The disclosure relates generally to the excavation of soil around a pipeline buried under shallow water, such as for the purpose of installing a clamp on the pipeline. In particular, the disclosure relates to apparatus and methods for dredging a hole or pit around the pipeline that utilize a combination of water jetting and hydraulic evacuation.
A large number of pipelines are located in shallow water lakes, swamps, and similar marsh areas. The pipelines are usually buried about 1.8 meters (6 feet) deep in the soil under water that may be up to 3 meters (10 feet) deep.
The pipelines are originally installed with cathodic protection against corrosion, such as by wasting away of sacrificial anodes buried with the pipelines. In some cases, after 20 or more years, the sacrificial anodes may no longer provide sufficient protection against corrosion. When this happens, it is a common practice to provide new anodes and to connect them electrically to the pipeline. The connection is commonly made with an electro-mechanical clamp that is installed on the pipeline and makes electrical contact with it. Even before the end of life of the anodes, an electro-mechanical clamp may be installed to provide an easily accessible test point above the water surface so that the level of cathodic protection may be assessed on a regular basis.
The common method for installing an electro-mechanical clamp is to dredge a large hole or pit over and around the pipeline to provide safe access for divers to install the clamp. The diameter of the hole is determined by the angle of repose of the soil, and the depth of the hole is often about 1.2 meters (4 feet) below the top of the pipeline. This depth provides space for the diver to stand beside the pipeline during the clamp installation. Visibility for the diver is generally only a few inches, which requires that the clamp installation is done by feeling with the hands, obviously a hazardous operation for the diver.
Thus, there is a continuing need in the art for apparatus and methods for excavating soil in order to create a water-filled volume or cavity around a pipeline buried under shallow water.
The disclosure describes apparatus and methods for excavating the soil around and above a pipeline buried under shallow water in order to create a water-filled volume or cavity around and above the pipeline.
The hydraulic excavation apparatus comprises an enclosure wall having an inverted-U cutout at the bottom of each of two opposite portions of the enclosure wall. The enclosure wall may have a rectangular section. A guide frame extends from the top of the enclosure wall.
The hydraulic excavation apparatus is deployed from a floating vessel such as a barge, airboat, pontoon boat or similar shallow draft vessel. The enclosure wall preferably sinks into the soil under its own weight. The hydraulic excavation apparatus uses a combination of water jetting pipes and hydraulic evacuation pipes to excavate the soil in and around the enclosure wall as the enclosure wall sinks down into the soil and lands on the pipeline. An upper portion of the guide frame may remain above the water surface. The upper portion of the guide frame may provide a visual guide to the water-filled volume or cavity around the pipeline inside the enclosure wall. The hydraulic excavation apparatus may be prevented from tipping over during this excavation operation by a retainer mounted on the floating vessel, which constrains the movement of the guide frame. This retainer may take the form of a self-erecting gantry or a rectangular bracket mounted on the front of the floating vessel. The hydraulic excavation apparatus may be lifted and recovered by winches on the gantry or by a crane mounted on the floating vessel.
After the hydraulic excavation apparatus is in place on the pipeline, an electro-mechanical clamp or similar device may be lowered in the water, may pass through the open center of the enclosure wall, may land on the pipeline. The clamp can then be operated from above the water surface by a simple reach-rod to make electrical connection with the pipeline. After the clamp is installed, the enclosure may be recovered, and the hole or pit created by the hydraulic excavation apparatus may refill by natural action.
For a more detailed description of the embodiments of the disclosure, reference will now be made to the accompanying drawings, wherein:
It is to be understood that the following disclosure describes several exemplary embodiments for implementing different features, structures, or functions of the invention. Exemplary embodiments of components, arrangements, and configurations are described below to simplify the disclosure; however, these exemplary embodiments are provided merely as examples and are not intended to limit the scope of the invention. Additionally, the disclosure may repeat reference numerals and/or letters in the various exemplary embodiments and across the Figures provided herein. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various exemplary embodiments and/or configurations discussed in the various Figures. Finally, the exemplary embodiments presented below may be combined in any combination of ways, i.e., any element from one exemplary embodiment may be used in any other exemplary embodiment, without departing from the scope of the disclosure.
