The present disclosure relates to hydraulic fracturing pumps to enhance the flow of fracturing fluid into wellheads and related methods and, more particularly, to hydraulic fracturing pumps to provide increased flow of fracturing fluid into wellheads and related methods.
Hydraulic fracturing is an oilfield operation that stimulates the production of hydrocarbons, such that the hydrocarbons may more easily or readily flow from a subsurface formation to a well. For example, a hydraulic fracturing system may be configured to fracture a formation by pumping a fracturing fluid into a well at high pressure and high flow rates. Some fracturing fluids may take the form of a slurry including water, proppants, and/or other additives, such as thickening agents and gels. The slurry may be forced via operation of one or more pumps into the formation at rates faster than can be accepted by the existing pores, fractures, faults, or other spaces within the formation. As a result, pressure may build rapidly to the point where the formation may fail and may begin to fracture. By continuing to pump the fracturing fluid into the formation, existing fractures in the formation may be caused to expand and extend in directions away from a well bore, thereby creating additional flow paths for hydrocarbons to flow to the well bore. The proppants may serve to prevent the expanded fractures from closing or may reduce the extent to which the expanded fractures contract when pumping of the fracturing fluid is ceased. Once the formation is fractured, large quantities of the injected fracturing fluid are allowed to flow out of the well, and the production stream of hydrocarbons may be obtained from the formation.
To pump the fracturing fluid into the well bore, a hydraulic fracturing system may include a number of hydraulic fracturing units, each including a prime mover to supply mechanical power and a hydraulic fracturing pump driven by the prime mover. The hydraulic fracturing pump may be supplied with fracturing fluid, and the hydraulic fracturing pump, driven by the prime mover, may pump the fracturing fluid at high-pressure and high flow rates into the wellhead during a fracturing operation. In order to facilitate use of the hydraulic fracturing units and other equipment related to a fracturing operation at different locations, the hydraulic fracturing units may often include a mobile platform, such as a trailer, onto which the prime mover, hydraulic fracturing pump, and other components of the hydraulic fracturing unit may be mounted. The hydraulic fracturing unit may be transported to one wellhead location, set-up for operation, used during the fracturing operation, and once the fracturing operation is completed, it may be partially disassembled for transportation and transported to another wellhead location for use in another fracturing operation. Because the hydraulic fracturing units are often transported on public highways, the maximum dimensions of the hydraulic fracturing units may often be constrained by government regulations.
Although the maximum dimensions of the hydraulic fracturing units may be constrained, it may be desirable for the hydraulic fracturing units to be capable of increased pumping capacity. For example, by increasing the pumping capacity of the hydraulic fracturing units, it may be possible to successfully complete a fracturing operation using fewer hydraulic fracturing units, which may lead to reduced set-up and tear-down time, the need for fewer operators, more efficient operation, and more cost-effective completion of the fracturing operation. However, due at least in part to the constrained maximum dimensions of the hydraulic fracturing units, it may be difficult to increase the pumping capacity of a hydraulic fracturing unit.
In addition, larger hydraulic fracturing pumps driven by more powerful prime movers may develop relatively larger shock and vibration during operation, for example, due to torque loads generated by more powerful prime movers driving higher capacity hydraulic fracturing pumps. Such shock and vibration, if unmitigated, may result in premature wear or failure of components of the hydraulic fracturing unit and manifolds carrying the fracturing fluid to the wellhead. Thus, although hydraulic fracturing units having larger pumping capacities may be desirable, such larger capacities may result other possible drawbacks.
Accordingly, Applicant has recognized a need for hydraulic fracturing units and related methods for providing greater pumping capacity, while mitigating or eliminating possible drawbacks. The present disclosure may address one or more of the above-referenced drawbacks, as well as other possible drawbacks.
As referenced above, it may be desirable to provide hydraulic fracturing units having higher pumping capacities, but achieving higher pumping capacities may be constrained by limited physical dimensions enabling transportation of hydraulic fracturing units between well sites. In addition, higher pumping capacities may require more powerful prime movers and higher capacity hydraulic fracturing pumps, and operation of such prime movers and hydraulic fracturing pumps may lead to premature wear or failure of components of the hydraulic fracturing units and the manifolds that carry the fracturing fluid to the wellhead due, for example, to increased shock and vibration during operation and proppant settling due to increased stroke lengths.
The present disclosure generally is directed to hydraulic fracturing pumps to enhance the flow of fracturing fluid into wellheads and related methods and, more particularly, to hydraulic fracturing pumps to provide increased flow of fracturing fluid into wellheads and related methods. For example, in some embodiments, a hydraulic fracturing pump may be configured to provided increased pumping capacity while retaining dimensions able to fit within physical dimension limitations for transportation between well sites. In addition, in some embodiments, the hydraulic fracturing pumps and related methods may provide higher pumping capacities while keeping shock and vibrations to relatively low levels, or in some instances, reducing shock and vibration levels. As a result, at least some embodiments may reduce the likelihood of, or prevent, premature component wear or failure in hydraulic fracturing systems.
According to some embodiments, a hydraulic fracturing pump to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation may include a pump frame at least partially defining a shaft aperture, and a crankshaft extending through the shaft aperture. The hydraulic fracturing pump further may include a plurality of first plungers connected to the crankshaft and positioned to reciprocate relative to the crankshaft as the crankshaft rotates. Each of the plurality of first plungers may reciprocate in a first plane and draw-in fracturing fluid at a first pressure and discharge the fracturing fluid at a second pressure greater than the first pressure. The hydraulic fracturing pump also may include a plurality of second plungers connected to the crankshaft and positioned to reciprocate relative to the crankshaft as the crankshaft rotates. Each of the plurality of second plungers may reciprocate in a second plane and draw-in fracturing fluid at a third pressure and discharge the fracturing fluid at a fourth pressure greater than the third pressure. The first plane and the second plane may define a non-zero offset angle between the first plane and the second plane.
In some embodiments, a hydraulic fracturing pump to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation may include a pump frame at least partially defining a shaft aperture, and a crankshaft extending through the shaft aperture. The crankshaft may include a plurality of crankpins, and each of the crankpins may be offset from a longitudinal rotation axis of the crankshaft. The hydraulic fracturing pump further may include a plurality of first plungers, and each of the plurality of first plungers may be connected to the crankshaft via a respective crankpin of the plurality of crankpins and be positioned to reciprocate relative to the crankshaft as the crankshaft rotates. The hydraulic fracturing pump also may include a plurality of second plungers. Each of the plurality of second plungers may be connected to the crankshaft via a respective crankpin of the plurality of crankpins and may be positioned to reciprocate relative to the crankshaft as the crankshaft rotates. Each of plurality of crankpins may be connected to one of the plurality of first plungers and one of the plurality of second plungers.
In some embodiments, a hydraulic fracturing pump to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation may include a pump frame at least partially defining a shaft aperture, and a crankshaft extending through the shaft aperture. The hydraulic fracturing pump further may include a plurality of first plungers, and each of the plurality of first plungers may be connected to the crankshaft and may be positioned to reciprocate relative to the crankshaft as the crankshaft rotates. The hydraulic fracturing pump also may include a plurality of second plungers, and each of the plurality of second plungers may be connected to the crankshaft and may be positioned to reciprocate relative to the crankshaft as the crankshaft rotates. The plurality of first plungers may be positioned to pump a first fracturing fluid including a first fracturing fluid composition while the plurality of second plungers pump a second fracturing fluid including a second fracturing fluid composition different from the first fracturing fluid composition.
In some embodiments, a hydraulic fracturing pump to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation may include a pump frame at least partially defining a shaft aperture, and a crankshaft extending through the shaft aperture. The hydraulic fracturing pump further may include a plurality of first plungers, and each of the plurality of first plungers may be connected to the crankshaft and may be positioned to reciprocate relative to the crankshaft as the crankshaft rotates. The hydraulic fracturing pump also may include a plurality of second plungers, and each of the plurality of second plungers may be connected to the crankshaft and many be positioned to reciprocate relative to the crankshaft as the crankshaft rotates. The hydraulic fracturing pump still further may include a first fluid end connected to the pump frame such that the plurality of first plungers draw fracturing fluid into the first fluid end at a first pressure and discharge the fracturing fluid from the first fluid end at a second pressure greater than the first pressure. The hydraulic fracturing pump also may include a second fluid end connected to the pump frame such that the plurality of second plungers draw fracturing fluid into the second fluid end at a third pressure and discharge the fracturing fluid from the second fluid end at a fourth pressure greater than the third pressure.
In some embodiments, a hydraulic fracturing pump to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation may include a pump frame at least partially defining a shaft aperture, and a crankshaft extending through the shaft aperture. The hydraulic fracturing pump further may include a plunger connected to the crankshaft and may be positioned to reciprocate relative to the crankshaft as the crankshaft rotates. The hydraulic fracturing pump also may include a fluid end connected to the pump frame. One or more of the fluid end or the plunger may be positioned such that as the plunger travels in a first direction, fracturing fluid is drawn into the fluid end and fracturing fluid is discharged from the fluid end, and as the plunger travels in a second direction opposite the first direction, fracturing fluid is drawn into the fluid end and fracturing fluid is discharged from the fluid end.
In some embodiments, a hydraulic fracturing pump to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation may include a pump frame at least partially defining a shaft aperture, and a crankshaft extending through the shaft aperture. The hydraulic fracturing pump further may include at least one plunger connected to the crankshaft and may be positioned to reciprocate relative to the crankshaft as the crankshaft rotates. The hydraulic fracturing pump also may include a drive assembly configured for transferring power from the prime mover to the hydraulic fracturing pump. In one embodiment, the drive assembly may include a first pinion gear engaged with the crankshaft at a first end of the pump frame, and a connector shaft connected to the first pinion gear. The hydraulic fracturing pump still further may include a second pinion gear connected to the hydraulic fracturing pump at a second end of the pump frame and connected to the first pinion gear via the connector shaft, such that the first pinion gear drives the connector shaft and the crankshaft at the first end of the pump frame, the connector shaft drives the second pinion gear at the second end of the pump frame, and the second pinion gear drives the crankshaft at the second end of the pump frame.
In other embodiments, the drive assembly can include a planetary gear train including at least one planetary gearbox positioned at the first end of the pump frame. In some embodiments, an additional planetary gearbox also can be provided at the second end of the pump frame. The at least one planetary gearbox may include a first drive gear, which can be configured as a ring gear having a first series of gear teeth formed about an inner circumference thereof, and a second series of gear teeth formed about an outer circumference thereof. A sun gear can be positioned within the first drive gear, generally being arranged approximately in the center thereof and aligned with the longitudinal axis of the crankshaft. The sun gear can engage with the crankshaft, and further can be connected to a prime mover of the hydraulic fracturing unit; for example, such as by being coupled to a transmission arranged between the prime mover and the hydraulic fracturing pump. A series of planet gears may be positioned about the sun gear, each of the planet gears including a series of gear teeth configured to engage gear teeth of the sun gear, and engage with the first series of teeth formed about the inner circumference of the first drive gear. A first pinon gear can be arranged below the first drive gear and can be engaged with a first end of a connector shaft that extends through the pump frame. The first pinion gear further may have a series of gear teeth formed about its circumference, which gear teeth are configured to engage with the second series of gear teeth formed about the outer circumference of the first drive gear.
As the sun gear is driven by operation of the prime mover, the crankshaft is rotated, and at substantially the same time, the engagement of the gear teeth of the planet gears with the gear teeth of the sun gear and with the first series of gear teeth formed about the inner circumference of the first drive gear will correspondingly drive rotation of the first drive gear. As the first drive gear is rotated, the engagement of its second series of teeth arranged about its outer circumference with the teeth of the first pinion gear turn drives rotation of the first pinion gear, which in turn drives rotation of the connector shaft coupled at its first end to the first pinion gear. The connector shaft further can be coupled at a second, opposite end to a second pinion gear located at the second end of the pump frame. The second pinion gear may have a series of gear teeth configured to engage with the gear teeth of a second drive gear located at the second end of the pump frame such that as the connector shaft is rotated, this rotation is translated to the second drive gear by the second pinion gear for additionally driving rotation of the crankshaft by the second drive gear. The second drive gear thus can engage with the crankshaft so as to support and drive rotation of the crankshaft from the second end of the crankshaft, to help reduce torque therealong.
