This patent disclosure relates generally to pumps and, more particularly, to cryogenic fuel pumps for mobile applications.
Many large mobile machines such as mining trucks, locomotives, marine applications and the like have recently begun using alternative fuels, alone or in conjunction with traditional fuels, to power their engines. For example, large displacement engines may use a gaseous fuel, alone or in combination with a traditional fuel such as diesel, to operate. Because of their relatively low densities, gaseous fuels, for example, natural gas or petroleum gas, are carried onboard vehicles in liquid form. These liquids, the most common including liquefied natural gas (LNG) or liquefied petroleum gas (LPG), can be cryogenically stored in insulated tanks on the vehicles, or may alternatively be stored at an elevated pressure, for example, a pressure between 30 and 300 psi in a pressurized vessel. In either case, the stored fuel can be pumped, evaporated, expanded, or otherwise placed in a gaseous form in metered amounts and provided to fuel the engine.
The pumps that are typically used to deliver the LNG to the engine of the machine include pistons, which deliver the LNG to the engine. For example, while LNG may be stored at a pressure of about 300 psi, CNG for use by the engine may be provided at about 20.7 MPa. Such piston pumps, which are sometimes also referred to as cryogenic pumps, will often include a single piston that is reciprocally mounted in a cylinder bore. The piston is moved back and forth in the cylinder to draw in and then compress the gas. Power to move the piston may be provided by different means, the most common being electrical, mechanical or hydraulic power.
One example of a cryogenic pump can be found in U.S. Pat. No. 7,293,418 (the '418 patent), which describes a cryogenic, single-element pump for use in a vehicle. The pump discharges into an accumulator that is located within the tank, and uses a single piston pump that is connected to a drive section via a piston rod. The drive section is disposed outside of the tank.
The present disclosure is generally directed to a hydraulically driven cryogenic pump comprising multiple pumping elements. Each of the pumping elements is sequentially actuated by a hydraulic distributor.
The disclosure, therefore, describes, in one aspect, a pump. The pump includes a pump body, a first pumping element and a second pumping element. Each of the first and second pumping elements is independently actuatable to perform a pumping stroke that delivers a pumped amount of fluid at a pump discharge, and includes a piston slidably disposed to reciprocate within a cylinder and defining a head-end volume and a rod-end volume on either side of the piston within the pump body. A first head-end passage is formed in the pump body, is fluidly connected with the head-end volume of the piston of the first pumping element, and forms a first head-end opening. A second head-end passage is formed in the pump body, is fluidly connected with the head-end volume of the piston of the second pumping element, and forms a second head-end opening. A first rod-end passage is formed in the pump body, is fluidly connected with the rod-end volume of the piston of the first pumping element, and forms a first rod-end opening. A second rod-end passage is formed in the pump body, is fluidly connected with the rod-end volume of the piston of the second pumping element, and forms a second rod-end opening. A high-pressure fluid inlet is formed in the pump body and forms a high-pressure inlet opening, and a drain outlet is formed in the pump body and forms a drain opening. A rotor is rotatably disposed within the pump body and is fluidly exposed to the high-pressure inlet opening on a first side and to the drain opening on a second side. The rotor forms a radially extending passage that is fluidly open to the drain opening, and a fill opening extending through the rotor between the first side and the second side. The fill opening is surrounded by a seat that fluidly isolates the fill opening from the drain opening. As the rotor is rotating within the pump body, it assumes at least a first orientation and a second orientation with respect to the pump body. In the first orientation, the fill opening is aligned with the first head-end passage to place the first head-end passage in fluid communication with the high-pressure inlet opening, and the radially extending passage overlaps the first rod-end passage to place the first rod-end passage in fluid communication with the drain opening.
