The present invention relates to a hydraulic crane according to the preamble of claim 1.
In order to avoid overloading of a hydraulic crane, it is known to establish a maximum allowed value for the lifting moment of the crane, which takes into account the strength and stability of the crane. This maximum allowed value for the lifting moment of the crane is in the following denominated “lifting moment maximum value”. The lifting moment maximum value may be a fixed value or a variable value established in dependence on the swing-out angle of the inner boom of the crane and possibly further variables defining the prevailing position of the crane boom system of the crane. The lifting moment maximum value is normally converted into a corresponding value for the maximum allowed working pressure for the lifting cylinder of the crane, and by limiting this working pressure it is secured that the lifting moment of the crane will not exceed the maximum allowed lifting moment. An overload protection system of a hydraulic crane is normally configured to stop presently executed crane boom movements when the lifting moment of the crane has reached the lifting moment maximum value, wherein the overload protection system is configured to only allow such a stop to be directly followed by an execution of a crane boom movement which is expected to reduce the lifting radius of the crane. This is normally achieved in that certain directions of movement of individual crane booms are blocked by preventing individual hydraulic cylinders from moving in specific directions. An overload protection system of this kind is for instance previously known from GB 2 078 197 A.
The object of the present invention is to provide a new and favourable manner of implementing overload protection in a hydraulic crane.
According to the present invention, said object is achieved by means of a hydraulic crane having the features defined in claim 1.
The hydraulic crane according to the present invention comprises:
The electronic control device is configured, when it has established that the lifting moment of the crane has reached a limit value at a given level below the lifting moment maximum value, to prevent the execution of any combination of crane boom movements that would increase the horizontal distance between the load suspension point and said vertical axis of rotation and at the same time allow the execution of any combination of crane boom movements that keeps the horizontal distance between the load suspension point and said vertical axis of rotation unchanged or reduces the horizontal distance between the load suspension point and said vertical axis of rotation.
With the solution according to the present invention it will for instance be possible for the operator of the crane to move the load carried by the crane boom system directly vertically downwards from the position assumed by the load in a detected overload situation, and the crane operator may thereby put down the load at a spot on the ground or any other support surface directly vertically below said position without first having to move the load closer to the column of the crane, in contrast to a prior art overload protection system of the above-mentioned type where the crane operator has to move the load closer to the column of the crane after a stop caused by a detected overload situation.
An embodiment of the invention is characterized in:
Thus, by switching from the first operating mode to the second operating mode, it will be possible for the operator of the crane to utilize the full lifting capacity of the crane and thereby move the load a small horizontal distance further away from the column of the crane.
Further advantages as well as advantageous features of the hydraulic crane according to the invention will appear from the following description and the dependent claims.
The invention will in the following be more closely described by means of embodiment examples, with reference to the appended drawings. In the drawings:
In this description, the expression “liftable and lowerable crane boom” refers to a crane boom which can be pivoted in a vertical plane so as to thereby perform liftings and lowerings of a load carried by the crane. The expression “hydraulic cylinder for lifting and lowering the crane boom” here refers to the hydraulic cylinder which is associated with the liftable and lowerable crane boom and which carries out the pivoting thereof in a vertical plane.
The crane 1 comprises:
In the illustrated example, the lifting cylinder 12 comprises a cylinder part 12a which is articulately connected to the column 7, and a piston which is received in the cylinder part 12a and displaceable in relation to it, wherein the piston is fixed to a piston rod 12b which is articulately connected to the inner boom 11. The outer boom cylinder 14 comprises a cylinder part 14a which is articulately connected to the inner boom 11, and a piston which is received in the cylinder part 14a and displaceable in relation to it, wherein the piston is fixed a piston rod 14b which is articulately connected to the outer boom 13.
In the illustrated embodiment, the crane boom system 10 of the crane 1 is formed by the inner boom 11 and the outer boom 13 and the associated hydraulic cylinders. However, the crane boom system 10 of the crane 1 may also include more than two liftable and lowerable crane booms articulately connected to each other. As an example, a liftable and lowerable crane boom in the form of a so-called jib may be mounted to the outer end of the outer boom 13 to thereby make it possible to perform lifting operations requiring a greater range.