In embodiments, a second planetary gearbox such as utilized at the first end of the pump frame can be used at the second end of the pump frame. In such embodiments, the second drive gear can be configured as a ring gear having gear teeth along an inner and an outer circumference thereof, with a sun gear and a series of planet gears arranged approximately in the center of the second drive gear. The sun gear can be connected to or engaged with the second end of the crankshaft so as to support and drive rotation of the crankshaft so that the crankshaft is driven from both sides of the pump frame. Alternatively, the second drive gear can comprise a single gear engaged with the second end of the crankshaft and driven by the rotation of the second pinion gear by the connector shaft.
In some embodiments, a hydraulic fracturing pump to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation may include a pump frame including a plurality of pump frame sections, and one or more of the plurality of pump frame sections may at least partially define a shaft aperture. The hydraulic fracturing pump further may include a crankshaft extending through the shaft aperture, and one or more of the plurality of pump frame sections may have an inverted V-shaped cross-section as viewed in a direction substantially parallel to a longitudinal axis of the crankshaft. The hydraulic fracturing pump also may include a plunger connected to the crankshaft and positioned to reciprocate relative to the crankshaft as the crankshaft rotates.
In some embodiments, a hydraulic fracturing unit to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation may include a platform having a longitudinal platform axis and a width perpendicular to the longitudinal platform axis. The hydraulic fracturing unit further may include a prime mover supported by the platform, and the prime mover may include an output shaft. The hydraulic fracturing unit also may include a transmission including an input shaft and a transmission output shaft, and the transmission may be supported by the platform and connected to the output shaft of the prime mover via the input shaft. The hydraulic fracturing unit still further may include a hydraulic fracturing pump supported by the platform at a longitudinal position opposite the prime mover relative to the transmission. The hydraulic fracturing pump may include a pump frame at least partially defining a shaft aperture, and a crankshaft extending through the shaft aperture. The crankshaft may have a longitudinal axis of rotation substantially parallel to the longitudinal platform axis. The hydraulic fracturing pump further may include a plurality of first plungers connected to the crankshaft and positioned to reciprocate relative to the crankshaft as the crankshaft rotates. Each of the plurality of first plungers may reciprocate in a first plane and may draw-in fracturing fluid at a first pressure and discharge the fracturing fluid at a second pressure greater than the first pressure. The hydraulic fracturing pump also may include a plurality of second plungers connected to the crankshaft and positioned to reciprocate relative to the crankshaft as the crankshaft rotates. Each of the plurality of second plungers may reciprocate in a second plane and may draw-in fracturing fluid at a third pressure and discharge the fracturing fluid at a fourth pressure greater than the third pressure. The first plane and the second plane may define a non-zero offset angle between the first plane and the second plane.
In some embodiments, a method to enhance output of a hydraulic fracturing unit associated with a high-pressure fracturing operation may include connecting a plurality of first plungers to a crankshaft of a hydraulic fracturing pump. Each of the plurality of first plungers may be positioned to reciprocate relative to the crankshaft as the crankshaft rotates, and each of the plurality of first plungers may reciprocate in a first plane and may draw-in fracturing fluid at a first pressure and discharge the fracturing fluid at a second pressure greater than the first pressure. The method further may include connecting a plurality of second plungers to the crankshaft of the hydraulic fracturing pump. Each of the plurality of second plungers may be positioned to reciprocate relative to the crankshaft as the crankshaft rotates, and each of the plurality of second plungers may reciprocate in a second plane and may draw-in fracturing fluid at a third pressure and discharge the fracturing fluid at a fourth pressure greater than the third pressure. The first plane and the second plane may define a non-zero offset angle between the first plane and the second plane.
In some embodiments, a method to increase a service interval of a hydraulic fracturing pump associated with a high-pressure fracturing operation may include pumping a first fracturing fluid including a first fracturing fluid composition via a plurality of first plungers of a hydraulic fracturing pump. The method further may include, while pumping the first fracturing fluid, pumping a second fracturing fluid including a second fracturing fluid composition via a plurality of second plungers of the hydraulic fracturing pump. The first fracturing fluid composition may be different than the second fracturing fluid composition.
In some embodiments, a method to reduce torque shock magnitude generated during operation of a hydraulic fracturing pump associated with a high-pressure fracturing operation may include connecting a plurality of first plungers to a crankshaft of the hydraulic fracturing pump. Each of the plurality of first plungers may be positioned to reciprocate relative to the crankshaft as the crankshaft rotates. Each of the plurality of first plungers may reciprocate in a first plane and draw-in fracturing fluid at a first pressure and discharge the fracturing fluid at a second pressure greater than the first pressure. The method also may include connecting a plurality of second plungers to the crankshaft of the hydraulic fracturing pump. Each of the plurality of second plungers may be positioned to reciprocate relative to the crankshaft as the crankshaft rotates. Each of the plurality of second plungers may reciprocate in a second plane and draw-in fracturing fluid at a third pressure and discharge the fracturing fluid at a fourth pressure greater than the third pressure. The first plane and the second plane may define a non-zero offset angle between the first plane and the second plane.
According to one aspect, a pump comprises: a pump frame at least partially defining a shaft aperture; a crankshaft extending through the shaft aperture; a plurality of first plungers connected to the crankshaft and configured to reciprocate relative to the crankshaft as the crankshaft rotates, each of the plurality of first plungers configured to reciprocate in a first plane; and a plurality of second plungers connected to the crankshaft and configured to reciprocate relative to the crankshaft as the crankshaft rotates, each of the plurality of second plungers configured to reciprocate in a second plane; wherein a non-zero offset angle is defined between the first plane and the second plane.
In one embodiment of the pump, the non-zero offset angle ranges from about forty-five degrees to about one-hundred-eighty degrees.
In one embodiment, the pump further comprises a plurality of crankpins mounted along the crankshaft, wherein each of the plurality of crankpins being offset from a longitudinal rotation axis of the crankshaft, and each of the plurality of crankpins being connected to one of the plurality of first plungers and one of the plurality of second plungers; wherein the first and second plungers are configured to move in opposite directions to draw fluid and to discharge fluid; wherein each of the plurality of first plungers configured to draw in fluid at a first pressure and discharge fluid at a second pressure greater than the first pressure, and each of the plurality of second plungers configured to draw in fluid at a third pressure and discharge fluid at a fourth pressure greater than the third pressure.
In embodiments, the pump can include a first pair of plungers comprising a first one of the plurality of first plungers and a first one of the plurality of second plungers, and a second pair of plungers comprising a second one of the plurality of first plungers and a second one of the plurality of second plungers; and wherein the first pair of plungers is offset from the second pair of plungers such that the first pair of plungers and the second pair of plungers are engaged in a non-consecutive firing sequence sufficient to provide at least partial cancellation of forces generated by the first and second pairs of plungers.
In embodiments, the pump further comprises a plurality of connector rods, each of the connector rods configured to connect one of the plurality first plungers to one of a plurality of crankpins or one of the plurality of second plungers to one of the plurality of crankpins; each of the connector rods comprising a plunger end connected to one of the plurality first plungers or one of the plurality of second plungers; and a crank end connected to one of the plurality of crankpins, each of the crank ends comprising at least one crank end connector.
In embodiments, the pump further comprises a drive assembly configured to be driven by one or more prime movers. In some embodiments of the pump, the one or more prime movers comprise one or more gas turbine engines, electric motors, or combinations thereof.
In embodiments of the pump, the drive assembly comprises: a first pinion gear engaged with the crankshaft at a first end of the pump frame; a connector shaft having a first end connected to the first pinion gear; and a second pinion gear connected to a second end of the connector shaft at a second end of the pump frame, and engaged with the crankshaft at the second end of the pump frame; wherein the first pinion gear is configured to drive the crankshaft at the first end of the pump frame upon rotation of the crankshaft, such that the connector shaft drives the second pinion gear at the second end of the pump frame, and the second pinion gear drives the crankshaft at the second end of the pump frame.
In embodiments of the pump, the drive assembly comprises: at least one planetary gearbox connected to the pump at a first end of the pump frame, at a second end of the pump frame, or at both the first and the second end of the pump frame, the planetary gearbox comprising: a sun gear engaged with the crankshaft at the first end of the pump frame; a ring gear surrounding the sun gear; and a plurality of planetary gears disposed between the ring gear and the sun gear and configured to engage with the ring gear, and sun gear such that rotation of the sun gear is translated to the ring gear.
In embodiments of the pump, one or more of: the plurality of first plungers reciprocate in a first direction away from the crankshaft and a second direction opposite the first direction and toward the crankshaft, the first direction and the second direction lie in the first plane, the first direction having a downward component and an outward component, and the second direction having an upward component and an inward component; or the plurality of second plungers reciprocate in a third direction away from the crankshaft and a fourth direction opposite the third direction and toward the crankshaft, the third direction and the fourth direction lying in the second plane, the third direction having a downward component and an outward component, and the fourth direction having an upward component and an inward component.
In embodiments of the pump, the plurality of first plungers comprises at least three plungers, and the plurality of second plungers comprises at least three plungers.
In embodiments of the pump, the pump frame comprises a plurality of pump frame sections, each of the plurality of pump frame sections at least partially defining the shaft aperture; and wherein at least one of the plurality of pump frame sections has an inverted V-shaped cross-section as viewed in a direction substantially parallel to a longitudinal axis of the crankshaft.
In another aspect, a hydraulic fracturing pump is provided to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation, the hydraulic fracturing pump comprising: a pump frame at least partially defining a shaft aperture; a crankshaft extending through the shaft aperture, the crankshaft comprising a plurality of crankpins, each of the crankpins being offset from a longitudinal rotation axis of the crankshaft; a plurality of first plungers, each of the plurality of first plungers being connected to the crankshaft via a respective crankpin of the plurality of crankpins and configured to reciprocate relative to the crankshaft as the crankshaft rotates; and a plurality of second plungers, each of the plurality of second plungers being connected to the crankshaft via a respective crankpin of the plurality of crankpins and configured to reciprocate relative to the crankshaft as the crankshaft rotates, each of the plurality of crankpins being connected to one of the plurality of first plungers and one of the plurality of second plungers.
In embodiments, the hydraulic fracturing pump further comprises a plurality of connector rods, each of the connector rods connecting one of the plurality first plungers to one of the plurality of crankpins or one of the plurality of second plungers to one of the plurality of crankpins.
In embodiments of the hydraulic fracturing pump, each of the plurality of connector rods comprises: a plunger end connected to one of the plurality first plungers or one of the plurality of second plungers; and a crank end connected to one of the plurality of crankpins, each of the crank ends comprising two crank end connectors separated by a crank end space.
In embodiments of the hydraulic fracturing pump, the plurality of connector rods comprises: a plurality of first connector rods, each of the plurality of first connector rods being connected to one of the plurality of first plungers; and a plurality of second connector rods, each of the plurality of second connector rods being connected to one of the plurality of second plungers, wherein a crank end connector of each of the plurality of first connector rods is positioned at least partially in a crank end space of one of the plurality of second connector rods and a crank end connector of each of the plurality of second connector rods is positioned at least partially in a crank end space of one of the plurality of first connector rods.
In embodiments of the hydraulic fracturing pump each of the plurality of first plungers reciprocates in a first plane, and each of the plurality of second plungers reciprocates in a second plane, the first plane and the second plane defining a non-zero offset angle between the first plane and the second plane.