In another aspect, the disclosure describes a system for use with a pump having a plurality of pumping elements that are hydraulically activated, each of the plurality of pumping elements including, respectively, a piston having a head-end and a rod-end and operating to extend and retract within a bore, thus effecting a pumping stroke. The system includes a high-pressure pump, a low-pressure pump, and a tank arranged to supply fluid to the high-pressure pump and the low-pressure pump. The tank is configured to act as a drain for fluid returning to the tank. A hydraulic distributor has a plurality of valve elements, each of the plurality of valve elements corresponding to a particular one of the plurality of hydraulically activated pumping elements. Each valve element includes a high pressure port connected to an outlet of the high-pressure pump, a low pressure port connected to an outlet of the low-pressure pump, a drain port connected to the tank, a head-end port connected to the head-end of the piston, and a rod-end port connected to the rod-end of the piston. The hydraulic distributor is arranged to cause one of the plurality of pumping elements, an extending piston, to extend the piston while the remaining of the plurality of pumping elements are arranged to retract their pistons by: fluidly connecting a rod-end of the extending piston and head-ends of the retracting pistons with the drain port, fluidly connecting the head-end of the extending piston with the high pressure port, and fluidly connecting the rod-ends of the remaining pistons with the low pressure port.
In yet another aspect, the disclosure describes a system for use with a pump having a plurality of pumping elements that are hydraulically activated. Each of the plurality of pumping elements includes, respectively, a piston having a head-end and a rod-end and operating to extend and retract within a bore, each piston being biased towards its respective head end by a spring. The system includes a tank arranged to supply fluid to the pump, the tank configured to act as a drain for fluid returning to the tank, and a hydraulic distributor having a plurality of valve elements, each of the plurality of valve elements corresponding to a particular one of the plurality of hydraulically activated pumping elements. Each valve element includes a pressure port connected to an outlet of the pump, a drain port connected to the tank, a head-end port connected to the head-end of a respective piston, and a rod-end port connected to the rod-end of the respective piston. The hydraulic distributor is arranged to cause one of the plurality of pumping elements, an extending piston, to extend its piston while the remaining of the plurality of pumping elements are arranged to retract their pistons by: fluidly connecting a rod-end of the extending piston, and head-ends and the rod-ends of the retracting pistons with the drain port, and fluidly connecting the head-end of the extending piston with the pressure port.
The present disclosure is applicable to hydraulically actuated pumps for pumping a fluid such as cryogenically stored fuel for single-, dual- or multiple-fuel engines. In the disclosed, exemplary pump embodiments, a hydraulic distributor is used to sequentially activate multiple pumping elements of the pump.
In one general aspect, the present disclosure relates to engines using a gaseous fuel source such as direct injection gas (DIG) or indirect injection gas engines using diesel or spark ignition. More particularly, the disclosure relates to an embodiment for an engine system that includes a gaseous fuel storage tank having a pump that supplies cryogenically stored fluid to fuel an engine. A block diagram of a DIG, engine system 100, which in the illustrated embodiment uses diesel as the ignition source, is shown in
The fuel injector 104 is connected to a high-pressure gaseous fuel rail 106 via a high-pressure gaseous fuel supply line 108 and to a high-pressure liquid fuel rail 110 via a liquid fuel supply line 112. In the illustrated embodiment, the gaseous fuel is natural or petroleum gas that is provided through the high-pressure gaseous fuel supply line 108 at a pressure of between about 10-50 MPa, and the liquid fuel is diesel, which is maintained within the high-pressure liquid fuel rail 110 at about 15-100 MPa, but any other pressures or types of fuels may be used depending on the operating conditions of each engine application. It is noted that although reference is made to the fuels present in the high-pressure gaseous fuel supply line 108 and the high-pressure liquid fuel rail 110 using the words “gaseous” or “liquid,” these designations are not intended to limit the phase in which is fuel is present in the respective rail and are rather used solely for the sake of discussion of the illustrated embodiment. For example, the fuel provided at a controlled pressure within the high-pressure gaseous fuel supply line 108, depending on the pressure at which it is maintained, may be in a liquid, gaseous or supercritical phase. Additionally, the liquid fuel can be any hydrocarbon based fuel; for example DME (Di-methyl Ether), biofuel, MDO (Marine Diesel Oil), or HFO (Heavy Fuel Oil).
