The present invention relates to a hydraulic crane according to the description herein.
A hydraulic crane, for instance in the form of a lorry crane or forestry crane, normally comprises a column, which is rotatable about a vertical axis of rotation, and a crane boom system, which is mounted to the column and which is intended to carry a load in a load suspension point at an outer end of the crane boom system, wherein the crane boom system comprises two or more liftable and lowerable crane booms which form a connection between the load suspension point and the column and which are articulately connected to each other. The crane also comprises a manoeuvring unit with one or more maneuvering members configured to be manoeuvrable by a crane operator in order to control the crane boom movements. In order to facilitate for the operator to control the position of the load suspension point in an accurate manner, the control of the crane boom movements is with advantage based on so-called boom tip control. In the case of boom tip control, a first maneuvering member may be used for controlling the rotation of the column, a second maneuvering member may be used for controlling the movement of the load suspension point in a vertical direction in order to control the height of the load suspension point and a third maneuvering member may be used for controlling the movement of the load suspension point in a horizontal direction in order to control the lifting radius. The manoeuvring unit could as an alternative be provided with a maneuvering member in the form of a joystick to be used for controlling the movement of the load suspension point in the vertical and horizontal directions. In connection with boom tip control, the individual movements of the crane booms of the crane boom system are regulated by an electronic control device based on control signals from the manoeuvring unit and a calculation model for boom tip control, wherein the calculation model is established by the crane manufacturer in accordance with a given control strategy. Thus, when boom tip control is used, the crane operator has no direct control over the positioning of the individual crane booms. On the contrary, the electronic control device calculates how the individual crane booms should be moved in order to make the load suspension point follow the trajectory specified by the crane operator via the manoeuvring unit.
The load suspension point of an ordinary lorry crane may be provided at the outer end of a crane boom in the form of a so-called outer boom, which is telescopically extensible and articulately connected to another crane boom in the form of a so-called inner boom, wherein the inner boom in its turn is articulately connected to the rotatable column of the crane. When a crane operator controls such a crane based on boom tip control, the crane operator normally has his attention directed to the load suspension point at the outer end of the outer boom and is not always aware of the prevailing position and the coming movements of the inner boom, which implies that there is a risk for the inner boom to collide with the driver's cab of the lorry or any other obstacle within the working area of the crane.
The object of the present invention is to provide a solution to the above-mentioned problem.
According to the present invention, said object is achieved by a hydraulic crane having the features defined herein.
The hydraulic crane according to the present invention comprises:
Hereby, the first crane boom is automatically prevented from colliding with the obstacle without affecting the desired movement of the load suspension point ordered by the crane operator, and the crane operator may thereby keep his attention directed to the load suspension point at the outer end of the crane boom system without jeopardizing the safety of the crane.
Further advantages as well as advantageous features of the hydraulic crane according to the invention will appear from the following description.
The invention will in the following be more closely described by means of embodiment examples, with reference to the appended drawings. In the drawings:
In this description, the expression “liftable and lowerable crane boom” refers to a crane boom which can be pivoted in a vertical plane so as to thereby perform liftings and lowerings of a load carried by the crane. The expression “hydraulic cylinder for lifting and lowering the crane boom” here refers to the hydraulic cylinder which is associated with the liftable and lowerable crane boom and which carries out the pivoting thereof in a vertical plane.
The crane 1 comprises:
In the illustrated example, the lifting cylinder 12 comprises a cylinder part 12a which is articulately connected to the column 7, and a piston which is received in the cylinder part 12a and displaceable in relation to it, wherein the piston is fixed to a piston rod 12b which is articulately connected to the inner boom 11. The outer boom cylinder 14 comprises a cylinder part 14a which is articulately connected to the inner boom 11, and a piston which is received in the cylinder part 14a and displaceable in relation to it, wherein the piston is fixed a piston rod 14b which is articulately connected to the outer boom 13.
In the illustrated embodiment, the crane boom system 10 of the crane 1 is formed by the inner boom 11 and the outer boom 13 and the associated hydraulic cylinders. However, the crane boom system 10 of the crane 1 may also include more than two liftable and lowerable crane booms articulately connected to each other. As an example, a liftable and lowerable crane boom in the form of a so-called jib may be mounted to the outer end of the outer boom 13 to thereby make it possible to perform lifting operations requiring a greater range.