In embodiments of the hydraulic fracturing pump the plurality of first plungers is positioned to pump a first fracturing fluid comprising a first fracturing fluid composition while the plurality of second plungers to pumps a second fracturing fluid comprising a second fracturing fluid composition different than the first fracturing fluid composition, and wherein the first fracturing fluid composition comprises proppants, and the second fracturing fluid composition comprises water and is devoid of proppants.
In embodiments, the hydraulic fracturing pump further comprises: a first fluid end connected to the pump frame such that the plurality of first plungers draw fracturing fluid into the first fluid end at a first pressure and discharge the fracturing fluid from the first fluid end at a second pressure greater than the first pressure; and a second fluid end connected to the pump frame such that the plurality of second plungers draw fracturing fluid into the second fluid end at a third pressure and discharge the fracturing fluid from the second fluid end at a fourth pressure greater than the third pressure.
In embodiments of the hydraulic fracturing pump, one or more of: one or more of the plurality of first plungers or the first fluid end are configured such that as each of the plurality of first plungers travels in a first direction, fracturing fluid is drawn into the first fluid end and fracturing fluid is discharged from the first fluid end, and as each of the plurality of first plungers travels in a second direction opposite the first direction, fracturing fluid is drawn into the first fluid end and fracturing fluid is discharged from the first fluid end; or one or more of the plurality of second plungers or the second fluid end are configured such that as each of the plurality of second plungers travels in a third direction, fracturing fluid is drawn into the second fluid end and fracturing fluid is discharged from the second fluid end, and as each of the plurality of second plungers travels in a fourth direction opposite the third direction, fracturing fluid is drawn into the second fluid end and fracturing fluid is discharged from the second fluid end.
In embodiments of the hydraulic fracturing pump, the pump frame comprises a plurality of pump frame sections and at least one of the plurality of pump frame sections has an upright or inverted V-shaped cross-section as viewed in a direction substantially parallel to a longitudinal axis of the crankshaft.
According to another aspect, a method of assembling a hydraulic fracturing unit is provided, the method comprising: connecting a plurality of first plungers to a crankshaft of a hydraulic fracturing pump, each of the plurality of first plungers positioned to reciprocate relative to the crankshaft as the crankshaft rotates and each of the plurality of first plungers configured to reciprocate in a first plane and draw in fracturing fluid at a first pressure and discharge the fracturing fluid at a second pressure greater than the first pressure; and connecting a plurality of second plungers to the crankshaft of the hydraulic fracturing pump, each of the plurality of second plungers positioned to reciprocate relative to the crankshaft as the crankshaft rotates and each of the plurality of second plungers configured to reciprocate in a second plane and draw in fracturing fluid at a third pressure and discharge the fracturing fluid at a fourth pressure greater than the third pressure, the first plane and the second plane defining a non-zero offset angle between the first plane and the second plane.
In embodiments of the method, the crankshaft comprises a plurality of crankpins each offset from a longitudinal rotation axis of the crankshaft; and connecting the plurality of first plungers to the crankshaft and connecting the plurality of second plungers to the crankshaft comprises connecting one of the plurality of first plungers and one of the plurality of second plungers to each of the plurality of crankpins.
In embodiments of the method, each of the plurality of first plungers has a first diameter and each of the plurality of second plungers has a second diameter, and connecting one of the plurality of first plungers and one of the plurality of second plungers to each of the plurality of crankpins comprises connecting the one of the plurality of first plungers and the one of the plurality of second plungers to each of the plurality of crankpins such that a longitudinal distance occupied by the one of the plurality of first plungers and the one of the plurality of second plungers is less than a sum of the first diameter and the second diameter.
In embodiments of the method, the hydraulic fracturing unit comprises a platform having a longitudinal platform axis and a width perpendicular to the longitudinal platform axis, the method further comprising connecting the hydraulic fracturing pump to the platform, such that a longitudinal axis of the crankshaft is parallel to the longitudinal platform axis. In some embodiments, connecting the hydraulic fracturing pump to the platform comprises connecting the hydraulic fracturing pump to the platform, such that one or more of the plurality of first plungers or the plurality of second plungers are closer to the platform than the crankshaft.
In embodiments, connecting the plurality of first plungers to the crankshaft of the hydraulic fracturing pump and connecting the plurality of second plungers to the crankshaft of the hydraulic fracturing pump comprises arranging first and second plungers of each of the plurality of first plungers and the plurality of second plungers in plunger groups with adjacent groups of plungers offset by between about 45 degrees to about 90 degrees; wherein during pumping of the fracturing fluid, the plunger groups are engaged in a non-consecutive sequence to provide at least partial force cancellation of forces generated by the plunger groups.
In embodiments, the method comprises connecting a first fluid end to the hydraulic fracturing pump, such that the plurality of first plungers reciprocate in the first fluid end; and connecting a second fluid end to the hydraulic fracturing pump, such that the plurality of second plungers reciprocate in the second fluid end.
In another aspect, a method to increase a service interval of a hydraulic fracturing pump associated with a high-pressure fracturing operation is provided, the method comprising: pumping a first fracturing fluid comprising a first fracturing fluid composition via a plurality of first plungers of a hydraulic fracturing pump; and while pumping the first fracturing fluid, pumping a second fracturing fluid comprising a second fracturing fluid composition via a plurality of second plungers of the hydraulic fracturing pump, the first fracturing fluid composition being different than the second fracturing fluid composition.
In embodiments, the first and second plungers of each of the plurality of first plungers and the plurality of second plungers are arranged in plunger groups; and wherein pumping the first fracturing fluid and pumping the second fracturing fluid comprises engaging plunger groups in a non-consecutive sequence sufficient to provide at least partial force cancellation of forces generated by the plunger groups.
In embodiments of the method, pumping the first fracturing fluid and pumping the second fracturing fluid comprise driving opposite ends of a crankshaft of the hydraulic fracturing pump from opposite ends thereof.
In embodiments of the method, the hydraulic fracturing pump comprises a drive assembly including at least one planetary gearbox arranged at an end of the hydraulic fracturing pump; and wherein driving the crankshaft comprises: rotating a sun gear of the planetary gearbox coupled to a first one of the opposite ends of the crankshaft, the rotation of the sun gear being translated to a ring gear by a plurality of planetary ears arranged between the sun gear and the ring gear; driving a first pinion gear with the rotation of the ring gear, the first pinion gear engaged with a connector shaft at a first end thereof; and driving a second pinion gear engaged with the connector shaft at a second end thereof the second pinion configured to engage with and drive rotation of the crankshaft from a second one of the opposite ends of the crankshaft.
Still other aspects and advantages of these exemplary embodiments and other embodiments, are discussed in detail herein. Moreover, it is to be understood that both the foregoing information and the following detailed description provide merely illustrative examples of various aspects and embodiments, and are intended to provide an overview or framework for understanding the nature and character of the claimed aspects and embodiments. Accordingly, these and other objects, along with advantages and features of the present disclosure, will become apparent through reference to the following description and the accompanying drawings. Furthermore, it is to be understood that the features of the various embodiments described herein are not mutually exclusive and may exist in various combinations and permutations.
The accompanying drawings, which are included to provide a further understanding of the embodiments of the present disclosure, are incorporated in and constitute a part of this specification, illustrate embodiments of the present disclosure, and together with the detailed description, serve to explain principles of the embodiments discussed herein. No attempt is made to show structural details of this disclosure in more detail than can be necessary for a fundamental understanding of the embodiments discussed herein and the various ways in which they can be practiced. According to common practice, the various features of the drawings discussed below are not necessarily drawn to scale. Dimensions of various features and elements in the drawings can be expanded or reduced to more clearly illustrate embodiments of the disclosure.
The drawings include like numerals to indicate like parts throughout the several views, the following description is provided as an enabling teaching of exemplary embodiments, and those skilled in the relevant art will recognize that many changes may be made to the embodiments described. It also will be apparent that some of the desired benefits of the embodiments described can be obtained by selecting some of the features of the embodiments without utilizing other features. Accordingly, those skilled in the art will recognize that many modifications and adaptations to the embodiments described are possible and may even be desirable in certain circumstances. Thus, the following description is provided as illustrative of the principles of the embodiments and not in limitation thereof.
The phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. As used herein, the term “plurality” refers to two or more items or components. The terms “comprising,” “including,” “carrying,” “having,” “containing,” and “involving,” whether in the written description or the claims and the like, are open-ended terms, i.e., to mean “including but not limited to,” unless otherwise stated. Thus, the use of such terms is meant to encompass the items listed thereafter, and equivalents thereof, as well as additional items. The transitional phrases “consisting of” and “consisting essentially of,” are closed or semi-closed transitional phrases, respectively, with respect to any claims. Use of ordinal terms such as “first,” “second,” “third,” and the like in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish claim elements.
In some embodiments, one or more of the hydraulic fracturing units 12 may include a hydraulic fracturing pump 14 driven by a prime mover 16, such as an internal combustion engine. For example, the prime movers 16 may include gas turbine engines (GTEs) or reciprocating-piston engines. In some embodiments, each of the hydraulic fracturing units 12 may include a directly-driven turbine (DDT) hydraulic fracturing pump 14, in which the hydraulic fracturing pump 14 is connected to one or more GTEs that supply power to the respective hydraulic fracturing pump 14 for supplying fracturing fluid at high pressure and high flow rates to a formation. For example, the GTE may be connected to a respective hydraulic fracturing pump 14 via a transmission 18 (e.g., a reduction transmission) connected to a drive shaft, which, in turn, is connected to a driveshaft or input flange of a respective hydraulic fracturing pump 14, which may be a reciprocating hydraulic fracturing pump. Other types of engine-to-pump arrangements are contemplated as will be understood by those skilled in the art.
In some embodiments, one or more of the GTEs may be a dual-fuel or bi-fuel GTE, for example, capable of being operated using of two or more different types of fuel, such as natural gas and diesel fuel, although other types of fuel are contemplated. For example, a dual-fuel or bi-fuel GTE may be capable of being operated using a first type of fuel, a second type of fuel, and/or a combination of the first type of fuel and the second type of fuel. For example, the fuel may include gaseous fuels, such as, for example, compressed natural gas (CNG), natural gas, field gas, pipeline gas, methane, propane, butane, and/or liquid fuels, such as, for example, diesel fuel (e.g., #2 diesel), bio-diesel fuel, bio-fuel, alcohol, gasoline, gasohol, aviation fuel, and other fuels as will be understood by those skilled in the art. Gaseous fuels may be supplied by CNG bulk vessels, a gas compressor, a liquid natural gas vaporizer, line gas, and/or well-gas produced natural gas. Other types and associated fuel supply sources are contemplated. The one or more prime movers 16 may be operated to provide horsepower to drive the transmission 18 connected to one or more of the hydraulic fracturing pumps 14 to safely and successfully fracture a formation during a well stimulation project or fracturing operation.
In some embodiments, the prime mover 16 may include one or more electric motors. The electric motor may be rated for over 2,000 hp over 5,000 hp, or over 10,000 hp, for example, for the hydraulic fracturing pump 14 to generate a desired pressure and flow rate. The electric motor may include a stator having stator windings for generating a rotating magnetic field at a synchronous speed corresponding to a frequency of a voltage applied to the stator windings. The motor may also include a rotor having rotor windings for interacting with the rotating magnetic field to rotate the rotor. The rotor windings may be configured to generate rotating magnetic poles for interacting with the rotating magnetic field. In one or more embodiments, the electric motor may be an induction electric motor in which the rotating magnetic poles in the rotor are induced by the rotating magnetic field in the stator. In one or more embodiments, the electric motor may be a multi-phase electric motor, such as a three-phase motor for example.