Whether the engine system 100 is installed in a mobile or a stationary application, each of which is contemplated, the gaseous fuel may be stored in a liquid state in a tank 114, which can be a cryogenic storage tank that is pressurized at a relatively low pressure, for example, atmospheric, or at a higher pressure. In the illustrated embodiment, the tank 114 is insulated to store liquefied natural gas (LNG) at a temperature of about −160° C. (−256° F.) and a pressure that is between about 100 and 1750 kPa, but other storage conditions may be used. The tank 114 further includes a pressure relief valve 116 and a fill port 144. The fill port 144 may include special or appropriate features for interfacing with a compressed natural gas (CNG) and/or liquid petroleum gas (LPG) fill hose or valve. In the description that follows, a DIG engine system embodiment is used for illustration, but it should be appreciated that the systems and methods disclosed herein are applicable to any machine, vehicle or application that uses cryogenically stored gas, for example, a locomotive in which the tank 114 may be carried in a tender car.
Relative to the particular embodiment illustrated, during operation, LNG from the tank is pressurized, still in a liquid phase, in a pump 118, which raises the pressure of the LNG while maintaining the LNG in a liquid phase. The pump 118 is configured to selectively increase the pressure of the LNG to a pressure that can vary in response to a pressure command signal provided to the pump 118 from an electronic controller 120. The pump 118 is shown external to the tank 114 in
The pressurized LNG provided by the pump 118 is heated in a heat exchanger 122. The heat exchanger 122 provides heat to the compressed LNG to reduce density and viscosity while increasing its enthalpy and temperature. In one exemplary application, the LNG may enter the heat exchanger 122 at a temperature of about −160° C., a density of about 430 kg/m3, an enthalpy of about 70 kJ/kg, and a viscosity of about 169 μPa s as a liquid, and exit the heat exchanger at a temperature of about 50° C., a density of about 220 kg/m3, an enthalpy of about 760 kJ/kg, and a viscosity of about 28 μPa s. It should be appreciated that the values of such representative state parameters may be different depending on the particular composition of the fuel being used. In general, the fuel is expected to enter the heat exchanger in a cryogenic, liquid state, and exit the heat exchanger in a supercritical gas state, which is used herein to describe a state in which the fuel is gaseous but has a density that is between that of its vapor and liquid phases.
The heat exchanger 122 may be any known type of heat exchanger or heater for use with LNG. In the illustrated embodiment, the heat exchanger 122 is a jacket water heater that extracts heat from engine coolant. In alternative embodiments, the heat exchanger 122 may be embodied as an active heater, for example, a fuel fired or electrical heater, or may alternatively be a heat exchanger using a different heat source, such as heat recovered from exhaust gases of the engine 102, a different engine belonging to the same system such as what is commonly the case in locomotives, waste heat from an industrial process, and other types of heaters or heat exchangers such as ambient air fin or tube heat exchangers. In the embodiment shown in
Liquid fuel, or in the illustrated embodiment diesel fuel, is stored in a fuel reservoir 136. From there, fuel is drawn into a variable displacement pump 138 through a filter 140 and at a variable rate depending on the operating mode of the engine. The rate of fuel provided by the variable displacement pump 138 is controlled by the pump's variable displacement capability in response to a command signal from the electronic controller 120. Pressurized fuel from the variable displacement pump 138 is provided to the high-pressure liquid fuel rail 110. Similarly, the pump 118 has a variable supply capability that is responsive to a signal from the electronic controller 120.
