port


30


and first and second discharge ports


31


,


32


have openings in the concavity


25


of the pump housing


24


. The intake port


30


is formed in an area where the engaging clearance between the internal gear


26


of the first gear member


27


and the external gear


28


of the second gear member


29


is increased with rotation of the first gear member


27


. On the other hand, the first and second discharge ports


31


,


32


are formed in an area where the engaging clearance is decreased with rotation of the first gear member


27


.




The second discharge port


32


is formed forwarder than the first discharge port


31


as viewed in the direction of rotation of the hydraulic pump


23


or the first and second gear members


27


,


29


.




The first gear member


27


is rotatably accommodated in the concavity


25


of the pump housing


24


. The internal gear


26


formed on the inner periphery of the first gear member


27


has a profile including a trochoidal curve as a fundamental element and a higher-order functional curve, and covers the overall axial length.




The second gear member


29


is connected to a drive shaft


33


, and is slightly eccentrically disposed with respect to the first gear member


27


. In the same way as the internal gear


26


of the first gear member


27


, the external gear


29


formed on the outer periphery of the second gear member


29


has a profile including a trochoidal curve as a fundamental element and a higher-order functional curve, and covers the overall axial length. The number of teeth of the external gear


28


of the second gear member


29


is 11, which is less than the number of teeth of the internal gear


26


of the first gear member


27


being 12.




An intake passage


35


communicates with the intake port


30


of the hydraulic pump


23


. A first discharge passage


36


communicates with the first discharge port


31


of the hydraulic pump


23


, and a second discharge passage


37


communicates with the second discharge port


32


of the hydraulic pump


23


. The intake passage


35


has an end with an oil strainer


38


to communicate with an oil pan


6


. By those, the hydraulic pump


23


can suck hydraulic fluid within the oil pan


6


through the intake passage


35


and the intake port


30


to discharge it not only to the first discharge passage


36


through the first discharge port


31


, but the second discharge passage


37


through the second discharge port


32


.




The first discharge passage


36


communicates with a main gallery


8


through a filter


7


. Hydraulic fluid led to the main gallery


8


is supplied to slide portions


9


of the internal combustion engine for lubrication thereof.




A communication passage


39


ensures communication between the intake passage


35


and the first discharge passage


36


. A relief valve


11


is arranged with the communication passage


39


to open it at a predetermined pressure for the first discharge passage


36


. Thus, the pressure within the first discharge passage


36


is maintained at a predetermined value by relief action of the relief valve


11


.




The second discharge passage


37


communicates with a valve controller


19


of the internal combustion engine through a filter


17


. Hydraulic fluid supplied to the valve controller


19


serves to ensure operation thereof.




A communication passage


40


ensures communication between the second discharge passage


37


and the first discharge passage


36


. A relief valve


21


is arranged with the communication passage


40


to open it at a predetermined pressure for the second discharge passage


37


. Thus, the pressure within the second discharge passage


37


is maintained at a predetermined value by relief action of the relief valve


21


.




With such a structure, the hydraulic pump


23


is driven by operation of the internal combustion engine. When the second gear member


29


is rotated clockwise as viewed in

FIG. 3

by the drive shaft


33


, the hydraulic pump


23


sucks hydraulic fluid within the oil pan


6


through the intake passage


35


and the intake port


30


to discharge it to the first and second discharge passages


36


,


37


through the first and second discharge ports


31


,


32


.




At that time, the hydraulic pump


23


carries hydraulic fluid entering through the intake port


30


by tooth spaces of the internal gear


26


of the first gear member


27


and those of the external gear


28


of the second gear member


29


, which is discharged to the first and second discharge ports


31


,


32


.




Hydraulic fluid discharged from the first discharge port


31


to the first discharge passage


36


is led to the main gallery


8


through the filter


7


, which is in turn supplied to the slide portions


9


for lubrication thereof. On the other hand, hydraulic fluid discharged from the second discharge port


32


to the second discharge passage


37


is led to the valve controller


19


through the filter


17


for operation thereof.




