The present disclosure relates generally to hydraulic cylinders and, more particularly, relates to health monitoring and remaining component life for hydraulic cylinders.
Many heavy equipment machines, such as those used in the construction, agriculture, earth-moving, oil extraction, and mining industries, include hydraulic circuits that utilize hydraulic cylinders. For example, such heavy equipment machines can include implements that are operated through the use of hydraulic cylinders or actuators. The continuous use of the hydraulic cylinders during operation of the heavy equipment machine can cause wear over time. It is desirable to detect the health of the hydraulic cylinder in order to schedule maintenance and plan for machine inoperability.
Some prior techniques required physically connecting a pressure gauge to the hydraulic system of a machine, when the heavy equipment machine is stopped and the fluid in the hydraulic system is not pressurized, in order to detect the health of the hydraulic cylinder. While effective, this technique presented challenges when the hydraulic cylinder was positioned in a location that was difficult to access.
In efforts to reduce down time of the heavy equipment machines during health detection, some more current techniques collect data from hydraulic devices while in the field. For example, U.S. Pat. No. 7,120,523 ('523 patent) discloses the utilization of operating parameters of hydraulic cylinders for predicting service intervals. While the '523 patent monitors piston travel distance, pressure and temperature of the working fluid, the monitoring of additional parameters of the hydraulic cylinders can provide more accurate and real-time measurements. Accordingly, improvements in the monitoring of hydraulic cylinder health, performance, and remaining useful life continue to be sought.
In accordance with an aspect of the disclosure, a system for monitoring a hydraulic cylinder is provided. The hydraulic cylinder includes a cylinder barrel. A piston is movably disposed in the cylinder barrel and separates the cylinder into a head space and a rod space. At least one seal is associated with the piston. A pressure sensor is disposed in the head space or any connected space between the cylinder head space and the hydraulic control valve and is configured to monitor pressure of a hydraulic fluid in the head space. A pressure sensor is disposed in the rod space or any connected space between the cylinder rod space and the hydraulic control valve and is configured to monitor pressure of a fluid in the rod space. A displacement sensor is disposed in the barrel and is configured to monitor the position of the piston. A temperature sensor is disposed in the barrel or any connected space in the hydraulic system and is configured to monitor the temperature of the fluid. An electronic control unit including an algorithm is in communication with the head end sensor, the rod end sensor, the displacement sensor and the temperature sensor. The algorithm of the electronic control unit is programmed to: responsive to receiving pressure signals from the head end and rod end pressure sensors, a piston position signal for the displacement sensor, and a temperature signal from the temperature sensor determine a wear volume of the at least one seal; and compare the wear volume of the at least one seal to a predetermined threshold wear volume of the at least one seal to determine the remaining useful life of the hydraulic cylinder.
In accordance with another aspect of the disclosure, a system for wirelessly communicating health and remaining useful life of a hydraulic cylinder is provided. The system includes a machine including a hydraulic system. A hydraulic circuit is operatively coupled to the hydraulic system. A hydraulic cylinder is fluidly coupled to the hydraulic circuit. A piston is movably disposed in the hydraulic cylinder. At least one seal is associated with the piston. An electronic control unit including an algorithm is in communication with the hydraulic circuit and the hydraulic cylinder. The algorithm of the electronic control unit is programmed to: determine the remaining useful life of the hydraulic cylinder based on comparing a wear volume of the at least one seal to a predetermined threshold wear volume of the at least one seal; and responsive to determining the remaining useful life of the hydraulic cylinder, wirelessly transmit the remaining useful life of the hydraulic cylinder.
In accordance with yet another aspect of the disclosure, a method for monitoring health and remaining useful life of a hydraulic cylinder is provided. The method includes monitoring pressure of hydraulic fluid disposed in a head end and rod end of the hydraulic cylinder, monitoring a position of a piston disposed in the hydraulic cylinder and monitoring temperature of hydraulic fluid disposed in the hydraulic cylinder. The method further includes determining a wear volume of at least one seal associated with the piston of the hydraulic cylinder calculated from the pressure of the head end and rod end fluids, the piston position and the temperature of the fluid. Additionally, the method includes comparing the wear volume of the at least one seal to a predetermined threshold wear volume of the at least one seal to determine the remaining useful life of the hydraulic cylinder; comparing the remaining useful life of the hydraulic cylinder with a predetermined remaining useful life threshold; and displaying an alert responsive to determining the remaining useful life of the hydraulic cylinder is less than the predetermined remaining useful life threshold.
