The field of the invention is hydraulic valves in camera dollies cranes used to raise and lower a camera.
Camera dollies and cranes are used in the television, video and motion picture industries to support and maneuver a camera. Typically, the camera dolly is on wheels and has an arm to raise and lower the camera. The camera dolly is generally moved by dolly operators or “grips”, to properly position the camera, to follow the film or video sequence.
Various designs have been used to raise and lower a camera on a camera dolly. For example, U.S. Pat. No. 4,360,187 describes a two piece arm design for use in a camera dolly. The arm is raised and lowered via a hydraulic actuator and a control valve. Other camera dollies use a straight single piece beam arm or a telescoping pedestal lifted by a hydraulic or pneumatic actuator, such as described in U.S. Pat. No. 5,516,070.
The valves used to control a hydraulically driven camera dolly or crane arm should meet certain design objectives. For example, the opening and closing characteristics of the valve should allow the camera dolly operator to accurately and easily control the speed and direction of the arm movement. The valve should also allow the arm to be accurately stopped at a selected elevation. In addition, the valve should operate silently, so as not to interfere with the sound track being recorded for the motion picture or video. sequence. U.S. Pat. Nos. 4,747,424 and 4,109,678, incorporated herein by reference, describe hydraulic valves which have been successfully used in camera dollies and cranes. While these have performed well, there remains a need for ever more versatile valves, to allow camera operators to achieve desired camera movements.
A camera dolly or camera crane has an arm pivotably attached to a chassis. A hydraulic system on the chassis includes a hydraulic cylinder attached to the arm and to the base, for raising the arm, a hydraulic valve and a valve control. The hydraulic valve has a normal operation mode where opening and closing of the valve is controlled by the valve control. The hydraulic valve is also provided with a float down mode, where the valve remains partially open, regardless of operation of the valve control. When the float down mode is used, the hydraulic valve does not close completely. Rather, an intentional slight leakage is provided in the valve.
In use to perform a float down camera movement, as soon as the dolly or crane arm reaches its highest point, as selected by the user via the valve control, the arm automatically and instantaneously reverses direction and starts to move back down. Since this float down mode provides this movement automatically, the up-down movement of the arm is smoother than can normally be achieved. The hydraulic system may optionally also include a fast down valve, to allow the arm to move down quickly, even when minimally loaded.
Other objects and features of the invention will become apparent from the following detailed description taken in connection with the accompanying drawings. It is to be understood, however, that the drawings are designed for the purpose of illustration only and are not intended as a definition of the limits of the invention.
In the drawings, wherein similar reference characters denote similar elements throughout the several view:
Turning now in detail to the drawings, as shown in
Referring to
Referring to
Similarly, on the down side 72 of the valve 60, the port 40 extends through the passageway 24 to a down bore 47 in the down valve body 21. A return port 28 extends through the down valve body 21 and joins into the down bore 47. The junctions between the passageway 24 in the valve base 23 and the up bore 45 and down bore 47 in the down valve bodies 21 and 22 are sealed by O rings 42, compressed by bolts 25 clamping the valve body and valve base together.
An up pin 74 is centered in position within the up bore 45 via a steel bushing 76 (which is preferably pressed into the up bore 45.) The bushing 76 and the shaft 77 of the up pin 74 are dimensioned to create a small annular opening around the shaft for hydraulic fluid passage. The upper end of the shaft 77 of the up pin 74 is threaded into a piston 26 which bears against a swash plate 65 which reacts against a Teflon washer 69 over the swash plate 65. The valve sprocket 58 is attached to and rotates with a cam 67. The Teflon washer 69 is sandwiched between the swash plate 65 and the eccentric bottom surface 73 of the cam 67.
As the cam turns, it depresses either of the pistons 26 and 27. Alternatively, a glass filled Teflon washer or a needle bearing plate may be used in place of the Teflon washer 69, for faster valve response. The swash plate 65 generally does not turn with the valve sprocket 58. The lower end of a compression spring 46 rests on the bushing 76 with the upper end of the compression spring 46 pushing on the piston 26. A steel valve seat 79 in the valve body 22 seals the up bore 45 closed when the head 75 of the up pin 74 engages the seat 79.
On the down side 72 of the hydraulic valve 60, a head insert 86 is pressed into the valve base 23. A head bore extends through the head insert 86 and connects to the passageway 24 through a cutout 94 in the side cylindrical surface of the head insert 86. Side channels extend through the head insert 86. A steel valve seat 83 is positioned in the valve body 22 above the head insert 86.
Referring to
As best shown in
In use, hydraulic lines are connected to the down outlet 28, up outlet 30 and to the port 40, to connect the valve 60 into the hydraulic system of the camera dolly 10. To raise the arm 12 of the camera dolly 10, the boom or arm control post 16 is turned counterclockwise (when viewed from above as in
Lowering the arm is performed by turning the arm control post clockwise, opening the down side of the valve, and allowing hydraulic fluid to return from the actuator, through the down bore 47, through the side channels 92 in the head insert 86, through the grooves 98 on the shaft insert 88, out of the return port 28, to a sump or reservoir.
Referring to
Similarly, when the arm control post 16 is turned so that the detent 62 engages the down groove 68 in the receiver tube 50, the down side 72 of the hydraulic valve 60 is on the verge of opening. As the arm control post 16 is turned further counter-clockwise, as shown in
When the receiver tube 50 is positioned with the detent 62 engaged into the down groove 68 or the up groove 64, no hydraulic fluid flows through the valve 60. The stop groove 66 is provided in between the up groove 64 and the down groove 68 as an additional tactile point of reference. The valve 60 remains closed at all angular positions of the receiver tube 50 between (and including) the down groove 68 and the up groove 64.