When the valve controller


19


is not operated, hydraulic fluid discharged from the second discharge port


32


of the hydraulic pump


23


to the second discharge passage


37


flows into the first discharge passage


36


through the communication passage


40


due to relief action of the relief valve


21


.




Thus, the first discharge passage


36


receives a predetermined flow Q


1


of hydraulic fluid discharged from the first discharge port


36


and a flow Qa of hydraulic fluid derived from the second discharge passage


37


through the communication passage


40


, i.e., a total flow Qt=Q


1


+Qa. It is noted that when the valve controller


19


is not operated, the flow Qa that the first discharge passage


36


receives through the second discharge passage


37


is substantially equal to a discharge capacity Q


2


of the second discharge port


32


, since an actuator of the valve controller


19


substantially constitutes a closed circuit.




As a result, hydraulic fluid supplied to the slide portions


9


through the first discharge passage


36


and the main gallery


8


amounts to Qt. It is understood that when the valve controller


19


is not operated, hydraulic fluid discharged from the second discharge port


32


to the second discharge passage


37


is led to the first discharge passage


36


, which means that all hydraulic fluid discharged from the hydraulic pump


23


is used effectively.




Moreover, due to effective use of all hydraulic fluid discharged through the first and second discharge ports


31


,


32


, the hydraulic pump


23


can be reduced in size.




When the valve controller


19


is operated, hydraulic fluid discharged from the second discharge port


32


serves to operate the valve controller


19


, which causes a temporary reduction in the flow of hydraulic fluid led to the first discharge passage


36


. However, this does not have a substantial influence on lubrication of the slide portions


9


, since the operation of the valve controller


19


is completed in a very short time, and the pressure within the first discharge passage


36


returns to a normal value in a short time.




Therefore, the hydraulic circuit can be obtained, which includes the hydraulic pump with saved power and reduced size.




Moreover, the filters


7


,


17


arranged in the first and second discharge passages


36


,


37


serve to filtrate hydraulic fluid, enabling a supply of clean hydraulic fluid to the slide portions


9


and the valve controller


19


.




Moreover, since the hydraulic pump


23


having two discharge ports


31


,


32


is in the form of an internal gear pump, wherein the second discharge port


32


is formed forwarder than the first discharge port


31


or the first and second gear members


27


,


29


, the second discharge port


32


receives higher pressure hydraulic fluid than the first discharge port


31


. This enables not only easy allocation of higher pressure hydraulic fluid to the second discharge passage


37


that requires the high pressure for operation of the valve controller


19


, but more power saving than when putting all hydraulic fluid discharged from the hydraulic pump


23


at a higher pressure.




Moreover, since the second discharge port


32


is formed forwarder than the first discharge port


31


as viewed in the direction of rotation of the hydraulic pump


23


, a pressure rise is faster within the first discharge port


31


than within the second discharge port


32


. That is, upon starting of the hydraulic pump


23


, the first discharge port


31


receives hydraulic fluid earlier than the second discharge port


32


. As a result, when restarting the internal combustion engine, hydraulic fluid is quickly supplied to the slide portions


9


through the first discharge port


31


for lubrication thereof. It is noted that since the valve controller


19


cannot be operated immediately after restarting of the internal combustion engine, a delayed supply of hydraulic fluid to the second discharge port


32


with respect to the first discharge port


31


causes no inconvenience.




Having described the present invention with regard to the preferred embodiments, it is noted that the present invention is not limited thereto, and various changes and modifications can be made without departing from the scope of the present invention. By way of example, in the second embodiment as shown in

FIGS. 2-3

, the hydraulic pump


23


may include an internal gear pump having a crescent between ring-like outer and inner rotors. Moreover, instead of the gear with a profile including a trochoidal curve, the first and second gear members


27


,


29


may be in the form of a gear with a profile including an involute curve or a sine curve, or in the form of a gear-like portion such as a roller.