Gas exiting the heat exchanger 122 is filtered at a filter 124. As can be appreciated, the gas passing through the filter 124 may include gas present in more than one phase such as gas or liquid. An optional gas accumulator 126 may collect filtered gas upstream of a pressure regulator 128 that can selectively control the pressure of gas provided to the high-pressure gaseous fuel rail 106 that is connected to the high-pressure gaseous fuel supply line 108. To operate the pump 118, a hydraulic pump 150 having a variable displacement and selectively providing pressurized hydraulic fluid to various pumping elements of the pump 118 via a hydraulic distributor 152 is used. Operation of the hydraulic pump 150 is controlled by an actuator 154 that responds to commands from the electronic controller 120.
An outline view of the pump 118 is shown in
In reference to
High pressure oil from the high pressure pump 150, low pressure oil from the low pressure fluid pump 402, and oil draining from the actuation portion 302 into the sump 404 are selectively fluidly routed to and from corresponding ports in various hydraulic actuators 406 of the actuation portion 302. In the illustrated embodiment, three actuators including a first actuator 408, a second actuator 410 and a third actuator 412 are shown, but in alternative embodiments a single actuator, two actuators, or any odd or even number of more than three actuators can be used. Each of the first, second and third actuators 408, 410 and 412 includes a respective piston 414 that is slidably disposed in a cylinder 416 such that two closed and variable volumes, a first volume 418, which can also be referred to as the head-end volume, and a second volume 420, which can also be referred to as the rod-end volume, are formed within each cylinder on either side of the piston 414.
The actuation portion 302 includes the hydraulic distributor 308. One embodiment for the actuation portion 302 is schematically shown in
During operation, the various pump actuators 406 undergo an actuation stroke in which one, or more, of the actuators undergoes an extension stroke in which the respective first volume 418 or head-end volume is exposed to high oil pressure from the high pressure circuit 317 while the second volume 420 or rod-end volume is exposed to low pressure from the low pressure fluid circuit 319 or to the drain circuit 321. In this way, a pressure differential will be applied across the first and second volumes 418 and 420 tending to increase the volume of the first volume 418 (head end) and decrease the volume of the second volume 420 (rod end) tending to push against the pushrod 304. While the one (or more) actuators 406 is undergoing an extension stroke, the remaining actuators 406 may be undergoing a retraction stroke at a lower speed than the extension stroke by exposing the second volume 420 (rod end) to a high or low pressure and the first volume 418 (head end) to a lower pressure such as fluid at the low pressure or via the drain circuit 321. In the illustrated embodiment, retraction is accomplished by exposing the second volume 420 to low pressure from the low pressure fluid circuit 319 and connecting the first volume 418 to the drain circuit 321 such that a pressure differential tending to increase the volume of the second volume 420 and decrease the volume of the first volume 418 to retract the piston 414 towards the head end.
It should be appreciated that the retraction speed can be selected based on the application requirements and also on the number of actuators 406 present in the system. For example, in a pump having three actuators, one actuator may be undergoing an extension stroke while the remaining two actuators may be retracting, which provides sufficient time to retract the two retracting actuators at about half the speed of the extending actuator. In certain applications such as those pumping cryogenic fluids, a slower retraction stroke may be configured as a plunger fill stroke, which can lead to more efficient operation of the pump and less working fluid cavitation at a slower actuator refraction stroke.
