Claims
- 1. In hydraulic drilling apparatus: a drill head having an internal chamber, means for producing a whirling mass of pressurized fluid in the chamber, and a discharge nozzle through which the pressurized fluid is discharged as a high velocity cutting jet in the form of a thin conical shell.
- 2. The drilling apparatus of claim 1 wherein the means for producing a whirling mass of pressurized fluid comprises a plurality of stationary inlet nozzles inclined obliquely about the chamber axis at one end of the chamber.
- 3. The drilling apparatus of claim 2 wherein the inlet jets are tapered conically.
- 4. The drilling apparatus of claim 1 wherein the discharge nozzle has an axially extending bore from which the drilling fluid is discharged.
- 5. The drilling apparatus of claim 4 wherein the bore of the discharge nozzle has a tapered portion which decreases in diameter toward its distal end.
- 6. The drilling apparatus of claim 4 including a plurality of axially directed nozzles spaced circumferentially about the discharge nozzle for delivering jets of high velocity fluid which intersect the conical shell of fluid from the discharge nozzle.
- 7. The drilling apparatus of claim 1 including a rotor driven about the axis by the pressurized fluid in the chamber and having an obliquely inclined bore which forms the discharge nozzle.
- 8. The drilling apparatus of claim 7 wherein the rotor has oppositely facing surfaces which interact with the pressurized fluid in the chamber to turn the rotor and limit the speed of rotation to about 5-50 rpm.
- 9. The drilling apparatus of claim 1 wherein the drill head is mounted on the distal end of a tubular drill string and in fluid communication with the interior of the drill string for receiving pressurized drilling fluid through the string.
- 10. The drilling apparatus of claim 1 wherein the means for producing a whirling mass of pressurized fluid comprises at least one flow directing vane for imparting a helical motion to the pressurized fluid within the discharge nozzle.
- 11. The drilling apparatus of claim 10 wherein a plurality of flow directing vanes are spaced circumferentially about the axis of the chamber and extend longitudinally within the chamber for imparting the helical motion to the fluid.
- 12. The drilling apparatus of claim 10 wherein the vane extends longitudinally of the chamber and has an inlet end portion generally parallel to the axis of the chamber and a distal end portion which extends obliquely to the axis of the chamber.
- 13. The drilling apparatus of claim 10 wherein the vane extends axially within the chamber and is twisted about the axis of the chamber.
- 14. The drilling apparatus of claim 10 including means for controlling the amount of fluid delivered to the flow directing vane to control the discharge of fluid from the nozzle.
- 15. The drilling apparatus of claim 1 including means for introducing an abrasive material into the pressurized fluid.
- 16. In a hydraulic drill head: a plenum chamber of circular cross-section, means for introducing a pressurized drilling fluid into the plenum chamber so that the fluid whirls rapidly about the axis of the chamber, an axially directed discharge nozzle which receives the whirling fluid from the plenum chamber and discharges a thin wall conical shell of the fluid, and a plurality of additional nozzles spaced circumferentially about the discharge nozzle in fluid communication with the plenum chamber for delivering high velocity jets of the fluid which intersect the conical shell of fluid from the discharge nozzle.
- 17. The drill head of claim 16 wherein the means for introducing the pressurized fluid into the plenum chamber comprises a plurality of stationary inlet nozzles inclined obliquely about the axis of the chamber.
- 18. The drill head of claim 17 wherein the inlet nozzles are conically tapered.
- 19. The drill head of claim 16 wherein the discharge nozzle has an axially extending bore which is conically tapered toward its proximal end and cylindrical toward its distal end.
- 20. The drill head of claim 16 wherein the drill head is mounted on the distal end of a tubular drill string and in fluid communication with the interior of the drill string for receiving pressurized drilling fluid through the string.
- 21. In a hydraulic drill head: means for providing a whirling mass of pressurized fluid, a rotor which is rotated about its axis by the pressurized fluid and has at least one longitudinally extending bore inclined obliquely to the axis for receiving the pressurized fluid and delivering a jet of fluid which sweeps about the axis in a circular manner as the rotor turns.