The outer boom 13 is telescopically extensible to enable an adjustment of the extension length L thereof. In the illustrated example, the outer boom 13 comprises one telescopic crane boom section 13b, which is slidably received in a base section 13a of the outer boom 13 and displaceable in the longitudinal direction of the base section 13a for adjustment of the extension length L of the outer boom 13. The telescopic crane boom section 13b is displaceable in relation to the base section 13a by means of a hydraulic cylinder 15 carried by the outer boom 13. In the illustrated example, this hydraulic cylinder 15 comprises a cylinder part 15a which is fixed to the base section 13a, and a piston which is received in the cylinder part 15a and displaceable in relation to it, wherein the piston is fixed to a piston rod 15b which is fixed to the telescopic crane boom section 13b. As an alternative, the outer boom 13 could comprise two or more telescopic crane boom sections 13b which are mutually slidable in relation to each other in the longitudinal direction of the outer boom 13 for adjustment of the extension length thereof.
In the illustrated embodiment, a rotator 16 is articulately fastened to a load suspension point P at the outer end of the outer boom 13, which rotator in its turn carries a lifting hook 17. In this case, the load to be carried by the crane 1 is fixed to the lifting hook 17, for instance by means of lifting wires or the similar.
The control system for controlling the hydraulic cylinders 12, 14, 15 of the crane boom system 10 comprises a pump 20 (see
The crane 1 comprises a manoeuvring unit 24 (see
The electronic control device 25 is configured to control the crane boom movements on the basis of the control signals from the manoeuvring unit 24 and a calculation model for boom tip control. The calculation model may for instance be stored as an algorithm in a memory of the electronic control device 25. A first maneuvering member S1 may be used for controlling the rotation of the column 7 in relation to the crane base 6 about the vertical axis of rotation A1, a second maneuvering member S2 may be used for controlling the movement of the load suspension point P in a vertical direction in order to control the height of the load suspension point P and a third maneuvering member S3 may be used for controlling the movement of the load suspension point P in a horizontal direction in order to control the lifting radius, i.e. the horizontal distance between the load suspension point P and the vertical axis of rotation A1. The manoeuvring unit 24 could as an alternative be provided with a maneuvering member in the form of a joystick to be used for controlling the movement of the load suspension point P in the vertical and horizontal directions.
Each individual directional-control-valve section 23 controls the magnitude and the direction of the flow of hydraulic fluid to a specific hydraulic cylinder 12, 14, 15 and thereby controls a specific crane function. For the sake of clarity, only the directional-control-valve section 23 for the lifting cylinder 12 is illustrated in
The directional-control-valve block 22 further comprises a shunt valve 26, which pumps excessive hydraulic fluid back to the reservoir 21, and an electrically controlled dump valve 27, which can be made to return the entire hydraulic flow from the pump 20 directly back to the reservoir 21.
In the illustrated example, the directional-control-valve block 22 is of load-sensing and pressure-compensating type, which implies that the magnitude of the hydraulic flow supplied to a hydraulic cylinder is always proportional to the position of the slide member in the corresponding directional-control-valve section 23. The directional-control-valve section 23 comprises a pressure limiter 28, a pressure compensator 29 and a directional-control-valve 30. Directional-control-valve blocks and directional-control-valve sections of this type are known and available on the market. Also other types of valve devices then the one here described may of course be used in a crane according to the present invention.
A load holding valve 31 is arranged between the respective hydraulic cylinder 12, 14, 15 and the associated directional-control-valve section 23, which load holding valve makes sure that the load will remain hanging when the hydraulic system runs out of pressure when the dump valve 27 is made to return the entire hydraulic flow from the pump 20 directly back to the reservoir 21.
Sensors 41, 42, 43, 44 (schematically illustrated in
In the example illustrated in
The angle of inclination α of the inner boom 11 may for instance be established by means of a sensor 41 which continuously senses the position of the piston rod 12b in relation to the cylinder part 12a of the lifting cylinder 12, whereas the angle of inclination β of the outer boom 13 may be established by means of a sensor 42 which continuously senses the position of the piston rod 14b in relation to the cylinder part 14a of the outer boom cylinder 14. The angle of inclination α is a function of the extension position of the piston rod 12b of the lifting cylinder 12, and the angle of inclination β is a function of the extension position of the piston rod 14b of the outer boom cylinder 14. Alternatively, these angles of inclination α, β could be established by means of suitable angle sensors, which directly sense the respective angle of inclination.
The extension length L of the outer boom 13 may for instance be established by means of a sensor 43 which continuously senses the position of the piston rod 15b in relation to the cylinder part 15a of the hydraulic cylinder 15. Alternatively, the extension length L could be established by means of a measuring device comprising an ultrasonic transmitter and an ultrasonic receiver of the type described in U.S. Pat. No. 5,877,693 A or by means of any other suitable measuring device.