The outer boom 13 is telescopically extensible to enable an adjustment of the extension length L thereof. In the illustrated example, the outer boom 13 comprises one telescopic crane boom section 13b, which is slidably received in a base section 13a of the outer boom 13 and displaceable in the longitudinal direction of the base section 13a for adjustment of the extension length L of the outer boom 13. The telescopic crane boom section 13b is displaceable in relation to the base section 13a by means of a hydraulic cylinder 15 carried by the outer boom 13. In the illustrated example, this hydraulic cylinder 15 comprises a cylinder part 15a which is fixed to the base section 13a, and a piston which is received in the cylinder part 15a and displaceable in relation to it, wherein the piston is fixed to a piston rod 15b which is fixed to the telescopic crane boom section 13b. As an alternative, the outer boom 13 could comprise two or more telescopic crane boom sections 13b which are mutually slidable in relation to each other in the longitudinal direction of the outer boom 13 for adjustment of the extension length thereof.
In the illustrated embodiment, a rotator 16 is articulately fastened to a load suspension point P at the outer end of the outer boom 13, which rotator in its turn carries a lifting hook 17. In this case, the load to be carried by the crane 1 is fixed to the lifting hook 17, for instance by means of lifting wires or the similar. As an alternative, any other suitable type of lifting tool may be connected to the load suspension point P at the outer end of the crane boom system.
The control system for controlling the hydraulic cylinders 12, 14, 15 of the crane boom system 10 comprises a pump 20 (see
The crane 1 comprises a manoeuvring unit 24 (see
According to a first alternative, the electronic control device 25 is configured to control the crane boom movements on the basis of the control signals from the manoeuvring unit 24 and a calculation model for boom tip control. The calculation model may for instance be stored as an algorithm in a memory of the electronic control device 25. In the case of boom tip control, a first maneuvering member S1 may be used for controlling the rotation of the column 7 in relation to the crane base 6 about the vertical axis of rotation A1, a second maneuvering member S2 may be used for controlling the movement of the load suspension point P in the vertical direction and a third maneuvering member S3 may be used for controlling the movement of the load suspension point P in the horizontal direction. In the case of boom tip control, the manoeuvring unit 24 could as an alternative be provided with a joystick to be used for controlling the movement of the load suspension point P in the vertical and horizontal directions.
As an alternative to boom tip control, a first maneuvering member S1 may be used for controlling the rotation of the column 7 in relation to the crane base 6 about the vertical axis of rotation A1, a second maneuvering member S2 may be used for controlling the lifting cylinder 12, a third maneuvering member S3 may be used for controlling the outer boom cylinder 14 and a fourth maneuvering member S4 may be used for controlling the hydraulic cylinder 15.
Each individual directional-control-valve section 23 controls the magnitude and the direction of the flow of hydraulic fluid to a specific hydraulic cylinder 12, 14, 15 and thereby controls a specific crane function. For the sake of clarity, only the directional-control-valve section 23 for the lifting cylinder 12 is illustrated in
The directional-control-valve block 22 further comprises a shunt valve 26, which pumps excessive hydraulic fluid back to the reservoir 21, and an electrically controlled dump valve 27, which can be made to return the entire hydraulic flow from the pump 20 directly back to the reservoir 21.
In the illustrated example, the directional-control-valve block 22 is of load-sensing and pressure-compensating type, which implies that the magnitude of the hydraulic flow supplied to a hydraulic cylinder is always proportional to the position of the slide member in the corresponding directional-control-valve section 23. The directional-control-valve section 23 comprises a pressure limiter 28, a pressure compensator 29 and a directional-control-valve 30. Directional-control-valve blocks and directional-control-valve sections of this type are known and available on the market. Also other types of valve devices then the one here described may of course be used in a crane according to the present invention.
A load holding valve 31 is arranged between the respective hydraulic cylinder 12, 14, 15 and the associated directional-control-valve section 23, which load holding valve makes sure that the load will remain hanging when the hydraulic system runs out of pressure when the dump valve 27 is made to return the entire hydraulic flow from the pump 20 directly back to the reservoir 21.
Sensors 41, 42, 43, 44 (schematically illustrated in
In the example illustrated in
The swing-out angle α of the inner boom 11 may for instance be established by means of a sensor 41 which continuously senses the position of the piston rod 12b in relation to the cylinder part 12a of the lifting cylinder 12, whereas the swing-out angle β of the outer boom 13 may be established by means of a sensor 42 which continuously senses the position of the piston rod 14b in relation to the cylinder part 14a of the outer boom cylinder 14. The swing-out angle α is a function of the extension position of the piston rod 12b of the lifting cylinder 12, and the swing-out angle β is a function of the extension position of the piston rod 14b of the outer boom cylinder 14. Alternatively, these swing-out angles α, 13 could be established by means of suitable angle sensors, which directly sense the respective swing-out angle.