If a needle bearing 69 is used in place of a Teflon washer 69 between the swash plate 65 and the cam 67, the valve 60 may tend to close itself, when the operator releases the knob on the arm control post 16, depending on the friction in the mechanical position, hydraulic pressure, and valve position. The up force on the pistons generated by hydraulic pressure and the springs 46 and 89, creates a certain level of closing torque on the cam 67 and sprocket 58. This torque will close the valve unless it is exceeded by the piston/swash plate; chain/sprocket; bearings; and o-ring friction forces. This self-closing can be prevented by increasing tension in the chain 56 which will increase the friction acting to prevent the cam 67 from turning. A viscous fluid 80 dampener may optionally also be linked to the swash plate, to provide a smooth and controlled closing movement of the valve.
As shown in
With the float down system 100 in the off position, the hand lever 120 is alongside or recessed into an opening in the arm control post 16A. The valve 60 then operates as described above, under control of the arm control post 16. When a float down camera movement is desired, the user moves the lever 120 into an up or out position, as shown in
To perform a float down movement, the user actuates the float down control system 100 via movement of the lever 120. The user then turns the arm control post 16 to raise the arm. When the arm reaches the desired height, the user returns the arm control post 16 to the stop position. The user may do this by simply releasing the control post 16 with internal forces described above automatically returning the arm control post 16 to the stop position. Alternatively, if the camera dolly is set up with move internal friction in the valve control system, so that the arm control post 16 stays in position when released, the user may actively turn the arm control post 16 back to the stop position.
In either case, as the arm control post 16 and the valve 60 approach the normal stop position, the volume of fluid flowing into the hydraulic cylinder 18 declines to an inflection point where it is exceeded by the constant out flow caused by the float down system 100 holding both valve pins slightly open. As a result, the arm moves up to the desired height and then immediately reverses direction and begins moving back down, is a smooth movement. The lever 120 is then moved back to the off position.
Where the hydraulic cylinder is a one-way or single acting hydraulic cylinder, the dolly arm 12 moves down only under its own weight. If the camera on the dolly arm is lightweight, the arm may move down slowly, even with the valve 60 in the full down position. To avoid this delay, as shown in dotted lines in
By turning the knob clockwise, the plunger 138 is advanced to firmly press the ball 142 against the outer surface of the arm control post 16. As a slot or groove 64, 66 or 68 moves into alignment with the ball 142, a detent function is provided, as described above. If no detent function is desired, the knob 132 is backed off and the force holding the ball against the arm control post 16 is removed, removing the detent function.
Thus, a novel float down valve control system for a camera dolly has been shown and described. Various modifications and substitutions of equivalents may of course be made without departing from the spirit and scope of the invention. The invention, therefore, should not be restricted, except by the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
4109678 | Chapman | Aug 1978 | A |
4219121 | McPeak | Aug 1980 | A |
4590958 | Brunner | May 1986 | A |
4747424 | Chapman | May 1988 | A |
4899097 | Chapman | Feb 1990 | A |
4952953 | Ridderstolpe et al. | Aug 1990 | A |
5391041 | Stanbury | Feb 1995 | A |
5437216 | Chapman | Aug 1995 | A |
5516070 | Chapman | May 1996 | A |
5697757 | Lindsay | Dec 1997 | A |
5819634 | Chapman | Oct 1998 | A |
6073913 | Chapman | Jun 2000 | A |
6179545 | Petersen et al. | Jan 2001 | B1 |
6247498 | Chapman | Jun 2001 | B1 |
6389953 | Altman et al. | May 2002 | B1 |
6536325 | Badia Ba | Mar 2003 | B2 |
6578819 | Chapman | Jun 2003 | B2 |
7121745 | Chapman | Oct 2006 | B2 |
7128479 | Chapman | Oct 2006 | B2 |
7252441 | Chapman | Aug 2007 | B2 |
7311452 | Chapman | Dec 2007 | B2 |
8033742 | Chapman | Oct 2011 | B1 |
8403486 | Chapman | Mar 2013 | B2 |
20020005112 | Badia Ba | Jan 2002 | A1 |
20020112764 | Chapman | Aug 2002 | A1 |
20030076480 | Burbulla | Apr 2003 | A1 |
20030172598 | Greer | Sep 2003 | A1 |
20040168997 | Irsch et al. | Sep 2004 | A1 |
20050191049 | Chapman | Sep 2005 | A1 |
20050191050 | Chapman | Sep 2005 | A1 |
20070230947 | Chapman | Oct 2007 | A1 |
20080002967 | Chapman | Jan 2008 | A1 |
20110031203 | Chapman | Feb 2011 | A1 |
20120051733 | Chapman | Mar 2012 | A1 |
20120070143 | Chapman | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
1298087 | Apr 2003 | EP |
2207109 | Jan 1989 | GB |
8910894 | Nov 1989 | WO |
9412424 | Jun 1994 | WO |
Entry |
---|
United States Patent and Trademark Office, International Search Report and Written Opinion for PCT/US2010/044792, mailed Sep. 23, 2010. |
EPC Communication pursuant to Article 94(3) EPC issued in application No. 05 724 101.0-2209 on Feb. 15, 2010. |
United States Patent and Trademark Office, International Search Report and Written Opinion for PCT Patent Publication No. WO05/085948, mailed Aug. 11, 2005. |
United States Patent and Trademark Office, International Search Report and Written Opinion for PCT/US2013/050709, Dec. 9, 2013. |
Number | Date | Country | |
---|---|---|---|
20140021422 A1 | Jan 2014 | US |