The electric motor may include a single shaft electric motor or a dual shaft electric motor. In one or more embodiments, the electric motor and two or more hydraulic fracturing pump 14 may be disposed upon a single chassis. For example, the electric a motor may be disposed on a single chassis and arranged between two hydraulic fracturing pumps 14 in manner similar to the pump arrangements described in U.S. Pat. No. 9,395,049, the disclosure of which is incorporated by reference herein in its entirety. In some embodiments, two or more electric motors and two or more hydraulic fracturing pumps 14 may be disposed upon a single chassis. For example, a first electric motor may be connected to or otherwise mechanically linked with a first hydraulic fracturing pump 14 and a second electric motor may be connected to or otherwise mechanically linked with a second hydraulic fracturing pump 14, each first and second electric motor and the first and second hydraulic fracturing pump 14 being disposed on a single chassis and may be arranged in a manner similar to the pump arrangements described in U.S. Pat. No. 11,118,438, the disclosure of which is incorporated by reference herein in its entirety. For example, each electric motor and corresponding hydraulic fracturing pump 14 may be contained as a single module and a plurality of such modules may be disposed on a single chassis.
In one or more embodiments, the electric motor may be supplied with a voltage having a fixed frequency or a voltage having a variable frequency. For example, a voltage with a fixed frequency may be applied to a stator of the electric motor and, hence, the electric motor may be referred to as a fixed-frequency motor. Electric power to a motor control center may be supplied by an on-site power source, such as on-site diesel generators, natural gas reciprocating engine generators, or turbine generators, or by an off-site power source, such as utility grid power. In some embodiments, the motor control center may be disposed with the electric motor and the hydraulic fracturing pump 14 on a single chassis. In other embodiments, a voltage with a variable frequency may be applied to a stator of the electric motor. In such embodiments, a remotely controllable variable frequency drive (VFD) may be disposed, along with the electric motor(s) and the hydraulic fracturing pump(s) 14, on a single chassis. The VFD may be coupled to or otherwise electrically linked with a power source as described herein. The VFD may be configured to provide electric power to the one or more electric motors.
In some embodiments, a plurality of electric motors may be connected to or otherwise mechanically linked with one hydraulic fracturing pump 14. For example, the plurality of electric motors may each be connected to a crankshaft of the hydraulic fracturing pump 14. The plurality of electric motors may include any suitable number of electric motors (e.g., from 2 electric motors to 7 electric motors or more). In some embodiments, at least five electric motors may be coupled to the crankshaft in a manner such that each electric motor may be positioned about the pump crankshaft axis so that an output shaft of each electric motor is spaced apart from a longitudinal rotation axis of the crankshaft. For example, the plurality of electric motors can be arranged on or connected to the hydraulic fracturing pump 14 in a manner similar to the electric motor arrangement(s) described in U.S. Pre-Grant Publication No. 2021/0095648, the disclosure of which is incorporated by reference herein in its entirety.
In some embodiments, the fracturing fluid may include, for example, water, proppants, and/or other additives, such as thickening agents and/or gels. For example, proppants may include grains of sand, ceramic beads or spheres, shells, and/or other particulates, and may be added to the fracturing fluid, along with gelling agents to create a slurry as will be understood by those skilled in the art. The slurry may be forced via the hydraulic fracturing pumps 14 into the formation at rates faster than can be accepted by the existing pores, fractures, faults, or other spaces within the formation. As a result, pressure in the formation may build rapidly to the point where the formation fails and begins to fracture. By continuing to pump the fracturing fluid into the formation, existing fractures in the formation may be caused to expand and extend in directions away from a well bore, thereby creating additional flow paths for hydrocarbons to flow to the well. The proppants may serve to prevent the expanded fractures from closing or may reduce the extent to which the expanded fractures contract when pumping of the fracturing fluid is ceased. Once the well is fractured, large quantities of the injected fracturing fluid may be allowed to flow out of the well, and the water and any proppants not remaining in the expanded fractures may be separated from hydrocarbons produced by the well to protect downstream equipment from damage and corrosion. In some instances, the production stream of hydrocarbons may be processed to neutralize corrosive agents in the production stream resulting from the fracturing process.
In the example shown in
The hydraulic fracturing pumps 14, driven by the respective internal GTEs 16, discharge the slurry (e.g., the fracturing fluid including the water, agents, gels, and/or proppants) at high flow rates and/or high pressures through individual high-pressure discharge lines into two or more high-pressure flow lines, sometimes referred to as “missiles,” on the fracturing manifold 32. The flow from the high-pressure flow lines is combined at the fracturing manifold 32, and one or more of the high-pressure flow lines provide fluid flow to a manifold assembly 34, sometimes referred to as a “goat head.” The manifold assembly 34 delivers the slurry into a wellhead manifold 36. The wellhead manifold 36 may be configured to selectively divert the slurry to, for example, one or more wellheads 38 via operation of one or more valves. Once the fracturing process is ceased or completed, flow returning from the fractured formation discharges into a flowback manifold, and the returned flow may be collected in one or more flowback tanks as will be understood by those skilled in the art.
As schematically depicted in
In some embodiments, two or more hydraulic fracturing pumps 14 may be connected to the chassis 40. For example, the chassis 40 may include the prime mover 16 disposed or situated between two hydraulic fracturing pumps 14. In such example, the prime mover 16 may be a dual-shaft electric motor wherein each output shaft of the motor is connected to one of the hydraulic fracturing pumps 14. In one or more embodiments, the chassis 40 may include a plurality of prime movers 16 and hydraulic fracturing pumps 14. For example, the chassis 40 may include a first prime mover 16 mechanically linked to a first hydraulic fracturing pump 14 and a second prime mover 16 mechanically linked to a second hydraulic fracturing pump 14.
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
Each of the of first plungers 84 may be configured to reciprocate and draw-in fracturing fluid at a first pressure and discharge the fracturing fluid at a second pressure greater than the first pressure. Each of the second plungers 88 may be configured to reciprocate and draw-in fracturing fluid at a third pressure and discharge the fracturing fluid at a fourth pressure greater than the third pressure. For example, the first pressure and/or the third pressure may be substantially equal to a pressure associated with the fracturing fluid being supplied to the hydraulic fracturing pump 14 from the blender 28 (
In some embodiments, for example, as shown in
In some embodiments, providing the first and second plungers 84 and 88 in different planes may result in increasing the pumping capacity of the hydraulic fracturing pump 14, for example, without substantially increasing the physical dimensions of the hydraulic fracturing pump 14, for example, without substantially increasing the pump length L and/or without substantially increasing the pump width W. In some embodiments, providing the first and second plungers 84 and 88 in different planes may result in relatively reducing the level of shock and/or vibration associated with operation of the hydraulic fracturing pump 14, for example, the level of shock and/or vibration associated with torque shock and/or torque vibration generated during operation of the hydraulic fracturing pump 14, for example, as each of the first plungers 84 and/or each of the second plungers 88 discharges fracturing fluid at the second and fourth pressures, respectively. For example, in some embodiments, the shock and/or torque generated by one or more of the first plungers 84 and/or one or more of the second plungers 88 may substantially offset or cancel one another.
As shown in
As shown in
In some embodiments, the crankshaft 78 and/or the crankpins 92 may be configured such that different pairs of the first and second plungers 84 and 88 are in different locations along their respective stroke paths as the crankshaft 78 rotates. In some embodiments, the crankshaft 78 and/or the crankpins 92 may be configured such that different pairs of first and second plungers of the first and second banks of plungers and are offset by the crank pins, e.g., in embodiments, the plungers of the first and third pairs of plungers shown in the FIGS. can be offset from each other by the crank pins by about 90 degrees, for example, and can move in different directions, e.g. along an intake stroke direction toward the crankshaft 78 for drawing-in fracturing fluid and a discharge stroke direction away from the crankshaft 78 for discharging fracturing fluid. For example, a first pair of plungers may include a first one of the first plungers 84 (e.g., first plunger 84a) and a first one of the second plungers 88 (e.g., second plunger 88a), and a second pair of plungers may include a second one of the first plungers 84 (e.g., first plunger 84b) and a second one of the second plungers 88 (e.g., second plunger 88b), and the crankshaft 78 may be configured such that the first pair of plungers moves in a first direction to discharge at least a portion of the fracturing fluid while the second pair of plungers moves in a second direction to draw-in at least a portion of the fracturing fluid. In some embodiments, each of the pairs of first and second plungers 84 and 88 may be connected to a common crankpin 92 of the crankshaft 78. In some embodiments, different pairs and/or additional pairs of the first and second plungers 84 and 88 may similarly move in different directions. This example movement of plunger pairs in different directions may result in relatively reducing the level of shock and/or vibration associated with operation of the hydraulic fracturing pump 14, for example, the level of shock and/or vibration associated with torque shock and/or torque vibration generated during operation of the hydraulic fracturing pump 14, for example, as each of the first plungers 84 and/or each of the second plungers 88 discharges fracturing fluid at the second and fourth pressures, respectively. For example, in some embodiments, the shock and/or torque generated by one or more of the pairs of first and second plungers 84 and 88 may substantially offset or cancel one another.
As shown in
For example, as shown in
As shown in
An additional embodiment a hydraulic fracturing pump 14′ is illustrated in
As illustrated in
As further illustrated in
As illustrated in
In addition, the opposed first and second plungers of the first and second banks of plungers can be arranged in pairs or groups of first and second plungers, with the plungers of each pair of plungers offset from the first and second plungers of other ones of the pairs of plungers. For example, as further indicated in
As illustrated in
In embodiments, the pump frame sections 80a-80e, as generally illustrated in
As illustrated in
In embodiments, as indicated in
In embodiments, each of the crank pins connected to alternating ones of the connecting rods and plungers may be radially offset with respect to one another, for example by 90 degrees, although greater or lesser offsets (e.g. between about 0 degrees to about 180 degrees), can be used. As a result, the respective reciprocation of the plungers of the first bank of plungers can be opposite of the reciprocal movement of the plungers of the second bank of first plungers, e.g. as the first plungers are moved in the first direction toward their corresponding fluid end, so as to discharge fluid from the fluid end, the second plungers can be retracted in the second direction away from their corresponding fluid end. This can enable a plunger firing sequence whereby two consecutive plunger groups fire one after the other, e.g. a plunger firing sequence of 1-3-2-4 can be provided. The spacing of the plunger reciprocations thus can potentially result in at least some degree of force cancellation in at least some of the bearings due to a 90-degree phasing of the plungers so as to reduce peak loads acting on at least some of the bearings of the pump frame sections.
As further illustrated in
In other embodiments, the crank pins can be arranged along the crankshaft such that different pairs of the plungers of the first and second banks of plungers will be at different locations along their respective stroke paths as the crankshaft rotates; and, as discussed above, further can be moved in different directions, for example and intake or stroke direction towards the crankshaft or drawing in fracturing fluid and a discharge stroke direction away from the crankshaft for discharging the fracturing fluid.
Each of the of first and second plungers 84/88 may be configured to reciprocate in first and second directions to discharge draw-in fracturing fluid at different pressures. For example, the first plungers may be aligned and reciprocate in a first plane to draw-in fracturing fluid at a first pressure and discharge the fracturing fluid at a second pressure that can be greater than the first pressure, while the second plungers 88 may be configured to reciprocate in a second plane to draw-in fracturing fluid at a third pressure and discharge the fracturing fluid at a fourth pressure that can be greater than the third pressure; such as discussed above with respect to
In addition, reciprocating the first and second plungers 84 and 88 in their respective planes also may result in increasing the pumping capacity of the hydraulic fracturing pump 14′ without substantially increasing a pump length L and/or without substantially increasing a pump width W thereof; and further may assist in relatively reducing the level of shock and/or vibration associated with operation of the hydraulic fracturing pump 14, e.g., the level of shock and/or vibration associated with torque shock and/or torque vibration generated during operation of the hydraulic fracturing pump 14′, as each of the first plungers 84 and/or each of the second plungers 88 discharges fracturing fluid at different pressures. This further can lead to the shock and/or torque generated by one or more of the first plungers 84 and/or one or more of the second plungers 88 substantially offsetting or canceling one another.