The extension length L of the outer boom 13 may for instance be established by means of a sensor 43 which continuously senses the position of the piston rod 15b in relation to the cylinder part 15a of the hydraulic cylinder 15. Alternatively, the extension length L could be established by means of a measuring device comprising an ultrasonic transmitter and an ultrasonic receiver of the type described in U.S. Pat. No. 5,877,693 A or by means of any other suitable measuring device.
The slewing angle θ of the column 7 in relation to the crane base 6 is established by means of a sensor 44 which continuously senses the slewing position of the column.
The electronic control device 25 is connected to the above-mentioned sensors 41, 42, 43, 44 in order to receive measuring signals from these sensors related to the swing-out angle α, the swing-out angle β, the extension length L and the slewing angle θ.
The electronic control device 25 is configured to prevent an execution of crane boom movements that would make the lifting moment of the crane 1 exceed a lifting moment maximum value Mmax representing a maximum allowed value for the lifting moment of the crane 1. When it has been established by the electronic control device 25 that the lifting moment of the crane 1 has reached a limit value Mlimit at a given level below the lifting moment maximum value Mmax, the electronic control device 25 is configured to prevent the execution of any combination of crane boom movements that would increase the lifting radius r (see
The position of the inner boom 11 and the outer boom 13 in a situation when the lifting moment of the crane 1 has reached the limit value Mlimit is illustrated by continuous lines in
The limit value Mlimit preferably corresponds to a predetermined percentage of the lifting moment maximum value Mmax. The limit value Mlimit may for instance lie within an interval corresponding to 95-99%, preferably 98-99%, of the lifting moment maximum value Mmax.
Two different operating modes, in the following denominated first and second operating modes, are with advantage provided for the electronic control device 25. In the first operating mode the electronic control device 25 is configured, when it has established that the lifting moment of the crane has reached the limit value Mlimit, to prevent the execution of any combination of crane boom movements that would increase the lifting radius r and allow the execution of any combination of crane boom movements that keeps the lifting radius r unchanged or reduces the lifting radius r and allow the execution of any combination of crane boom movements that keeps the lifting radius r unchanged or reduces the lifting radius r. In the second operating mode the electronic control device 25 is configured to stop presently executed crane boom movements when it has been established by the electronic control device 25 that the lifting moment of the crane has reached the lifting moment maximum value Mmax, and only allow such a stop to be followed by an execution of a combination of crane boom movements that reduces the lifting radius r. In this case, the crane 1 comprises switching means, for instance in the form of a maneuvering member S6 on the manoeuvring unit 24, by means of which the crane operator may switch from the first operating mode to the second operating mode. The lifting radius r that may be reached in the first operating mode is indicated as rlimit in
The electronic control device 25 is with advantage, in a conventional manner, adapted to convert the prevailing limit value Mlimit and lifting moment maximum value Mmax, respectively, into a corresponding value for the maximum allowed working pressure for the lifting cylinder 12. In the embodiment illustrated in
In the example described above, the electronic control device 25 is configured to let the maximum allowed working pressure for the lifting cylinder 12 represent the maximum allowed hydraulic pressure on the piston side of the lifting cylinder. However, the electronic control device 25 could alternatively be configured to let the maximum allowed working pressure for the lifting cylinder 12 represent the maximum allowed differential pressure in the lifting cylinder. This differential pressure is defined as the hydraulic pressure on the piston side of the lifting cylinder minus the hydraulic pressure on its piston rod side divided by the cylinder ratio. In the last-mentioned case, the electronic control device 25 is also arranged to receive measuring signals from a pressure sensor which measures the hydraulic pressure on the piston rod side of the lifting cylinder 12 so as to thereby be able to establish the prevailing differential pressure of the lifting cylinder and compare this differential pressure with the established value of the maximum allowed working pressure for the lifting cylinder. The expression “working pressure” as used in this description consequently refers either to the hydraulic pressure on the piston side of a hydraulic cylinder or the differential pressure in a hydraulic cylinder.
The electronic control device 25 may be implemented by one single electronic control unit, as illustrated in
The invention is of course not in any way limited to the embodiments described above. On the contrary, several possibilities to modifications thereof should be apparent to a person skilled in the art without thereby deviating from the basic idea of the invention as defined in the appended claims. The control system of the crane may for instance have another design than the control system which is illustrated in
Number | Date | Country | Kind |
---|---|---|---|
16166896.7 | Apr 2016 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/059323 | 4/20/2017 | WO | 00 |