The various fluid connections for the actuators 406 are provided by the valve elements 422. For example, a pumping-stroke valve element 422, denoted as “A” in
An alternative embodiment for an actuation portion 302 is schematically shown in
More specifically, each of the valve elements 422 on the distributor includes a pressure port 446, which is connected to the pressure circuit 443, and a drain port 428 connected to the drain circuit 321. The pumping-stroke valve element 422, also denoted here as “A”, fluidly connects the head-end port 432 with the pressure port 446, and the rod-end port 434 with the drain port 428 when extending the piston 414 within the cylinder 416. However, unlike the embodiment shown in
An embodiment for one exemplary implementation of the hydraulic distributor 308 for use in the pump 118 is shown in the cross sections of
The various components form passages and openings to accommodate mounting of components therein and/or the flow of oil at different pressures through various conduits or passages. In the illustrated embodiment, a piston or tappet 512 is slidably disposed to reciprocate within a cylindrical liner 516 that is mounted in a bore 518 extending axially through the tappet housing 504. The tappet 512 is connected to, or at least abuts, an end of the pushrod 304 such that the reciprocal motion of the tappet 512 within the liner 516 is transferred to the pushrod 304. At an end opposite the tappet 512, as shown in
The various passages formed between or within the plates 502, 506 and 508 fluidly connect various portions above and below the tappet 512 with the high pressure fluid inlet 316 (shown in
The various fluid interconnections between the head-end passage 528 and rod-end passage 524 with the high pressure fluid inlet 316, the low pressure fluid inlet 318, and the drain outlet 320 are selectively accomplished when various passages and features of the flow plate 506, the cover plate 508 and the bottom plate 502 are aligned with features on the rotor 510 as the rotor 510 rotates within the pump 118. Top and bottom views of the rotor 510 removed from the pump 118 are shown in
In reference now to
Surrounding the annular depression 612 for a portion of, but not necessarily the entire periphery 608, is a channel 620. The channel 620 includes a pair of ledges 622 disposed radially on either side of a slot 624. The ledges 622 are depressed with respect to the upper surface 604, and the slot 624 extends through the body to provide a fluid passageway through the body 602. In the illustrated embodiment, the ledges 622 are coplanar with the annular surface 614, but another depth for either one or both ledges 622 may be used. A blind chord portion 626 (
As can be seen in
The various passages in the rotor 510 interact with passages formed in the flow plate 506. The flow plate 506 is shown removed from the pump 118 for sake of discussion and illustration of its various features in
The operation of the pump 118 will now be described in more detail relative to the extension stroke and retraction stroke of each of a plurality of actuation elements, which in the illustrated embodiment includes three elements. Various fluid connections are made and interrupted by the rotational motion of the rotor 510 and, specifically, the changing orientation of the various passages formed therein, which operate as a hydraulic distributor such as the hydraulic distributor 308, as shown in
As previously mentioned, while one of the actuation elements is extending, the remaining are retracting. During a retraction, the low pressure supply oil, which occupies the low pressure passage 530 (
The particular embodiments described herein are not limiting and have broader applicability to the operation of various pumps having fewer or more that three pumping elements. It is also noted that the shape of the leading and/or trailing edges of the various openings described herein can be adjusted to shape the pressure application rate in the various volumes and cavities of the pump such that smooth and efficient operation can be accomplished. Also, while not specifically described herein, activation of the rotor 510 via the shaft 514 (
It will be appreciated that the foregoing description provides examples of the disclosed system and technique. However, it is contemplated that other implementations of the disclosure may differ in detail from the foregoing examples. All references to the disclosure or examples thereof are intended to reference the particular example being discussed at that point and are not intended to imply any limitation as to the scope of the disclosure more generally. All language of distinction and disparagement with respect to certain features is intended to indicate a lack of preference for those features, but not to exclude such from the scope of the disclosure entirely unless otherwise indicated.
Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context.
Number | Name | Date | Kind |
---|---|---|---|
2549897 | Evrell | Apr 1951 | A |
3032994 | Lindell | May 1962 | A |
5879137 | Yie | Mar 1999 | A |
6460349 | Kawano et al. | Oct 2002 | B1 |
6647934 | Marsh et al. | Nov 2003 | B2 |
7114341 | Gao | Oct 2006 | B2 |
20110094244 | Xu | Apr 2011 | A1 |
20140182559 | Steffen | Jul 2014 | A1 |
20150001428 | Xu et al. | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
WO 2014078962 | May 2014 | WO |
Number | Date | Country | |
---|---|---|---|
20170016434 A1 | Jan 2017 | US |