These and other aspects and features of the present disclosure will be more readily understood upon reading the following detailed description when taken in conjunction with the accompanying drawings. Aspects of different embodiments herein described can be combined with or substituted by one another.
It is to be noted that the appended drawings illustrate only typical embodiments and are therefore not to be considered limiting with respect to the scope of the disclosure or claims. Rather, the concepts of the present disclosure may apply within other equally effective embodiments. Moreover, the drawings are not necessarily to scale, emphasis generally being placed upon illustrating the principles of certain embodiments.
Referring now to
In operation, the piston 12 is caused to move one direction or the other within the barrel 16 in order to perform useful work depending on the machinery to which the cylinder 10 is attached. The piston 12 is caused to move by introduction and evacuation of hydraulic fluid from the head space 24 and rod space 26. More specifically, it will be noted that a first port 32 is in communication with the head space 24 and a second port 34 is in communication with the rod space 26. Pressurized hydraulic fluid provided by a hydraulic piston pump, accumulator, or the like is in communication with the ports 32 and 34 and enables ingress and egress of hydraulic fluid to both. In so doing, if hydraulic fluid is introduced to the head space 24 and removed from the rod space 26, the piston 12 is caused to move to the right (in
A hydraulic circuit 36 may thus be configured to pump or otherwise transport the hydraulic fluid from hydraulic circuit 36 into the head space 24 and rod space 26 of the hydraulic cylinder 10 via the ports 32, 34. In some embodiments, a valve 38 is configured as a two-position, one-way valve including an open position and a closed position to assist in doing so. When the valve 38 is selectively moved to the closed position, the valve 38 is capable of removing fluid from the head space 28 and introducing the hydraulic fluid into the rod space 26. On the other hand, when the valve 38 is selectively moved to the open position, the hydraulic fluid is caused to leave the rod space 26 and enter the head space 24. As a result, during operation the fluid levels within the head space 24 and rod space 26 may each be increased or decreased to define an operational travel range 40 of the piston 12. As used herein, the operational travel range 40 refers to the desired travel displacement of the piston 12 during operation of the hydraulic cylinder 10.
Furthermore, the head end pressure sensor 44, the rod end pressure sensor 46, the displacement sensor 48, and the temperature sensor 50 are all in communication with an electronic control unit 52. The electronic control unit 52 is configured to receive and process a head end pressure signal 54 and a rod end pressure signal 55 from the head end pressure sensor 44 and the rod end pressure sensor 46, respectively. Additionally, the electronic control unit 52 is configured to receive and process a piston position signal 56 and a temperature signal 58 from the displacement sensor 48 and temperature sensor 50, respectively. Alternatively, if a machine linkage sensor 51 is used, the electronic control unit would be configured to receive and process a machine linkage signal 59 from the machine linkage sensor 51. The monitoring system 42 is a dynamic system such that the electronic control unit 52 is configured to monitor current status, operation, performance, health, and remaining useful life of the hydraulic cylinder 10 via, in part, dynamic, real-time feedback of the pressure signals 54, 55 and the position, temperature or machine linkage signals 56, 58, 59. The electronic control unit 52 of the monitoring system 42 is configured to, in response to receiving and processing pressure signals 54, 55 and the position, temperature or machine linkage signals 56, 58, 59 determine the health and remaining useful life of the hydraulic cylinder 10. As discussed in more detail below, in an embodiment, an algorithm inside the electronic control unit 52 is programmed to collect, store, analyze and perform other such functions on the data collected in order to help monitor the overall health and remaining useful life of the hydraulic cylinder 10.
In particular, the electronic control unit 52 is configured to calculate the wear volume W of one or all seals, namely piston seal 28, rod seal 30 and wiper 31, which is a factor in measuring and determining the life of the hydraulic cylinder 10. As a method of computation, it may be useful to target on the leakage failure due to the seal failure, including wiper, rod seal, and the piston seal. If one of wiper, rod seal, or piston seal fails, the cylinder will be categorized as a seal failure, and required service will be performed.
The volume of the material removed (W) is proportional to the sliding distance (S), the normal pressure (Pn) and the dimensionless wear coefficient (k), and inversely proportional to the hardness of the surface being worn away (H).