The disclosure describes a hydraulic excavation apparatus that may be used for providing access to a pipeline buried under shallow water or in wetland locations, for example, in order to install an electro-mechanical clamp on the pipeline. This clamp can then be used for connecting externals anodes to the pipeline, for monitoring the level of corrosion protection of the pipeline, or for any other purpose.
Referring to
The hydraulic excavation apparatus 10 also comprises water jetting pipes 16 that may be attached inside the enclosure wall 12. The water jetting pipes 16 are connected to the outlet of a pump or pumps, for example, the pressure jetting pump 30 (shown in
The hydraulic excavation apparatus 10 also comprises hydraulic evacuation pipes 26 that may be attached inside the enclosure wall 12. The hydraulic evacuation pipes 26 may have a larger diameter than the water jetting pipes 16. Each hydraulic evacuation pipe 26 may include a single port 40 that is positioned near the bottom of the enclosure wall 12. These hydraulic evacuation pipes 26 are connected to the suction side of a pump or pumps, such as the dredging pump 32 (shown in
Referring to
Referring to
The pressure jetting pump 30 and the dredging pump 32, provided on the deck of the floating vessel 34 are connected by hoses (also numbered 16 and 26) to the water jetting pipes 16 and to hydraulic evacuation pipes 26, respectively, to provide hydraulic jetting and hydraulic evacuation capability. The guide frame 18, which extends from the top of the enclosure wall 12, is maintained vertical by the gantry 36 during deployment. The hydraulic excavation apparatus 10 may be deployed through a rectangular hole in the deck. The hydraulic excavation apparatus 10 is lowered to the mudline ML and/or raised on a floating vessel 34 by a hoisting system 14 mounted on the gantry 36. For example, the hoisting system 14 may include a pair of manual hoists on the sides of the gantry 36. Accordingly, the hoisting system 14 allows an operator to raise and lower the hydraulic excavation apparatus 10.
Once landed on the mudline ML, the hydraulic excavation apparatus 10 uses a combination of hydraulic jetting and hydraulic evacuation to excavate the soil inside the enclosure wall 12, which also allows the enclosure wall 12 to sink into the soil until it surrounds the pipeline 20.
Referring to
A water-filled volume or cavity is created around the pipeline 20 whereby the top and sides of the pipeline 20 are accessible. An electro-mechanical clamp can then be manually lowered through the open top of the enclosure wall 12 and easily installed on the pipeline 20. The guide frame 18 may provide visual guidance to the operators during installation of the electro-mechanical clamp.
Referring to
While the disclosure is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and description. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the claims to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the scope of the claims.
This application claims the benefit of priority to U.S. provisional application Ser. No. 62/728,899 filed on Sep. 10, 2018, the content of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3505826 | Harmstorf | Apr 1970 | A |
3747696 | Wenneborg et al. | Jul 1973 | A |
3751927 | Perot, Jr. | Aug 1973 | A |
3786642 | Good | Jan 1974 | A |
4041717 | Dressel | Aug 1977 | A |
4087981 | Norman | May 1978 | A |
4112695 | Chang et al. | Sep 1978 | A |
4190382 | Schmitz | Feb 1980 | A |
4295757 | Gaspar | Oct 1981 | A |
4330225 | Glasgow | May 1982 | A |
4741646 | Hatch | May 1988 | A |
4992000 | Doleshal | Feb 1991 | A |
5765965 | Carter, Jr. et al. | Jun 1998 | A |
5970635 | Wilmoth | Oct 1999 | A |
6460936 | Abramov et al. | Oct 2002 | B1 |
6705029 | Anderson | Mar 2004 | B2 |
20120121339 | Lazzarin | May 2012 | A1 |
20190071842 | Bath | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
322935 | Jul 1989 | EP |
Number | Date | Country | |
---|---|---|---|
20200080282 A1 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
62728899 | Sep 2018 | US |