The present disclosure generally relates to hydraulic fluid circuits for machines and, more specifically, to hydraulic fluid circuits having fixed minimum back pressures in the pilot actuation lines.
Hydraulic fluid circuits may use actuators to regulate the flow of hydraulic fluid to a hydraulic consumer, such as a hydraulic cylinder or a hydraulic motor. For example, hydraulic circuits may control the flow of hydraulic fluid to and from a hydraulic cylinder that extends and retracts to raise and lower a machine implement, such as a blade or bucket. The hydraulic fluid circuit may include a main spool actuation valve that is displaced to different positions in which the flow of the hydraulic fluid to the cylinder is actuated to extend or retract the hydraulic cylinder.
In electro-hydraulic circuits, actuation of the displacement of the main spool valve may be controlled by a pilot control system that includes smaller, electronically-controlled pressure relief valves (ePRVs) that apply hydraulic fluid pressure on the main spool actuation valve to achieve smooth modulation of main spool valve displacement to the desired position. The ePRVs may receive electrical current commands from an electronic control module (ECM) when a user inputs a command to raise or lower the implement, and the ePRVs may respond to the electrical current command by applying hydraulic fluid pressure on the main spool valve to cause the main spool valve to shift to the desired position. A first ePRV (when actuated) may apply hydraulic fluid pressure on a first side of the main spool valve via a first pilot line to displace the main spool valve to a first position, while a second ePRV may operate in a ‘relieving stage’ in which hydraulic fluid is permitted to drain through a second pilot line and the second ePRV to a tank as the main spool valve is displaced to the first position. Alternatively, the second ePRV (when actuated) may apply hydraulic fluid pressure on a second side of the main spool via the second pilot line to displace the main spool valve to a second position, while the first ePRV may operate in the relieving stage to allow hydraulic fluid to drain through the first pilot line and the first ePRV to the tank as the main spool is displaced to the second position.
While effective, the ePRVs used in current electro-hydraulic circuits may be designed with little resistance in the relieving stage so that the maximum hydraulic fluid pressure to achieve full displacement of the main spool valve is minimized As a result, the pilot line of the ePRV operating in the relieving stage may have low fluid pressures. This low pressure condition on the ‘drain side’ of the main spool valve may allow dissolved air in the hydraulic fluid to come out of solution and form air bubbles in the hydraulic fluid. Such aeration of the hydraulic fluid may lower the bulk modulus of the hydraulic fluid, thereby creating a ‘spongy’ fluid condition on the drain side of the main spool valve. The increased ‘sponginess’ of the hydraulic fluid may result in variable resistance to the dynamic motion of the main spool valve as it is displaced to the desired position, allowing the main spool valve to oscillate or overshoot its desired position. This may ultimately result in poor controllability over the positioning of the implement.
U.S. Patent Application Publication Number 2013/0298542 discloses a hydraulic system having a control valve that shifts between three positions to control the flow of hydraulic fluid to a hydraulic cylinder. A return line downstream of the three-position control valve includes an electronically-controlled counter-pressure valve that varies the back pressure in the return line depending on the operation conditions. However, the reference does mention a pilot control system for the control valve, and it does not address the problem of aeration of the hydraulic fluid on the pilot control circuit of the main spool valve in such systems.
Accordingly, there is a need for improved designs for hydraulic fluid circuits that include a pilot control system for actuating displacement of a main spool valve. In such systems, there is a need for hydraulic fluid circuit designs that improve controllability over the displacement of the main spool valve.
In accordance with one aspect of the present disclosure, a hydraulic circuit is disclosed. The hydraulic circuit may comprise an actuation valve configured to actuate a flow of hydraulic fluid to and from a hydraulic consumer, and the actuation valve may have a first position and a second position in which the flow of the hydraulic fluid to and from the hydraulic consumer is actuated. The hydraulic circuit may further comprise a first control valve in fluid communication with the actuation valve through a first pilot line, and a second control valve in fluid communication with the actuation valve through a second pilot line. The first control valve may be configured to displace the actuation valve to the first position when actuated, and the second control valve may be configured to displace the actuation valve to the second position when actuated. The first pilot line and the second pilot line may each have a fixed minimum back pressure sufficient to maintain dissolved air in the hydraulic fluid.