Claims
  • 1. A hydraulic circuit for an internal combustion engine, comprising:first and second pumps; a main gallery providing hydraulic fluid to a portion of the internal combustion engine that requries lubrication; a first discharge passage receiving hydraulic fluid discharged from said first pump, said first discharge passage communicating with said main gallery; a valve controller actuated by receiving hydraulic fluid, said valve controller forming a closed circuit when said valve controller does not to operate; a second discharge passage receiving hydraulic fluid discharged from said second pump, said second discharge passage communicating with said valve controller; a communication passage ensuring communication between said first and second discharge passages; and a relief valve arranged with said communication passage, said relief valve being opened at a predetermined pressure in said second discharge passage.
  • 2. A hydraulic circuit as claimed in claim 1, wherein said first and second discharge passages are arranged with filters, respectively.
  • 3. A hydraulic circuit as claimed in claim 2, wherein said communication passage is connected to said first and second discharge passages on the upstream side of said filters.
  • 4. A hydraulic circuit as claimed in claim 1, wherein said first and second pumps are driven by the internal combustion engine.
  • 5. A hydraulic circuit as claimed in claim 1, wherein said relief valve responds to a working pressure which is greater than that required by said valve controller.
  • 6. A hydraulic circuit as claimed in claim 1, wherein said valve controller completes its operation in a very short time.
  • 7. A hydraulic circuit as claimed in claim 1, wherein said relief valve responds to a working pressure which is greater than that required by said valve controller.
  • 8. A hydraulic circuit for an internal combustion engine, comprising:a pump with first and second discharge ports; a main gallery providing hydraulic fluid to a portion of the internal combustion engine that requires lubrication; a first discharge passage receiving hydraulic fluid discharged through said first discharge port of said pump, said first discharge passage communicating with said main gallery; a valve controller actuated by receiving hydraulic fluid, said valve controller forming a closed circuit when said valve controller does not operate; a second discharge passage receiving hydraulic fluid discharged from said second discharge port, said second discharge passage communicating with said valve controller; a communication passage ensuring communication between said first and second discharge passages; and a relief valve arranged with said communication passage, said relief valve being opened at a predetermined pressure in said second discharge passage.
  • 9. A hydraulic circuit as claimed in claim 8, wherein said first and second discharge passages are arranged with filters, respectively.
  • 10. A hydraulic circuit as claimed in claim 9, wherein said communication passage is connected to said first and second discharge passages on the upstream side of said filters.
  • 11. A hydraulic circuit as claimed in claim 9, wherein said second port of said pump is formed forwarder than said first port of said pump as viewed in the direction of rotation of said pump.
  • 12. A hydraulic circuit as claimed in claim 9, wherein said pump includes an internal gear pump.
  • 13. A hydraulic circuit as claimed in claim 8, wherein said pump is driven by the internal combustion engine.
  • 14. A hydraulic circuit as claimed in claim 4, wherein said valve controller
Priority Claims (1)
Number Date Country Kind
10-219408 Aug 1998 JP
US Referenced Citations (13)
Number Name Date Kind
2643516 Carlson Jun 1953 A
3575000 Hufeld et al. Apr 1971 A
3945208 O'Connor Mar 1976 A
3975909 McBurnett Aug 1976 A
4023466 Strassheimer May 1977 A
4400938 Ohe Aug 1983 A
4516467 Keeney et al. May 1985 A
4635439 Wible Jan 1987 A
4779416 Chatterjea et al. Oct 1988 A
5148676 Moriya et al. Sep 1992 A
5547349 Kimura et al. Aug 1996 A
5615553 Lourigan Apr 1997 A
5950431 Oogushi Sep 1999 A
Foreign Referenced Citations (4)
Number Date Country
30 16 943 Nov 1981 DE
940 909 Nov 1963 GB
1 325 022 Aug 1973 GB
4-175431 Jun 1992 JP