- 22. The drill head of claim 21 wherein the means for providing a whirling mass of pressurized fluid comprises a plurality of stationary inlet nozzles inclined obliquely about the axis of the rotor.
- 23. The drill head of claim 22 wherein the inlet nozzles are conically tapered.
- 24. The drill head of claim 21 wherein the rotor has a plurality of obliquely inclined bores each of which delivers a jet of fluid which sweeps about the axis as the rotor turns.
- 25. The drill head of claim 21 wherein the rotor has oppositely facing surfaces which interact with the fluid from the inlet nozzles to turn the rotor and limit the speed of rotation to about 5-50 rpm.
- 26. The drill head of claim 21 wherein the drill head is mounted on the distal end of a tubular drill string and in fluid communication with the interior of the drill string for receiving pressurized drilling fluid through the string.
- 27. In a method of drilling a borehole in the earth with a hydraulic drill head at the distal end of a tubular drill string to which a pressurized fluid is applied, the steps of: producing a whirling mass of the pressurized fluid, and introducing the whirling fluid into a discharge nozzle in such manner that the fluid spins helically within the nozzle and emerges therefrom as a high velocity cutting jet in the form of a thin conical shell for cutting into the earth.
- 28. The method of claim 27 wherein the whirling mass of pressurized fluid is produced by passing the pressurized fluid through a plurality of stationary inlet nozzles inclined obliquely about the axis of the drill head.
- 29. The method of claim 27 including the steps of discharging a plurality of axially directed jets of fluid from the drill head through nozzles spaced circumferentially of the discharge nozzle, said axially directed jets passing through the conical shell and impinging upon the earth within the region bounded by the conical shell.
- 30. The method of claim 27 including the steps of applying the whirling fluid to a rotor within the drill head to turn the rotor about the axis of the drill head, and discharging the fluid from the drill head through a bore in the rotor inclined obliquely to the axis of the rotor.
- 31. The method of claim 30 wherein the fluid is applied to oppositely facing surfaces on the rotor to limit rotation of the rotor to a speed on the order of 5-50 rpm.
- 32. The method of claim 27 wherein the whirling mass of pressurized fluid is produced by directing the fluid past at least one flow directing vane which imparts a circular motion to the fluid.
- 33. The method of claim 32 wherein the amount of fluid directed past the flow directing vane is controlled to control the jet which emerges from the discharge nozzle.
- 34. The method of claim 27 including the step of adding an abrasive material to the pressurized fluid applied to the drill stem.
- 35. In a method of drilling a borehole in the earth with a hydraulic drill head at the distal end of a tubular drill string to which a pressurized fluid is applied, the steps of: producing a whirling mass of the pressurized fluid, and introducing the whirling fluid into an axially extending discharge nozzle in such manner that the fluid spins helically within the nozzle and emerges therefrom as a thin wall conical shell of fluid for cutting into the earth.
- 36. The method of claim 35 wherein the whirling mass of pressurized fluid is produced by passing the pressurized fluid through a plurality of stationary inlet nozzles inclined obliquely about the axis of the drill head.
- 37. The method of claim 35 including the step of discharging a plurality of axially directed jets of fluid from the drill head through nozzles spaced circumferentially of the discharge nozzle, said axially directed jets passing through the conical shell and impinging upon the earth within the region bounded by the shell.
- 38. The method of claim 35 wherein the whirling mass of pressurized fluid is produced by directing the fluid past at least one flow directing vane which imparts a helical motion to the fluid.
- 39. The method of claim 35 including the step of adding an abrasive material to the pressurized fluid applied to the drill stem.
- 40. In a method of drilling a borehole in the earth with a hydraulic drill head at the distal end of a tubular drill string to which a pressurized fluid is applied, the steps of: producing a whirling mass of the pressurized fluid, applying the whirling fluid to a rotor within the drill head to turn the rotor about the axis of the drill head, and discharging the fluid from the drill head through a bore in the rotor inclined obliquely to the axis of rotation.