In accordance with another aspect of the present disclosure, a machine is disclosed. The machine may comprise a hydraulic consumer, and a main spool valve configured to actuate a flow of hydraulic fluid to and from the hydraulic consumer. The main spool valve may have a first position and a second position in which the flow of the hydraulic fluid to and from the hydraulic consumer is actuated. The machine may further comprise a first control valve in fluid communication with the main spool valve via a first pilot line and configured to apply hydraulic fluid pressure on the main spool valve to displace the main spool valve to the first position when actuated, and a second control valve in fluid communication with the main spool valve via a second pilot line and configured to apply hydraulic fluid pressure on the main spool valve to displace the main spool valve to the second position when actuated. The first control valve may operate in a relieving stage in which the hydraulic fluid is permitted to drain through the first pilot line as the main spool valve is displaced to the second position, and the second control valve may operate in a relieving stage in which the hydraulic fluid is permitted to drain through the second pilot line as the main spool valve is displaced to the first position. The first pilot line may be maintained at a fixed minimum back pressure when the first control valve is in the relieving stage, and the second pilot line may be maintained at the fixed minimum back pressure when the second pilot line is in the relieving stage. The fixed minimum back pressure may be a fluid pressure sufficient to maintain dissolved air in the hydraulic fluid.
In accordance with another aspect of the present disclosure, a method of operating a hydraulic circuit of a machine is disclosed. The hydraulic circuit may include a main spool valve configured to actuate a flow of hydraulic fluid to and from a hydraulic consumer, first and second control valves configured to actuate the main spool valve, and first and second pilot lines respectively fluidly connecting the first and second control valves to the main spool valve. The method may comprise actuating the first control valve so that a hydraulic fluid pressure is applied to the main spool valve via the first pilot line, and displacing the main spool valve to a first position in response to the hydraulic fluid pressure in the first pilot line. The method may further comprise operating the second control valve in a relieving stage as the main spool valve is displaced to the first position, wherein the relieving stage of the second control valve permits hydraulic fluid to drain through the second pilot line. The method may further comprise maintaining the second pilot line at a fixed minimum back pressure when the second control valve is in the relieving stage. The fixed minimum back pressure may be a fluid pressure sufficient to maintain dissolved air in the hydraulic fluid.
These and other aspects and features of the present disclosure will be more readily understood when read in conjunction with the accompanying drawings.
Referring now to the drawings, and with specific reference to
Turning now to
The hydraulic circuit 14 may further include a pilot control system 38 for actuating the movement or displacement of the main spool valve 30 between its various positions. The pilot control system 38 may include a first control valve 40 that displaces the main spool valve 30 to the first position 32 when actuated, and a second control valve 42 that displaces the main spool valve 30 to the second position 34 when actuated, as described in further detail below with reference to
If the hydraulic circuit 14 is an electro-hydraulic circuit 56 as shown in
With the main spool valve 30 in the first position 32, hydraulic fluid may be fed from a source 70 to the hydraulic consumer 16 via the feed line 26. The source 70 may include a hydraulic fluid reservoir and a pump, and may be the same hydraulic fluid source as the pilot source 68 or a separate source of hydraulic fluid. If the hydraulic consumer 16 is a hydraulic cylinder 18, hydraulic fluid may be fed to a first side 72 of the hydraulic cylinder 18 to cause extension of the hydraulic cylinder 18, while hydraulic fluid may drain from a second side 74 of the hydraulic cylinder 18 to a tank 76 via the feed line 28. The tank 76 that collects the hydraulic fluid draining from the hydraulic cylinder 18 may be the same as the tank 52 or it may be a separate tank.
Turning to
With the main spool valve 30 in the second position 34, hydraulic fluid may be fed from the source 70 to the hydraulic consumer 16 via the feed line 28. If the hydraulic consumer 16 is the hydraulic cylinder 18, hydraulic fluid may be fed to the second side 74 of the hydraulic cylinder 18 to cause the cylinder 18 to retract, and hydraulic fluid may drain from the first side 72 of the cylinder 18 to the tank 76 via the feed line 26.