As illustrated in
The first drive gear can be configured as a ring gear having an inner circumference 211 defining an interior chamber or area, and further can include a first series of gear teeth 212 projecting radially inward, and a second series of gear teeth 213 arranged about an outer circumference 214 of the first drive gear 210. A planetary gear arrangement 215 will be received within the interior of the first drive gear chamber such that the planetary gear arrangement is surrounded by and engages the first drive gear. In an example embodiment as shown in
During operation of the hydraulic fracturing pump 14′, the prime mover of the hydraulic fracturing unit will supply power so as to drive rotation of the sun gear, which in turn drives rotation of the crankshaft from the first end thereof, As the crankshaft is rotated, the first plungers of the first set or bank or plungers and the second set of bank or plungers accordingly will be reciprocated in an alternating fashion in opposite directions toward and away from their chambers of their respective or corresponding fluid ends. For example, one or more of the first plungers of the first set or bank of plungers can be moved in a first or substantially downwardly extending direction discharge stroke so as to discharge at least a portion of fracturing fluid contained within the chamber 124 of the first fluid end 74a. The discharge fluid can be directed out of the chamber of the first fluid end and along a first fluid output conduit 106 such as indicated in
In addition, rotation of the sun gear also drives rotation of the first drive gear 210 of the planetary gear drive train 200. As the sun gear rotates, the engagement of the teeth of the planet gears with the teeth of the sun gear causes rotation of the planet gears, which further engage the first series of teeth 212 formed about the inner circumference 211 of the first gear so as to translate the rotational motion of the sun gear to the first drive gear and thus drive rotation of the first drive gear 210. As indicated in
As discussed with respect to the embodiment shown in
In embodiments, the planetary gear train 200 can include a second planetary gear box that can be located at the second end of the pump frame for driving the crankshaft from its second end. The second planetary gear box can have a similar construction to the planetary gear box 201 shown in
As shown in
In some embodiments, the first fracturing fluid composition and the second fracturing fluid composition may be different. For example, the first fracturing fluid composition may include water and proppant having a first size and/or first bulk density, and the second fracturing fluid composition may include water and proppant having a second size and/or second bulk density. For example, the first formation fluid composition may include water and proppant having a size of greater than 100 Mesh, from about 80 Mesh to about 20 Mesh, from about 70 Mesh to about 30 Mesh, from about 20 Mesh to about 40 Mesh, or from about 40 Mesh to about 60 Mesh and the second fracturing fluid composition may include water and proppant having a size of less than 100 Mesh, less than 150 Mesh, from about 150 Mesh to about 500 Mesh, or from about 200 Mesh to about 400 Mesh.
In some embodiments, the first fracturing fluid composition may include water, gels, and/or proppants, and the second fracturing fluid composition may include water and/or other components, but may be substantially devoid of proppants. In such embodiments, the first bank 86 of the first plungers 84 may pump a fracturing fluid including proppants while the second bank 90 of the second plungers 88 pumps water, etc., without proppants. Some such embodiments may result in increasing a service interval for the hydraulic fracturing pump 14, for example, because the plungers pumping water (e.g., without proppants) will be expected to experience relatively less wear (e.g., have a slower wear rate) as compared to plungers that pump a fracturing fluid that includes proppants, for example, because pumping proppants may result in increasing the wear rates of plungers and associated fluid ends.
In some embodiments, the hydraulic fracturing pump 14/14′ may be configured to pump fracturing fluids from three or more independent fracturing fluid supplies. For example, the first fracturing fluid may exit the first fluid end 74a via the first output conduit 106a, the second fracturing fluid may exit the second fluid end 74b via the second output conduit 106b, a third fracturing fluid may exit a third fluid end via a third output conduit, and optionally a fourth fracturing fluid may exit a fourth fluid end via a fourth output conduit.
In some embodiments, each of the first, second, third, and forth fracturing fluids may have substantially the same compositions. In other embodiments, the compositions of the first, second, third, and forth fracturing fluids may be different. For example, the first fracturing fluid composition may include water and proppant having a first size and/or first bulk density, and the second fracturing fluid composition may include water and proppant having a second size and/or second bulk density, the third fracturing fluid composition may include water and proppant having a third size and/or third bulk density, and the fourth fracturing fluid composition may include water and proppant having a fourth size and/or fourth bulk density. In some embodiments, the proppant having a size of greater than 100 Mesh, from about 80 Mesh to about 20 Mesh, from about 70 Mesh to about 30 Mesh, from about 20 Mesh to about 40 Mesh, or from about 40 Mesh to about 60 Mesh and the second fracturing fluid composition may include water and proppant having a size of less than 100 Mesh, less than 150 Mesh, from about 150 Mesh to about 500 Mesh, or from about 200 Mesh to about 400 Mesh.
In some embodiments, the first fracturing fluid composition may include water, gels, and/or proppants, and the second fracturing fluid composition may include water and/or other components, but may be substantially devoid of proppants. In such embodiments, the first bank 86 of the first plungers 84 may pump a fracturing fluid including proppants while the second bank 90 of the second plungers 88 pumps water, etc., without proppants. Some such embodiments may result in increasing a service interval for the hydraulic fracturing pump 14/14′, for example, because the plungers pumping water (e.g., without proppants) will be expected to experience relatively less wear (e.g., have a slower wear rate) as compared to plungers that pump a fracturing fluid that includes proppants, for example, because pumping proppants may result in increasing the wear rates of plungers and associated fluid ends
In some embodiments the hydraulic fracturing pump may be in fluid communication with two or more wells. For example, the hydraulic fracturing pump 14 may in fluid communication with 1, 2, 3, 4, or 5 or more wells. In some such embodiments, the first output conduit 106a for outputting the first fracturing fluid at a high pressure and/or a high flow rate may be in fluid communication with a first well for receiving the first fracturing fluid at the high pressure and/or the high flow rate and the second output conduit 106b for outputting the second fracturing fluid at high pressure and/or a high flow rate may be in fluid communication with a second well for receiving the second fracturing fluid at the high pressure and/or the high flow rate. In some embodiments, the first output conduit 106a may be in fluid communication with a first well for receiving the first fracturing fluid, the second output conduit 106b may be in fluid communication with a second well for receiving the second fracturing fluid, the third output conduit may be in fluid communication with a third well for receiving the third fracturing fluid, and the fourth output conduit may be in fluid communication with a fourth well for receiving the fourth fracturing fluid.
As shown in
As shown in
At 604, the example method 600 may include connecting second plungers to the crankshaft of the hydraulic fracturing pump, such that each of the second plungers reciprocates in a second plane relative to the crankshaft as the crankshaft rotates. For example, the crankshaft may include a plurality of crankpins each offset from a longitudinal rotation axis of the crankshaft, and connecting the plurality of first plungers to the crankshaft and connecting the plurality of second plungers to the crankshaft may include connecting one of the plurality of first plungers and one of the plurality of second plungers to each of the plurality of crankpins, for example, as described herein. In some embodiments, each of the plurality of first plungers may have a first diameter, and each of the plurality of second plungers has a second diameter. The first and second diameters may the same or different. Connecting one of the plurality of first plungers and one of the plurality of second plungers to each of the plurality of crankpins may include connecting one of the first plungers and one of the second plungers to each of the crankpins, such that a longitudinal distance occupied by the one of the first plungers and the one of the second plungers is less than a sum of the first diameter and the second diameter, for example, as described previously herein. In some embodiments, the crankshaft may define a longitudinal crankshaft axis extending between opposite longitudinal crankshaft ends, and the example method 600 further may include driving the crankshaft via the opposite longitudinal crankshaft ends, for example, as previously described herein.
The example method 600, at 606, may include connecting a first fluid end to the hydraulic fracturing pump, such that the first plungers reciprocate in the first fluid end.
At 608, the example method 600 may include connecting a second fluid end to the hydraulic fracturing pump, such that the second plungers reciprocate in the second fluid end.
The example method 600, at 610, may include connecting the hydraulic fracturing pump to a platform, such that the first plungers and/or the second plungers are closer to the platform than the crankshaft of the hydraulic fracturing pump. In some embodiments, the platform may have a longitudinal platform axis and a width perpendicular to the longitudinal platform axis. The hydraulic fracturing pump may be connected to the platform, such that a longitudinal axis of the crankshaft is parallel to the longitudinal platform axis.
At 612, the example method 600 may include supplying a first fracturing fluid having a first fracturing fluid composition to the first fluid end.
The example method 600, at 614, may include supplying a second fracturing fluid having a second fracturing fluid composition to the second fluid end. The first fracturing fluid composition and the second fracturing fluid composition may be the same or different, for example, as described previously herein.
At 616, the example method 600 may include discharging the first fracturing fluid from the first fluid end of the hydraulic fracturing pump. In some embodiments, this may include causing the first fluid end to discharge fracturing fluid as each of the plurality of first plungers moves in a first direction and discharge fracturing fluid as each of the plurality of first plungers moves in a second direction opposite the first direction, for example, as previously described herein.
At 618, the example method 600 may include, while discharging the first fracturing fluid from the first fluid end, discharging the second fracturing fluid from the second fluid end. In some embodiments, this may include causing the second fluid end to discharge fracturing fluid as each of the plurality of second plungers moves in a third direction and discharge fracturing fluid as each of the plurality of second plungers moves in a fourth direction opposite the third direction, for example, as previously described herein.
At 704, the example method 700 may include connecting second plungers to the crankshaft of the hydraulic fracturing pump.
The example method 700, at 706 may include connecting a first fluid end to the hydraulic fracturing pump, such that the first plungers reciprocate in the first fluid end.
At 708, the example method 700 may include connecting a second fluid end to the hydraulic fracturing pump, such that the second plungers reciprocate in the second fluid end.
The example method 700, at 710, may include supplying a first fracturing fluid having a first fracturing fluid composition to the first fluid end.
At 712, the example method 700 may include supplying a second fracturing fluid having a second fracturing fluid composition to the second fluid end. In some embodiments of the example method 700, the first fracturing fluid composition and the second fracturing fluid composition may be different. For example, the first fracturing fluid composition may include water, gels, and/or proppants, and the second fracturing fluid composition may include water and/or other components, but may be substantially devoid of proppants. In such embodiments, the first plungers may pump a fracturing fluid including proppants while the second plungers may pump water, etc., without proppants. Some such embodiments may result in increasing a service interval for the hydraulic fracturing pump because the plungers pumping water (e.g., without proppants) will be expected to experience relatively less wear (e.g., have a slower wear rate) as compared to plungers that pump a fracturing fluid that includes proppants, for example, because pumping proppants may result in increasing the wear rates of plungers and associated fluid ends.
The example method 700, at 714, may include discharging the first fracturing fluid from the first fluid end of the hydraulic fracturing pump.
At 716, the example method 700 may include, while discharging the first fracturing fluid from the first fluid end, discharging the second fracturing fluid from the second fluid end.
At 804, the example method 800 may include connecting second plungers to the crankshaft of the hydraulic fracturing pump, such that each of the second plungers reciprocates in a second plane relative to the crankshaft as the crankshaft rotates. For example, the crankshaft may include a plurality of crankpins each offset from a longitudinal rotation axis of the crankshaft, and connecting the plurality of first plungers to the crankshaft and connecting the plurality of second plungers to the crankshaft may include connecting one of the plurality of first plungers and one of the plurality of second plungers to each of the plurality of crankpins, for example, as described herein. In some embodiments, the first plane and the second plane may define a non-zero offset angle between the first plane and the second plane, for example, as described previously herein.
The example method 800, at 806, may include connecting a first fluid end to the hydraulic fracturing pump, such that the first plungers reciprocate in the first fluid end.
At 808, the example method 800 may include connecting a second fluid end to the hydraulic fracturing pump, such that the second plungers reciprocate in the second fluid end.