- 41. The method of claim 40 wherein the whirling mass of pressurized fluid is produced by passing the pressurized fluid through a plurality of stationary inlet nozzles inclined obliquely about the axis of the drill head.
- 42. The method of claim 40 wherein the fluid is applied to oppositely facing surfaces on the rotor to limit rotation of the rotor to a speed on the order of 5-50 rpm.
- 43. In a hydraulic drill head: an axially extending chamber having inlet and discharge ends, a plurality of radial vanes extending longitudinally of the chamber with inlet end portions generally parallel to the axis of the chamber and distal end portions oblique to the axis for causing pressurized fluid applied axially to the input end of the chamber to whirl rapidly about the axis at the distal end of the chamber, and a nozzle at the distal end of the chamber for receiving whirling fluid and discharging the fluid as a thin wall conical shell.
- 44. The drill head of claim 43 wherein the inlet end portions of the vanes are relatively straight and the distal end portions are curved in the direction of the whirling fluid.
- 45. The drill head of claim 43 wherein the inlet and distal end portions of the vanes are tapered.
- 46. The drill head of claim 43 including means for controlling the amount of pressurized fluid applied to the vanes to control the discharge of the fluid from the nozzle.
- 47. In a hydraulic drill head: an axially extending chamber having inlet and discharge ends, an axially extending vane mounted within the chamber and being twisted about the axis of the chamber for imparting a whirling motion to pressurized fluid passing between the inlet and discharge ends of the chamber, and a nozzle at the discharge end of the chamber for receiving the whirling fluid and discharging the fluid in a thin wall conical shell.
- 48. The drill head of claim 47 wherein the vane is mounted in a fixed position within the chamber.
- 49. The drill head of claim 47 including means for controlling the amount of fluid passing through the chamber to control the discharge of fluid from the nozzle.
- 50. In hydraulic drilling apparatus: a drill head having an internal chamber, a discharge nozzle through which pressurized fluid is discharged from the chamber, and at least one flow directing vane for imparting a helical motion to the pressurized fluid within the discharge nozzle, the flow directing vane being movable axially relative to the discharge nozzle to control the manner in which the fluid is discharged from the nozzle.
- 51. In hydraulic drilling apparatus: a drill head having an internal chamber, a discharge nozzle through which pressurized fluid is discharged from the chamber, and at least one flow directing vane for imparting a helical motion to the pressurized fluid within the discharge nozzle, the flow directing vane being adapted for rotation about the axis of the discharge nozzle to control the amount of helical motion imparted to the fluid.
- 52. In a method of drilling a borehole in the earth with a hydraulic drill head at the distal end of a tubular drill string to which a pressurized fluid is applied, the steps of: directing a pressurized fluid past at lease one flow directing vane to impart a circular motion to the fluid and thereby produce a whirling mass of pressurized fluid, introducing the whirling fluid into a discharge nozzle in such manner that the fluid spins helically within the nozzle and emerges therefrom as a jet for cutting into the earth, and moving the flow directing vane in an axial direction relative to the discharge nozzle to control the shape of the jet which emerges from the nozzle.
- 53. In a method of drilling a borehole in the earth with a hydraulic drill head at the distal end of a tubular drill string to which a pressurized fluid is applied, the steps of: directing a pressurized fluid past at lease one flow directing vane to impart a circular motion to the fluid and thereby produce a whirling mass of pressurized fluid, introducing the whirling fluid into a discharge nozzle in such manner that the fluid spins helically within the nozzle and emerges therefrom as a jet for cutting into the earth, and rotating the flow directing vane about the axis of the discharge at a controlled rate to control the circular motion imparted to the fluid.
- 54. In a hydraulic drill head: an axially extending chamber having inlet and discharge ends, a plurality of radial vanes extending longitudinally of the chamber with inlet end portions generally parallel to the axis of the chamber and distal end portions oblique to the axis for causing pressurized fluid applied axially to the input end of the chamber to whirl rapidly about the axis at the distal end of the chamber, and a nozzle at the distal end of the chamber for receiving whirling fluid and discharging the fluid as a thin wall conical shell, the radial vanes being movable between different axial positions relative to the nozzle for controlling the manner in which the fluid is discharged from the nozzle.