Referring to both
To avoid the ‘spongy’ fluid condition in the pilot line 44 or 46 that is on the drain side 80, the pilot lines 44 and 46 may have a fixed minimum back pressure. The fixed minimum back pressure in the pilot lines 44 and 46 may ensure that air bubbles do not form in the hydraulic fluid draining through the pilot line on the drain side 80. As a result, improved controllability over the displacement of the main spool valve 30 (and over the motion of any connected implement) may be achieved. It is noted that the pilot line 44 or 46 that is on the actuation side 78 may have a pressure well above the fixed minimum back pressure such that the formation of air bubbles in the hydraulic fluid is not a concern. Accordingly, the pilot line 44 or 46 on the actuation side 78 may be at a pressure well above the fixed back minimum pressure, whereas the pilot line 44 or 46 on the drain side 80 may be maintained at the fixed minimum back pressure. The fixed minimum back pressure may be a positive fluid pressure that is above the fluid pressure in the drain lines 54.
The fixed minimum back pressure in the pilot lines 44 and 46 may be a fluid pressure that is known to be sufficient to keep air dissolved in the hydraulic fluid and prevent aeration of the hydraulic fluid. For instance, the fixed minimum back pressure may be chosen so that the dynamic pressure drop in the pilot lines 44 or 46 on the drain side 80 of the main spool valve 30 does not exceed 1 atmosphere (atm). The fixed minimum back pressure may be, for example, about 250 kilopascals (kPa), but may deviate substantially from this value depending on various conditions and design considerations.
In an alternative arrangement of the hydraulic circuit 14, the first and second control valves 40 and 42 may be controlled hydromechanically, rather than electronically (see
In either configuration of the hydraulic circuit 14, the first and second control valves 40 and 42 may be configured so that the valves 40 and 42 cannot operate below a non-zero low pressure limit, wherein the non-zero low pressure limit is equivalent to the desired fixed minimum back pressure. Alternatively, in the electro-hydraulic circuit 56, the ECM 58 may maintain a non-zero electrical current signal on the ePRV 60 or 62 that is in the relieving stage 50 while the other ePRV 60 or 62 is actuated. In other words, the ECM 58 may maintain a non-zero electrical current signal on the ePRV 60 or 62 that is on the drain side 80 of the main spool valve 30. The non-zero electrical current signal applied to the ePRV 60 or 62 may cause the ePRV to maintain a hydraulic fluid pressure in the corresponding pilot line 44 or 46 that is proportional to the non-zero electrical current signal and equivalent to the desired fixed minimum back pressure.
As yet another alternative, the drain lines 54 may include a back pressure valve 82 as shown in
In general, the teachings of the present disclosure may find applicability in many industries including, but not limited to, construction, agriculture, and transportation industries. More specifically, the teachings of the present disclosure may be applicable to any industry using machines or equipment that include a hydraulic fluid circuit.
If the command received at the block 102 is to retract the hydraulic cylinder 18, the second control valve 42 may be energized/actuated to the actuation position 48 according to a block 114. In the actuation position 48, the second control valve 42 may apply hydraulic fluid pressure in the second pilot line 46 to displace the main spool valve 30 to the second position 34 (block 116/
The hydraulic circuit disclosed herein includes a pilot control system for controlling actuation of an actuation valve (e.g., a main spool valve), wherein the pilot control system is maintained at a fixed minimum back pressure on the drain side the actuation valve. The fixed minimum back pressure ensures that the hydraulic fluid pressure in the pilot line on the drain side is sufficient to maintain dissolved air and prevent air entrainment in the hydraulic fluid that is draining therethough. As such, the bulk modulus of the hydraulic fluid and the resistance on the drain side of the pilot control system may remain substantially constant, providing improved controllability over the motion of the main spool valve as it is displaced. This is an improvement over prior art systems in which the pressure on the drain side of the pilot control system is low and is not well-regulated, allowing the main spool valve to overshoot the desired position. It is expected that the technology disclosed herein may find wide industrial applicability in a wide range of areas such as, but not limited to, construction, agriculture, mining, automotive, and power generation applications.