The example method 800, at 810, may include connecting the hydraulic fracturing pump to a platform, such that the first plungers and/or the second plungers are closer to the platform than a crankshaft of the hydraulic fracturing pump.
At 812, the example method 800, may include supplying fracturing fluid to the first fluid end and the second fluid end of the hydraulic fracturing pump.
The example method 800, at 814, may include discharging the fracturing fluid from the first fluid end and the second fluid end of the hydraulic fracturing pump. In some embodiments, this may include causing the first fluid end to discharge fracturing fluid as each of the plurality of first plungers moves in a first direction and discharge fracturing fluid as each of the plurality of first plungers moves in a second direction opposite the first direction, for example, as previously described herein. In some embodiments, this also may include causing the second fluid end to discharge fracturing fluid as each of the plurality of second plungers moves in a third direction and discharge fracturing fluid as each of the plurality of second plungers moves in a fourth direction opposite the third direction, for example, as previously described herein.
In addition to the embodiments described above, embodiments of the present disclosure further relate to one or more of the following Examples, which can include various embodiments method steps features or elements and/or combinations of features steps or elements as disclosed herein. The following disclosed Examples further are not to be taken as limiting the scope of the present disclosure and any of the embodiments.
Example 1. A hydraulic fracturing pump to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation, the hydraulic fracturing pump
The hydraulic fracturing pump of Example 1, wherein the non-zero offset angle ranges from ninety degrees to one hundred-eighty degrees.
A second example embodiment may include the hydraulic fracturing pump of Example 1, wherein the crankshaft includes a plurality of crankpins, each of the plurality of crankpins being offset from a longitudinal rotation axis of the crankshaft, and each of the plurality of crankpins being connected to one of the plurality of first plungers and one of the plurality of second plungers.
A third example embodiment may include the hydraulic fracturing pump of Example 1, wherein: a first pair of plungers includes a first one of the plurality of first plungers and a first one of the plurality of second plungers, and a second pair of plungers includes a second one of the plurality of first plungers and a second one of the plurality of second plungers; and the crankshaft is configured such that the first pair of plungers moves in a first direction to discharge the fracturing fluid while the second pair of plungers moves in a second direction to draw-in the fracturing fluid.
A fourth example embodiment may include the hydraulic fracturing pump of Example 1, further includes a plurality of connector rods, each of the connector rods connecting one of one of the plurality first plungers to each of the plurality of crankpins or one of the plurality of second plungers to each of the plurality of crankpins.
A fifth example embodiment may include the hydraulic fracturing pump of Example 1, wherein each of the plurality of connector rods includes: a plunger end connected to one of one of the plurality first plungers or one of the plurality of second plungers; and a crank end connected to one of the plurality of crankpins, each of the crank ends including two crank end connectors separated by a crank end space.
A sixth example embodiment may include the hydraulic fracturing pump of Example 1, wherein the plurality of connector rods includes: a plurality of first connector rods, each of the plurality of first connector rods being connected to one of the plurality of first plungers; and a plurality of second connector rods, each of the plurality of second connector rods being connected to one of the plurality of second plungers, wherein a crank end connector of each of the plurality of first connector rods is positioned at least partially in a crank end space of one of the plurality of second connector rods, and a crank end connector of each of the plurality of second connector rods is positioned at least partially in a crank end space of one of the plurality of first connector rods.
A seventh example embodiment may include the hydraulic fracturing pump of the Example 1, wherein the plurality of first plungers is positioned to pump a first fracturing fluid including a first fracturing fluid composition while the plurality of second plungers pumps a second fracturing fluid including a second fracturing fluid composition different than the first fracturing fluid composition.
A eighth example embodiment may include the hydraulic fracturing pump of Example 1, wherein the first fracturing fluid composition includes proppants, and the second fracturing fluid composition includes water and is devoid of proppants.
A ninth example embodiment may include the hydraulic fracturing pump of Example 1, wherein the hydraulic fracturing pump is configured to be driven by one or more prime movers at opposite ends of the hydraulic fracturing pump.
A tenth example embodiment may include the hydraulic fracturing pump of Example 1, further including: a first pinion gear engaged with the crankshaft at a first end of the pump frame; a connector shaft connected to the first pinion gear; and a second pinion gear connected to the hydraulic fracturing pump at a second end of the pump frame and connected to the first pinion gear via the connector shaft, such that the first pinion gear drives the connector shaft and the crankshaft at the first end of the pump frame, the connector shaft drives the second pinion gear at the second end of the pump frame, and the second pinion gear drives the crankshaft at the second end of the pump frame.
An eleventh example embodiment may include the hydraulic fracturing pump of Example 1, further including: a first fluid end connected to the pump frame such that the plurality of first plungers draw fracturing fluid into the first fluid end at the first pressure and discharge the fracturing fluid from the first fluid end at the second pressure; and a second fluid end connected to the pump frame such that the plurality of second plungers draw fracturing fluid into the second fluid end at the third pressure and discharge the fracturing fluid from the second fluid end at the fourth pressure greater than the third pressure.
A twelfth example embodiment may include the hydraulic fracturing pump of Example 1, wherein one or more of: one or more of the plurality of first plungers or the first fluid end are configured such that as each of the plurality of first plungers travels in a first direction, fracturing fluid is drawn into the first fluid end and fracturing fluid is discharged from the first fluid end, and as each of the plurality of first plungers travels in a second direction opposite the first direction, fracturing fluid is drawn into the first fluid end and fracturing fluid is discharged from the first fluid end; or one or more of the plurality of second plungers or the second fluid end are configured such that as each of the plurality of second plungers travels in a third direction, fracturing fluid is drawn into the second fluid end and fracturing fluid is discharged from the second fluid end, and as each of the plurality of second plungers travels in a fourth direction opposite the third direction, fracturing fluid is drawn into the second fluid end and fracturing fluid is discharged from the second fluid end.
A thirteenth example embodiment may include the hydraulic fracturing pump of Example one or more of: the plurality of first plungers reciprocate in a first direction away from the crankshaft and a second direction opposite the first direction and toward the crankshaft, the first direction and the second direction lying in the first plane, the first direction having a downward component and an outward component, and the second direction having an upward component and an inward component; or the plurality of second plungers reciprocate in a third direction away from the crankshaft and a fourth direction opposite the third direction and toward the crankshaft, the third direction and the fourth direction lying in the second plane, the third direction having a downward component and an outward component, and the fourth direction having an upward component and an inward component.
A fourteenth example embodiment may include The hydraulic fracturing pump of Example 1, wherein the plurality of first plungers includes at least three plungers, and the plurality of second plungers includes at least three plungers.
A fifteenth example embodiment may include the hydraulic fracturing pump of Example 1, wherein the pump frame includes a plurality of pump frame sections, each of the plurality of pump frame sections at least partially defining the shaft aperture.
A sixteenth example embodiment may include the hydraulic fracturing pump of Example 1, wherein at least one of the plurality of pump frame sections has an inverted V-shaped cross-section as viewed in a direction substantially parallel to a longitudinal axis of the crankshaft.
Example 2. A hydraulic fracturing pump to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation, the hydraulic fracturing pump including: a pump frame at least partially defining a shaft aperture; a crankshaft extending through the shaft aperture, the crankshaft including a plurality of crankpins, each of the crankpins being offset from a longitudinal rotation axis of the crankshaft; a plurality of first plungers, each of the plurality of first plungers being connected to the crankshaft via a respective crankpin of the plurality of crankpins and being positioned to reciprocate relative to the crankshaft as the crankshaft rotates; and a plurality of second plungers, each of the plurality of second plungers being connected to the crankshaft via a respective crankpin of the plurality of crankpins and being positioned to reciprocate relative to the crankshaft as the crankshaft rotates, each of the plurality of crankpins being connected to one of the plurality of first plungers and one of the plurality of second plungers.
The hydraulic fracturing pump of Example 2, further including a plurality of connector rods, each of the connector rods connecting one of one of the plurality first plungers to each of the plurality of crankpins or one of the plurality of second plungers to each of the plurality of crankpins.
A second example embodiment may include the hydraulic fracturing pump of Example 2, wherein each of the plurality of connector rods includes: a plunger end connected to one of one of the plurality first plungers or one of the plurality of second plungers; and a crank end connected to one of the plurality of crankpins, each of the crank ends including two crank end connectors separated by a crank end space.
A third example embodiment may include the hydraulic fracturing pump of Example 2 the plurality of connector rods includes: a plurality of first connector rods, each of the plurality of first connector rods being connected to one of the plurality of first plungers; and a plurality of second connector rods, each of the plurality of second connector rods being connected to one of the plurality of second plungers, wherein a crank end connector of each of the plurality of first connector rods is positioned at least partially in a crank end space of one of the plurality of second connector rods and a crank end connector of each of the plurality of second connector rods is positioned at least partially in a crank end space of one of the plurality of first connector rods.
A fourth example embodiment may include the hydraulic fracturing pump of Example 2 a first pair of plungers includes a first one of the plurality of first plungers and a first one of the plurality of second plungers, and a second pair of plungers includes a second one of the plurality of first plungers and a second one of the plurality of second plungers; and the crankshaft is configured such that the first pair of plungers moves in a first direction to discharge the fracturing fluid while the second pair of plungers moves in a second direction to draw-in the fracturing fluid.
A fifth example embodiment may include the hydraulic fracturing pump of Example 2, wherein each of the plurality of first plungers reciprocates in a first plane, and each of the plurality of second plungers reciprocates in a second plane, the first plane and the second plane defining a non-zero offset angle between the first plane and the second plane.
A sixth example embodiment may include the hydraulic fracturing pump of Example 2, wherein the plurality of first plungers is positioned to pump a first fracturing fluid including a first fracturing fluid composition while the plurality of second plungers to pumps a second fracturing fluid including a second fracturing fluid composition different than the first fracturing fluid composition, and wherein the first fracturing fluid composition includes proppants, and the second fracturing fluid composition includes water and is devoid of proppants.
A seventh example embodiment may include the hydraulic fracturing pump of Example 2, further including: a first fluid end connected to the pump frame such that the plurality of first plungers draw fracturing fluid into the first fluid end at a first pressure and discharge the fracturing fluid from the first fluid end at a second pressure greater than the first pressure; and a second fluid end connected to the pump frame such that the plurality of second plungers draw fracturing fluid into the second fluid end at a third pressure and discharge the fracturing fluid from the second fluid end at a fourth pressure greater than the third pressure.
An eighth example embodiment may include the hydraulic fracturing pump of Example 2, wherein one or more of: one or more of the plurality of first plungers or the first fluid end are configured such that as each of the plurality of first plungers travels in a first direction, fracturing fluid is drawn into the first fluid end and fracturing fluid is discharged from the first fluid end, and as each of the plurality of first plungers travels in a second direction opposite the first direction, fracturing fluid is drawn into the first fluid end and fracturing fluid is discharged from the first fluid end; or one or more of the plurality of second plungers or the second fluid end are configured such that as each of the plurality of second plungers travels in a third direction, fracturing fluid is drawn into the second fluid end and fracturing fluid is discharged from the second fluid end, and as each of the plurality of second plungers travels in a fourth direction opposite the third direction, fracturing fluid is drawn into the second fluid end and fracturing fluid is discharged from the second fluid end.
A ninth example embodiment may include the hydraulic fracturing pump of Example 2 further including: a first pinion gear engaged with the crankshaft at a first end of the pump frame; a connector shaft connected to the first pinion gear; and a second pinion gear connected to the hydraulic fracturing pump at a second end of the pump frame and connected to the first pinion gear via the connector shaft, such that the first pinion gear drives the connector shaft and the crankshaft at the first end of the pump frame, the connector shaft drives the second pinion gear at the second end of the pump frame, and the second pinion gear drives the crankshaft at the second end of the pump frame.