- 55. In a hydraulic drill head: an axially extending chamber having inlet and discharge ends, a plurality of radial vanes extending longitudinally of the chamber with inlet end portions generally parallel to the axis of the chamber and distal end portions oblique to the axis for causing pressurized fluid applied axially to the input end of the chamber to whirl rapidly about the axis at the distal end of the chamber, a nozzle at the distal end of the chamber for receiving whirling fluid and discharging the fluid as a thin wall conical shell, and means comprising a pair of relatively rotatable throttle plates having flow control apertures adapted to be selectively positioned in or out of registration with the nozzle for controlling the amount of pressurized fluid applied to the vanes and thereby controlling the discharge of the fluid from the nozzle.
- 56. In a hydraulic drill head: an axially extending chamber having inlet and discharge ends, a plurality of radial vanes extending longitudinally of and being rotatable about the axis of the chamber with inlet end portions generally parallel to the axis of the chamber and distal end portions oblique to the axis for causing pressurized fluid applied axially to the input end of the chamber to whirl rapidly about the axis at the distal end of the chamber, means for controlling the rate of rotation of the vanes to control the rate at which the fluid whirls about the axis, and a nozzle at the distal end of the chamber for receiving whirling fluid and discharging the fluid as a thin wall conical shell.
- 57. In a hydraulic drill head: an axially extending chamber having inlet and discharge ends, an axially extending vane mounted within the chamber and being twisted about the axis of the chamber with a rate of curvature which increases toward the distal end of the chamber for imparting a whirling motion to pressurized fluid passing between the inlet and discharge ends of the chamber, and a nozzle at the discharge end of the chamber for receiving the whirling fluid and discharging the fluid in a thin wall conical shell.
- 58. In a hydraulic drill head: an axially extending chamber having inlet and discharge ends, an axially extending vane mounted within the chamber and being twisted about the axis of the chamber for imparting a whirling motion to pressurized fluid passing between the inlet and discharge ends of the chamber, and a nozzle at the discharge end of the chamber for receiving the whirling fluid and discharging the fluid in a thin wall conical shell, the vane being axially movable relative to the nozzle to control the manner in which the fluid is discharged from the nozzle.
- 59. In a hydraulic drill head: an axially extending chamber having inlet and discharge ends, an axially extending vane mounted within the chamber and being twisted about the axis of the chamber for imparting a whirling motion to pressurized fluid passing between the inlet and discharge ends of the chamber, a nozzle at the discharge end of the chamber for receiving the whirling fluid and discharging the fluid in a thin wall conical shell, and a pair of relatively rotatable throttle plates positioned coaxially of the chamber and having flow control apertures adapted to be selectively positioned in or out of registration with each other for controlling the amount of fluid passing through the chamber and thereby the discharge of fluid from the nozzle.
- 60. In a hydraulic drill head: an axially extending chamber having inlet and discharge ends, an axially extending vane mounted within the chamber for rotation about the axis of the chamber and being twisted about the axis of the chamber for imparting a whirling motion to pressurized fluid passing between the inlet and discharge ends of the chamber, means for controlling the rate of rotation of the vane to control the whirling motion imparted to the fluid, and a nozzle at the discharge end of the chamber for receiving the whirling fluid and discharging the fluid in a thin wall conical shell.
Parent Case Info
This is a continuation-in-part of Ser. No. 853,548, filed Apr. 18, 1986, now abandoned, in the names of Ben Wade Oakes Dickinson III, Robert Wayne Dickinson, Richard R. Jensen, Sherman C. May and Charles S. Mackey.
US Referenced Citations (10)
Foreign Referenced Citations (1)
Number |
Date |
Country |
281318 |
Jan 1971 |
SUX |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
853548 |
Apr 1986 |
|