Assume that
The pressure at rod end and head end may be measured through pressure sensors, the travel displacement may be measured through a displacement sensor, and the velocity may be measured through a sensor or calculated based upon displacement sensor values.
P
n=1 (no pressure to the wiper)
Pn=Pre
P
n
=|P
he
−P
re|
The volume of wear may be expressed as follows:
The volume of seal wear:
During operation of the hydraulic cylinder 10 in the field, the electronic control unit 52 of the monitoring system 42 monitors and receives in real-time the pressure signals 54, 55 and the position and temperature signals 56, 58 (or machine linkage signal 59) to calculate the wear volume W of the at least one seal 28, 30, 31, of the hydraulic cylinder 10. The electronic control unit 52 calculates the wear volume W via the following equation:
Outputs from the Practical/Machine Data
Total cylinder travel/wiper Wwiper=Σ(W0, W90, Wp, Wp_90)
Total Product of wear for Rod seal Wrod=Σ(W0_rod, W90_rod, Wp_rod, Wp_rod_90)
Total Product of wear for Piston Seal Wpiston=Σ(W0_piston, W90_piston, Wp_piston, Wp_piston_90)
Wtotal for wiper, rod seal, or the piston seal can be defined thru the lab test/seal test (qualification/endurance test)
Additionally or alternatively, in some embodiments, the electronic control unit 52 of the monitoring system 42 processes and incorporates the results of the at least one seal 28, 30, 31 Stribeck diagram. In some embodiments, the Stribeck diagram of the at least one seal 26 may take into account that the normal pressure and force to the at least one seal 28, 30, 31 will not be the same with different seal velocities. A theoretical Stribeck diagram 60 is illustrated
Further, the algorithm inside the electronic control unit 52 is programmed or otherwise configured to compare a predetermined remaining useful life threshold RULthreshold value stored on the electronic control unit 52 with the calculated remaining useful life RUL in order to monitor the health of the hydraulic cylinder 10. The electronic control unit 52 is configured to display the calculated remaining useful life RUL, via a display 64 (shown in
The processor 68 includes a local memory 70 and is in communication with a main memory including a read-only memory 72 and a random access memory 74 via a bus 76. The random access memory 74 may be implemented by Synchronous Dynamic Random Access Memory (SDRAM), Dynamic Random Access Memory (DRAM), RAMBUS Dynamic Random Access Memory (RDRAM) and/or any other type of random access memory device. The read-only memory 72 may be implemented by a hard drive, flash memory and/or any other desired type of memory device.
The computing device 66 may also include an interface circuit 78. The interface circuit 78 may be implemented by any type of interface standard, such as, for example, an Ethernet interface, a universal serial bus (USB), and/or a PCI express interface. One or more input devices 80 are connected to the interface circuit 78 via the bus 76. The input device(s) 80 permit an operator to enter data and commands into the processor 68. The input device(s) 80 may be implemented by, for example, a joystick, a keyboard, a keypad, a touch screen, a mouse, a track-pad, a trackball, and/or a voice recognition system. For example, the input device(s) 80 may include any wired or wireless device for providing input.
A visual display, such as display 64, is also connected to the interface circuit 78 via the bus 76. The display 64 may be implemented by, for example, one or snore display devices for associated data (e.g., a liquid crystal display, a cathode ray tube display (CRT), etc.).
Further, the computing device 66 may include one or more network transceivers 82 for connecting to a network 84, such as the Internet, a WLAN, a LAN, a personal network a satellite network, or any other network for connecting the computing device 66 to one or more other computers or network capable devices. As such, the computing device 66 may be utilized to notify or alert other computing devices of the remaining useful life of the hydraulic cylinder 10.
In some embodiments, the computing device 66 is used to execute machine readable instructions. For example, the computing device 66 may execute machine readable instructions to perform the sample sequence illustrated in flowchart 700 in
Furthermore, in the exemplary embodiment illustrated in
With the display 64 disposed in the cab 96 of the machine 86, the electronic control unit 52 displays the calculated remaining useful life RUL in a manner that visually contrasts it with the predetermined remaining useful life threshold RULthreshold value. In addition, responsive to determining that the remaining useful life RUL is less than the predetermined remaining useful life threshold RULthreshold, the electronic control unit 52 outputs the alert or notification to the display 64 indicating that the hydraulic circuit 36 requires maintenance. Moreover, responsive to determining that the hydraulic circuit 36 requires shut down to prevent any negative effects, the electronic control unit 52 is configured to shut down the hydraulic circuit 36. In addition to alerting and notifying an operator in the cab 96, the monitoring system 42 is configured to wirelessly transmit, via the network 84, alerts and notifications to other machines within a fleet of machines at a worksite or otherwise, to a monitoring service center 98, and to any other computing device.