A tenth example embodiment may include the hydraulic fracturing pump of Example 2, wherein the pump frame includes a plurality of pump frame sections, each of the plurality of pump frame sections at least partially defining the shaft aperture.
An eleventh example embodiment may include the hydraulic fracturing pump of Example 2, wherein at least one of the plurality of pump frame sections has an inverted V-shaped cross-section as viewed in a direction substantially parallel to a longitudinal axis of the crankshaft.
Example 3. A hydraulic fracturing pump to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation, the hydraulic fracturing pump including: a pump frame at least partially defining a shaft aperture; a crankshaft extending through the shaft aperture; a plurality of first plungers, each of the plurality of first plungers being connected to the crankshaft and positioned to reciprocate relative to the crankshaft as the crankshaft rotates; and a plurality of second plungers, each of the plurality of second plungers being connected to the crankshaft and being positioned to reciprocate relative to the crankshaft as the crankshaft rotates, the plurality of first plungers being positioned to pump a first fracturing fluid including a first fracturing fluid composition while the plurality of second plungers pump a second fracturing fluid includes a second fracturing fluid composition different from the first fracturing fluid composition.
A second example embodiment may include the hydraulic fracturing pump of Example 3, wherein the first fracturing fluid composition includes proppants, and the second fracturing fluid composition includes water and is devoid of proppants.
A third example embodiment may include the hydraulic fracturing pump of Example 3, wherein each of the plurality of first plungers reciprocates in a first plane, and each of the plurality of second plungers reciprocates in a second plane, the first plane and the second plane defining a non-zero offset angle between the first plane and the second plane.
A fourth example embodiment may include the hydraulic fracturing pump of Example 3, wherein the crankshaft includes a plurality of crankpins, each of the plurality of crankpins being offset from a longitudinal rotation axis of the crankshaft, and each of the plurality of crankpins being connected to one of the plurality of first plungers and one of the plurality of second plungers.
A fifth example embodiment may include the hydraulic fracturing pump of Example 3, wherein: a first pair of plungers includes a first one of the plurality of first plungers and a first one of the plurality of second plungers, and a second pair of plungers includes a second one of the plurality of first plungers and a second one of the plurality of second plungers; and the crankshaft is configured such that the first pair of plungers moves in a first direction to discharge the fracturing fluid while the second pair of plungers moves in a second direction to draw-in the fracturing fluid.
A sixth example embodiment may include the hydraulic fracturing pump of Example 3, further including a plurality of connector rods, each of the connector rods connecting one of one of the plurality first plungers to each of the plurality of crankpins or one of the plurality of second plungers to each of the plurality of crankpins.
A seventh example embodiment may include the hydraulic fracturing pump of Example 3, further including: a first fluid end connected to the pump frame such that the plurality of first plungers draw fracturing fluid into the first fluid end at a first pressure and discharge the fracturing fluid from the first fluid end at a second pressure greater than the first pressure; and a second fluid end connected to the pump frame such that the plurality of second plungers draw fracturing fluid into the second fluid end at a third pressure and discharge the fracturing fluid from the second fluid end at a fourth pressure greater than the third pressure.
An eighth example embodiment may include the hydraulic fracturing pump of Example 3, wherein one or more of: one or more of the plurality of first plungers or the first fluid end are configured such that as each of the plurality of first plungers travels in a first direction, fracturing fluid is drawn into the first fluid end and fracturing fluid is discharged from the first fluid end, and as each of the plurality of first plungers travels in a second direction opposite the first direction, fracturing fluid is drawn into the first fluid end and fracturing fluid is discharged from the first fluid end; or one or more of the plurality of second plungers or the second fluid end are configured such that as each of the plurality of second plungers travels in a third direction, fracturing fluid is drawn into the second fluid end and fracturing fluid is discharged from the second fluid end, and as each of the plurality of second plungers travels in a fourth direction opposite the third direction, fracturing fluid is drawn into the second fluid end and fracturing fluid is discharged from the second fluid end.
A ninth example embodiment may include the hydraulic fracturing pump of Example 3, further including: a first pinion gear engaged with the crankshaft at a first end of the pump frame; a connector shaft connected to the first pinion gear; and a second pinion gear connected to the hydraulic fracturing pump at a second end of the pump frame and connected to the first pinion gear via the connector shaft, such that the first pinion gear drives the connector shaft and the crankshaft at the first end of the pump frame, the connector shaft drives the second pinion gear at the second end of the pump frame, and the second pinion gear drives the crankshaft at the second end of the pump frame.
A tenth example embodiment may include the hydraulic fracturing pump of Example 3, wherein the pump frame includes a plurality of pump frame sections, each of the plurality of pump frame sections at least partially defining the shaft aperture.
An eleventh example embodiment may include the hydraulic fracturing pump of Example 3, wherein at least one of the plurality of pump frame sections has an inverted V-shaped cross-section as viewed in a direction substantially parallel to a longitudinal axis of the crankshaft.
Example 4. A hydraulic fracturing pump to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation, the hydraulic fracturing pump including: a pump frame at least partially defining a shaft aperture; a crankshaft extending through the shaft aperture; a plurality of first plungers, each of the plurality of first plungers being connected to the crankshaft and positioned to reciprocate relative to the crankshaft as the crankshaft rotates; and a plurality of second plungers, each of the plurality of second plungers being connected to the crankshaft and being positioned to reciprocate relative to the crankshaft as the crankshaft rotates; a first fluid end connected to the pump frame such that the plurality of first plungers draw fracturing fluid into the first fluid end at a first pressure and discharge the fracturing fluid from the first fluid end at a second pressure greater than the first pressure; and a second fluid end connected to the pump frame such that the plurality of second plungers draw fracturing fluid into the second fluid end at a third pressure and discharge the fracturing fluid from the second fluid end at a fourth pressure greater than the third pressure.
A second example embodiment may include the hydraulic fracturing pump of Example 4, wherein one or more of: one or more of the plurality of first plungers or the first fluid end are configured such that as each of the plurality of first plungers travels in a first direction, fracturing fluid is drawn into the first fluid end and fracturing fluid is discharged from the first fluid end, and as each of the plurality of first plungers travels in a second direction opposite the first direction, fracturing fluid is drawn into the first fluid end and fracturing fluid is discharged from the first fluid end; or one or more of the plurality of second plungers or the second fluid end are configured such that as each of the plurality of second plungers travels in a third direction, fracturing fluid is drawn into the second fluid end and fracturing fluid is discharged from the second fluid end, and as each of the plurality of second plungers travels in a fourth direction opposite the third direction, fracturing fluid is drawn into the second fluid end and fracturing fluid is discharged from the second fluid end.
A third example embodiment may include the hydraulic fracturing pump of Example 4, wherein each of the plurality of first plungers reciprocates in a first plane, and each of the plurality of second plungers reciprocates in a second plane, the first plane and the second plane defining a non-zero offset angle between the first plane and the second plane.
A fourth example embodiment may include the hydraulic fracturing pump of Example 4, wherein the crankshaft includes a plurality of crankpins, each of the plurality of crankpins being offset from a longitudinal rotation axis of the crankshaft, and each of the plurality of crankpins being connected to one of the plurality of first plungers and one of the plurality of second plungers.
A fifth example embodiment may include the hydraulic fracturing pump of Example 4, wherein:
A sixth example embodiment may include the hydraulic fracturing pump of Example 4, further including a plurality of connector rods, each of the connector rods connecting one of one of the plurality first plungers to each of the plurality of crankpins or one of the plurality of second plungers to each of the plurality of crankpins.
A seventh example embodiment may include the hydraulic fracturing pump of Example 4, wherein the plurality of first plungers is positioned to pump a first fracturing fluid including a first fracturing fluid composition while the plurality of second plungers to pumps a second fracturing fluid including a second fracturing fluid composition different than the first fracturing fluid composition, and wherein the first fracturing fluid composition includes proppants, and the second fracturing fluid composition includes water and is devoid of proppants.
An eighth example embodiment may include the hydraulic fracturing pump of Example 4, further including: a first pinion gear engaged with the crankshaft at a first end of the pump frame; a connector shaft connected to the first pinion gear; and a second pinion gear connected to the hydraulic fracturing pump at a second end of the pump frame and connected to the first pinion gear via the connector shaft, such that the first pinion gear drives the connector shaft and the crankshaft at the first end of the pump frame, the connector shaft drives the second pinion gear at the second end of the pump frame, and the second pinion gear drives the crankshaft at the second end of the pump frame.
A ninth example embodiment may include the hydraulic fracturing pump of Example 4, wherein the pump frame includes a plurality of pump frame sections, each of the plurality of pump frame sections at least partially defining the shaft aperture.
A tenth example embodiment may include the hydraulic fracturing pump of Example 4, wherein at least one of the plurality of pump frame sections has an inverted V-shaped cross-section as viewed in a direction substantially parallel to a longitudinal axis of the crankshaft.
Example 5. A hydraulic fracturing pump to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation is provided, the hydraulic fracturing pump
A second example embodiment may include the hydraulic fracturing pump of Example 5, wherein:
A second example embodiment may include the hydraulic fracturing pump of Example 5, wherein:
A third example embodiment may include the hydraulic fracturing pump of Example 5 of paragraph in view of paragraph [0221], wherein: the first inlet port and the first discharge port are adjacent opposite ends of the chamber; and the second inlet port and the second discharge port are adjacent opposite ends of the chamber.
A fourth example embodiment may include the hydraulic fracturing pump of Example 5, further including: a first inlet valve upstream relative to the first inlet port; a first discharge valve downstream relative to the first discharge port; a second inlet valve upstream relative to the second inlet port; and a second discharge valve downstream relative to the second discharge port.
A fifth example embodiment may include the hydraulic fracturing pump of Example 5 of, wherein:
A sixth example embodiment may include the hydraulic fracturing pump of Example 5, wherein: the plunger includes a plurality of plungers, each of the plurality of plungers being connected to the crankshaft and positioned to reciprocate relative to the crankshaft as the crankshaft rotates; the fluid end at least partially defines a plurality of chambers, a plurality of first inlet ports, a plurality of second inlet ports, a plurality of first discharge ports, and a plurality of second discharge ports; and each of the plurality of plungers reciprocates within a respective chamber between a respective first discharge port and a respective second discharge port as the crankshaft rotates.
A seventh example embodiment may include the hydraulic fracturing pump of Example 5, wherein the plurality of plungers
Example 6. A hydraulic fracturing pump to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation, the hydraulic fracturing pump
Example 7. A hydraulic fracturing pump to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation, the hydraulic fracturing pump
Example 8. A hydraulic fracturing unit to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation, the hydraulic fracturing unit including: a platform having a longitudinal platform axis and a width perpendicular to the longitudinal platform axis; a prime mover supported by the platform, the prime mover including an output shaft; a transmission including an input shaft and a transmission output shaft, the transmission supported by the platform and connected to the output shaft of the prime mover via the input shaft; a hydraulic fracturing pump supported by the platform at a longitudinal position opposite the prime mover relative to the transmission, the hydraulic fracturing pump including: a pump frame at least partially defining a shaft aperture; a crankshaft extending through the shaft aperture, the crankshaft having a longitudinal axis of rotation substantially parallel to the longitudinal platform axis; a plurality of first plungers connected to the crankshaft and positioned to reciprocate relative to the crankshaft as the crankshaft rotates, each of the plurality of first plungers reciprocating in a first plane and drawing in fracturing fluid at a first pressure and discharging the fracturing fluid at a second pressure greater than the first pressure; and a plurality of second plungers connected to the crankshaft and positioned to reciprocate relative to the crankshaft as the crankshaft rotates, each of the plurality of second plungers reciprocating in a second plane and drawing in fracturing fluid at a third pressure and discharging the fracturing fluid at a fourth pressure greater than the third pressure, the first plane and the second plane defining a non-zero offset angle between the first plane and the second plane.
A second example embodiment may include the hydraulic fracturing unit of Example 8, wherein the offset angle ranges from ninety degrees to one hundred-eighty degrees.