The slewing angle θ of the column 7 in relation to the crane base 6 is established by means of a sensor 44 which continuously senses the slewing position of the column.
The electronic control device 25 is connected to the above-mentioned sensors 41, 42, 43, 44 in order to receive measuring signals from these sensors related to the angles of inclination α, R, the extension length L and the slewing angle θ.
Two different control modes, in the following denominated first and second control modes, are provided for the electronic control device 25. In the first control mode the electronic control device 25 is configured to make the load suspension point P move along a trajectory defined by the above-mentioned control signals from the manoeuvring unit 24 while controlling the crane boom movements in accordance with an ordinary control strategy. The ordinary control strategy may be focused on the optimization of the lifting capacity of the crane 1, in which case the electronic control device 25 is configured to make the crane booms 11, 13 move into positions which will give as high lifting capacity as possible in each position assumed by the load suspension point P. As a further alternative, the ordinary control strategy may be focused on the minimization of the energy consumption of the crane 1, in which case the electronic control device 25 is configured to effect crane boom movements which will give the lowest possible energy consumption. The ordinary control strategy may also be based on other criteria.
The electronic control device 25 is configured to switch from the first control mode into the second control mode when it is established by the electronic control device 25 that the inner boom 11 is about to interfere with a predefined safety zone associated with a known obstacle 18 or about to interfere with an obstacle detected by means of one or more sensors 45 (schematically illustrated in
In the second control mode, the electronic control device 25 is configured to make the load suspension point P move along the trajectory defined by the above-mentioned control signals from the manoeuvring unit 24 while controlling the crane boom movements in accordance with an auxiliary control strategy in which the first crane boom 11 is prevented from interfering with the safety zone or the detected obstacle. The auxiliary control strategy is mainly focused on the positioning of the inner boom 11 in safe positions in relation to a known or detected obstacle within the working area of the crane 1.
The electronic control device 25 may be configured to also take into account the position of the outer boom 13 in relation to the safety zone or the detected obstacle in order to automatically prevent also the outer boom 13 from interfering with the safety zone or the detected obstacle.
The safety zone is preferably defined as a set of limit values Vαlimit for the angle of inclination α of the inner boom 11, wherein each limit value Vαlimit of the set of limit values is associated with a given slewing angle θ of the column 7 and represents a limit for the allowed inclination of the inner boom 11 in a vertical plane downwards or upwards at the associated slewing angle θ of the column 7.
The electronic control device 25 is configured to stop presently executed crane boom movements when it has been established by the electronic control device that the crane booms 11, 13 of the crane boom system 10 cannot be positioned to move the load suspension point P along the trajectory defined by said control signals without the inner boom 11 interfering with the safety zone or the detected obstacle.
The electronic control device 25 is also, in a conventional manner, configured to prevent an execution of crane boom movements that would make the lifting moment of the crane 1 exceed a lifting moment maximum value Mmax representing a maximum allowed value for the lifting moment of the crane 1. The electronic control device 25 is with advantage, in a conventional manner, adapted to convert the lifting moment maximum value Mmax into a corresponding value for the maximum allowed working pressure for the lifting cylinder 12. In the embodiment illustrated in
In the embodiment illustrated in
The electronic control device 25 may be implemented by one single electronic control unit, as illustrated in
The invention is of course not in any way limited to the embodiments described above. On the contrary, several possibilities to modifications thereof should be apparent to a person skilled in the art without thereby deviating from the basic idea of the invention as defined in the appended claims. The control system of the crane may for instance have another design than the control system which is illustrated in
Number | Date | Country | Kind |
---|---|---|---|
16174121 | Jun 2016 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/061889 | 5/17/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/215876 | 12/21/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3554317 | Birbanescu | Jan 1971 | A |
8684437 | Collins | Apr 2014 | B1 |
20040164042 | Schneider | Aug 2004 | A1 |
20060045661 | Andersson | Mar 2006 | A1 |
20150161872 | Beaulieu | Jun 2015 | A1 |
20150289449 | Greer | Oct 2015 | A1 |
20160176686 | Schoonmaker | Jun 2016 | A1 |
20180170719 | Tasch | Jun 2018 | A1 |
20180292223 | Leach | Oct 2018 | A1 |
20190241408 | Strahl | Aug 2019 | A1 |
20190308851 | Gustafsson | Oct 2019 | A1 |
Number | Date | Country |
---|---|---|
201358142 | Dec 2009 | CN |
2012028032 | Mar 2012 | WO |
2015113084 | Aug 2015 | WO |
Number | Date | Country | |
---|---|---|---|
20190308851 A1 | Oct 2019 | US |