In general, the present disclosure may find applicability with monitoring systems for hydraulic cylinders utilized in machines for construction, agriculture, earth-moving, oil extraction, and mining industries. By utilizing the systems and methods disclosed herein, the monitoring system 42 monitors the current status, operation, and performance of the at least one seal 28, 30, 31 of the hydraulic cylinder 10 via, in part, dynamic, real-time feedback of the pressure signals 54, 55 and the position, temperature or machine linkage signals 56, 58, 59 to determine and display the health and remaining useful life of the hydraulic cylinder 10. As a result, the electronic control unit 52 of the monitoring system 42 can output alerts and/or shut down the hydraulic circuit 36 to prevent any negative effects on the hydraulic circuit 36 and/or other components of the machine 86. Moreover, the electronic control unit 52 of the monitoring system 42 can transmit, via the network 84, the dynamic, real-time feedback to other machines within the fleet or to a monitoring service center 98, as well as, transmit alerts and notifications related to the hydraulic cylinder 10.
In operation, the electronic control unit 52 monitors the dynamic, real-time health and performance of the at least one seal 28, 30, 31 via the head end and rod end pressure signals 54, 55 received from head end pressure sensor 44 and the rod end sensor 46, the position and temperature signals 56, 58 received from the position sensor 48, and the temperature sensor 50 (or, in the alternative embodiment referenced above, the machine linkage signal 59 from machine linkage sensor 51). In particular, responsive to receiving the signals 54, 55, 56, 58, 59 the electronic control unit 52 calculates the wear volume W of the at least one seal 28, 30, 31 of the hydraulic cylinder 10. With the wear volume W calculated, the electronic control unit 52 determines the remaining useful life RUL of the hydraulic cylinder 10 by comparing the wear volume W with the predetermined threshold wear volume WPT that is stored in the electronic control unit 52.
The electronic control unit 52 then outputs the remaining useful life RUL to the display 64 in such a manner that visually contrasts it with the predetermined remaining useful life threshold RULthreshold value stored on the electronic control unit 52. Moreover, the electronic control unit 52 also can output for display, via the network 84, the remaining useful life RUL in a similar manner to other machines within the fleet or to the monitoring service center 98. Further, the electronic control unit 52 compares the remaining useful life RUL to the predetermined remaining useful life threshold RULthreshold value to determine whether the remaining useful life RUL is less than the predetermined useful life threshold RULthreshold. If the electronic control unit 52 determines this is true, then it outputs an alert or notification indicating that the hydraulic cylinder 10 requires maintenance. The alert or notification can be output to the display 64, another machine in the fleet, and/or to the monitoring service center 98.
The block 718 depicts the electronic control unit 52 comparing the remaining useful life RUL of the hydraulic cylinder 10 with the predetermined remaining useful life threshold RULthreshold value stored in the electronic control unit 52. As depicted in decision block 720, the electronic control unit 52 determines whether the remaining useful life RUL of the hydraulic cylinder 10 is less than the predetermined remaining useful life threshold RULthreshold value. If the electronic control unit 52 determines that the remaining useful life RUL of the hydraulic cylinder 10 is not less than the predetermined remaining useful life threshold RULthreshold value, then monitoring continues as shown by the return arrow to block 710. On the other hand, as illustrated in block 722, if the remaining useful life RUL of the hydraulic cylinder 10 is less than the predetermined remaining useful life threshold RULthreshold value, then the electronic control unit 52 displays the alert or notification to the display 64 and/or similarly to other machines 86 within the fleet or to the monitoring service center 98.
As depicted in decision block 724, the electronic control unit 52 determines whether the remaining useful life RUL of the hydraulic cylinder 10 is well below the predetermined remaining useful life threshold RULthreshold value to require shut down of the hydraulic circuit 36. If no, then the electronic control unit 52 continues monitoring as depicted by the return arrow to block 710. If yes, the electronic control unit 52, responsive to this determination, shut downs the hydraulic circuit 36, as depicted in block 726.