A third example embodiment may include the hydraulic fracturing unit of Example 8, wherein one or more of the plurality of first plungers or the plurality of second plungers are between the crankshaft and the platform.
A fourth example embodiment may include the hydraulic fracturing unit of Example 8, further including: a first fluid end connected to the hydraulic fracturing pump such that the plurality of first plungers draw fracturing fluid into the first fluid end at the first pressure and discharge the fracturing fluid from the first fluid end at the second pressure; and a second fluid end connected to the hydraulic fracturing pump such that the plurality of second plungers draw fracturing fluid into the second fluid end at the third pressure and discharge the fracturing fluid from the second fluid end at the fourth pressure, the first fluid end and the second fluid end being closer to the platform than the crankshaft.
A fifth example embodiment may include the hydraulic fracturing unit of Example 8, wherein the hydraulic fracturing pump has a pump width perpendicular to the longitudinal axis of rotation of the crankshaft and is supported by the platform such that the pump width is less than or equal to the width of the platform.
A sixth example embodiment may include the hydraulic fracturing unit of Example 8, wherein the plurality of first plungers includes four or more plungers, and the plurality of second plungers includes four or more plungers.
A seventh example embodiment may include the hydraulic fracturing unit of Example 8, wherein the pump frame includes a plurality of pump frame sections, one or more of the plurality of pump frame sections at least partially defining the shaft aperture, and wherein one or more of the plurality of pump frame sections has an inverted V-shaped cross-section as viewed in a direction substantially parallel to longitudinal axis of rotation of the crankshaft.
An eighth example embodiment may include the hydraulic fracturing unit of Example 8, wherein the crankshaft includes a plurality of crankpins, each of the plurality of crankpins being offset from the longitudinal rotation axis of the crankshaft, and each of the plurality of crankpins being connected to one of the plurality of first plungers and one of the plurality of second plungers.
A ninth example embodiment may include the hydraulic fracturing unit of Example 8, wherein the plurality of crankpins includes four or more crankpins, the plurality of first plungers includes four or more plungers, and the plurality of second plungers includes four or more plungers.
A tenth example embodiment may include the hydraulic fracturing unit of Example 8, further including a plurality of connector rods, each of the connector rods connecting one of one of the plurality first plungers to each of the plurality of crankpins or one of the plurality of second plungers to each of the plurality of crankpins, each of the plurality of connector rods including: a plurality of first connector rods, each of the plurality of first connector rods being connected to one of the plurality of first plungers; and a plurality of second connector rods, each of the plurality of second connector rods being connected to one of the plurality of second plungers, a portion of each of the plurality of first connector rods longitudinally intermeshing with a portion of each of the plurality of second connector rods.
An eleventh example embodiment may include the hydraulic fracturing unit of Example 8, wherein the prime mover is a first prime mover located at a first end of the hydraulic fracturing pump, and the hydraulic fracturing unit further includes a second prime mover located at a second end of the hydraulic fracturing pump opposite the first end of the hydraulic fracturing pump, the second prime mover being connected to the hydraulic fracturing pump to supply power to the hydraulic fracturing pump.
Example 9. A method to enhance output of a hydraulic fracturing unit associated with a high-pressure fracturing operation, the method including: connecting a plurality of first plungers to a crankshaft of a hydraulic fracturing pump, each of the plurality of first plungers positioned to reciprocate relative to the crankshaft as the crankshaft rotates and each of the plurality of first plungers reciprocating in a first plane and drawing in fracturing fluid at a first pressure and discharging the fracturing fluid at a second pressure greater than the first pressure; and connecting a plurality of second plungers to the crankshaft of the hydraulic fracturing pump, each of the plurality of second plungers positioned to reciprocate relative to the crankshaft as the crankshaft rotates and each of the plurality of second plungers reciprocating in a second plane and drawing in fracturing fluid at a third pressure and discharging the fracturing fluid at a fourth pressure greater than the third pressure, the first plane and the second plane defining a non-zero offset angle between the first plane and the second plane.
A second example embodiment may include the method of Example 9, wherein: the crankshaft includes a plurality of crankpins each offset from a longitudinal rotation axis of the crankshaft; and connecting the plurality of first plungers to the crankshaft and connecting the plurality of second plungers to the crankshaft includes connecting one of the plurality of first plungers and one of the plurality of second plungers to each of the plurality of crankpins.
A third example embodiment may include the method of Example 9, wherein each of the plurality of first plungers has a first diameter and each of the plurality of second plungers has a second diameter, and connecting one of the plurality of first plungers and one of the plurality of second plungers to each of the plurality of crankpins includes connecting the one of the plurality of first plungers and the one of the plurality of second plungers to each of the plurality of crankpins such that a longitudinal distance occupied by the one of the plurality of first plungers and the one of the plurality of second plungers is less than a sum of the first diameter and the second diameter.
A fourth example embodiment may include the method of Example 9, wherein the hydraulic fracturing unit includes a platform having a longitudinal platform axis and a width perpendicular to the longitudinal platform axis, and wherein the method further including connecting the hydraulic fracturing pump to the platform, such that a longitudinal axis of the crankshaft is parallel to the longitudinal platform axis.
A fifth example embodiment may include the method of Example 9, wherein connecting the hydraulic fracturing pump to the platform includes connecting the hydraulic fracturing pump to the platform, such that one or more of the plurality of first plungers or the plurality of second plungers are closer to the platform than the crankshaft.
A sixth example embodiment may include the method of Example 9, further
A seventh example embodiment may include the method of Example 9, further
An eighth example embodiment may include the method of Example 9, further including one or more of:
A ninth example embodiment may include the method of Example 9, wherein the crankshaft defines a longitudinal crankshaft axis extending between opposite longitudinal crankshaft ends, and the method further includes driving the crankshaft via the opposite longitudinal crankshaft ends.
Example 10. A method to increase a service interval of a hydraulic fracturing pump associated with a high-pressure fracturing operation, the method includes: pumping a first fracturing fluid including a first fracturing fluid composition via a plurality of first plungers of a hydraulic fracturing pump; and while pumping the first fracturing fluid, pumping a second fracturing fluid including a second fracturing fluid composition via a plurality of second plungers of the hydraulic fracturing pump, the first fracturing fluid composition being different than the second fracturing fluid composition.
A second example embodiment may include the method of Example 10, wherein pumping the first fracturing fluid and pumping the second fracturing fluid include driving opposite ends of a crankshaft of the hydraulic fracturing pump.
A third example embodiment may include the method of Example 9, wherein the first fracturing fluid composition includes proppants, and the second fracturing fluid composition includes water and is devoid of proppants.
Example 11. A method to reduce torque shock magnitude generated during operation of a hydraulic fracturing pump associated with a high-pressure fracturing operation, the method including: connecting a plurality of first plungers to a crankshaft of the hydraulic fracturing pump, each of the plurality of first plungers positioned to reciprocate relative to the crankshaft as the crankshaft rotates and each of the plurality of first plungers reciprocating in a first plane and drawing in fracturing fluid at a first pressure and discharging the fracturing fluid at a second pressure greater than the first pressure; and connecting a plurality of second plungers to the crankshaft of the hydraulic fracturing pump, each of the plurality of second plungers positioned to reciprocate relative to the crankshaft as the crankshaft rotates and each of the plurality of second plungers reciprocating in a second plane and drawing in fracturing fluid at a third pressure and discharging the fracturing fluid at a fourth pressure greater than the third pressure, the first plane and the second plane defining a non-zero offset angle between the first plane and the second plane.
The hydraulic fracturing pumps such as disclosed in the example embodiments set forth in the present disclosure can provide a substantially non-consecutive firing sequence between at least two or more pairs or groups of first and second plungers arranged on opposite sides of the pump frame. For example, a plunger firing sequence of 4 plunger pairs that are offset by about forty-five to about ninety degrees can be provided wherein engaging or firing of the plunger pairs or groups can be executed in a 1-3-2-4 sequence. While the two consecutive plunger pairs (e.g. plunger pairs 3 and 2) firing one after the other can result in a higher than maximum connector rod load through half the duration of one crankshaft revolution, the generally overall non-consecutive engagement of firing of the plunger pairs provides at least some degree of force cancellation in the bearings of the frame sections due to the 90-degree phasing of the crank pin pairs such that peak loads acting on the other bearings generally will not reach full connector rod loads.
In addition, the total fluid output of hydraulic fracturing pumps such as disclosed in various embodiments of the present disclosure, including 8 plungers are able to provide increased fluid flow output over 4-plunger pumps having approximately twice the stroke length of the 8-plunger pump configurations illustrated in at least some of the embodiments of hydraulic fracturing pumps disclosed herein, while being implemented in a compact design with a lower size, weight and mechanical feasibility than 4-pump configurations, e.g. a smaller size and weight 10″ stroke a 8-plunger pumps such as disclosed in embodiments of this disclosure can perform as a 20″ stroke 4-plunger pump.
Having now described some illustrative embodiments of the disclosure, it should be apparent to those skilled in the art that the foregoing is merely illustrative and not limiting, having been presented by way of example only. Numerous modifications and other embodiments are within the scope of one of ordinary skill in the art and are contemplated as falling within the scope of the disclosure. In particular, although many of the examples presented herein involve specific combinations of method acts or system elements, it should be understood that those acts and those elements may be combined in other ways to accomplish the same objectives. Those skilled in the art should appreciate that the parameters and configurations described herein are exemplary and that actual parameters and/or configurations will depend on the specific application in which the systems, methods, and/or aspects or techniques of the disclosure are used. Those skilled in the art should also recognize or be able to ascertain, using no more than routine experimentation, equivalents to the specific embodiments of the disclosure. It is, therefore, to be understood that the embodiments described herein are presented by way of example only and that, within the scope of any appended claims and equivalents thereto, the disclosure may be practiced other than as specifically described.
This application is a divisional of U.S. Non-Provisional application Ser. No. 17/664,578, filed May 23, 2022, titled “HYDRAULIC FRACTURING PUMPS TO ENHANCE FLOW OF FRACTURING FLUID INTO WELLHEADS AND RELATED METHODS,” which claims the benefit of and priority to U.S. Provisional Application No. 63/202,031, filed May 24, 2021, titled “HYDRAULIC FRACTURING PUMPS TO ENHANCE FLOW OF FRACTURING FLUID INTO WELLHEADS AND RELATED METHODS,” the entire disclosures of which are incorporated herein by reference.
Furthermore, the scope of the present disclosure shall be construed to cover various modifications, combinations, additions, alterations, etc., above and to the above-described embodiments, which shall be considered to be within the scope of this disclosure. Accordingly, various features and characteristics as discussed herein may be selectively interchanged and applied to other illustrated and non-illustrated embodiment, and numerous variations, modifications, and additions further may be made thereto without departing from the spirit and scope of the present disclosure as set forth in the appended claims.
This application is continuation of U.S. Non-Provisional application Ser. No. 17/901,112, filed Sep. 1, 2022, titled “HYDRAULIC FRACTURING PUMPS TO ENHANCE FLOW OF FRACTURING FLUID INTO WELLHEADS AND RELATED METHODS”, which is a divisional of U.S. Non-Provisional application Ser. No. 17/664,578, filed May 23, 2022, titled “HYDRAULIC FRACTURING PUMPS TO ENHANCE FLOW OF FRACTURING FLUID INTO WELLHEADS AND RELATED METHODS,” which claims the benefit of and priority to U.S. Provisional Application No. 63/202,031, filed May 24, 2021, titled “HYDRAULIC FRACTURING PUMPS TO ENHANCE FLOW OF FRACTURING FLUID INTO WELLHEADS AND RELATED METHODS,” the entire disclosures of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
63202031 | May 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17664578 | May 2022 | US |
Child | 17901112 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17901112 | Sep 2022 | US |
Child | 18487865 | US |