Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods

Information

  • Patent Grant
  • 11639654
  • Patent Number
    11,639,654
  • Date Filed
    Monday, May 23, 2022
    2 years ago
  • Date Issued
    Tuesday, May 2, 2023
    a year ago
Abstract
Systems and methods to enhance the flow of fracturing fluid into a wellhead during a high-pressure fracturing operation may include providing a pump frame and a crankshaft. A plurality of first plungers may be connected to the crankshaft and may reciprocate in a first plane. The hydraulic fracturing pump also may include a plurality of second plungers connected to the crankshaft and positioned to reciprocate in a second plane. The first plane and the second plane may define a non-zero offset angle between the first plane and the second plane. The crankshaft may include a plurality of crankpins, and each of the crankpins may be connected to one of the first plungers and one of the second plungers. The first plungers may pump a first fracturing fluid and the second plungers may pump a second fracturing fluid different from the first fracturing fluid.
Description
INCORPORATED BY REFERENCE

The disclosure of U.S. Provisional Patent Application No. 63/202,031, filed May 24, 2021, is incorporated by reference herein for all purposes as if set forth in its entirety.


TECHNICAL FIELD

The present disclosure relates to hydraulic fracturing pumps to enhance the flow of fracturing fluid into wellheads and related methods and, more particularly, to hydraulic fracturing pumps to provide increased flow of fracturing fluid into wellheads and related methods.


BACKGROUND

Hydraulic fracturing is an oilfield operation that stimulates the production of hydrocarbons, such that the hydrocarbons may more easily or readily flow from a subsurface formation to a well. For example, a hydraulic fracturing system may be configured to fracture a formation by pumping a fracturing fluid into a well at high pressure and high flow rates. Some fracturing fluids may take the form of a slurry including water, proppants, and/or other additives, such as thickening agents and gels. The slurry may be forced via operation of one or more pumps into the formation at rates faster than can be accepted by the existing pores, fractures, faults, or other spaces within the formation. As a result, pressure may build rapidly to the point where the formation may fail and may begin to fracture. By continuing to pump the fracturing fluid into the formation, existing fractures in the formation may be caused to expand and extend in directions away from a well bore, thereby creating additional flow paths for hydrocarbons to flow to the well bore. The proppants may serve to prevent the expanded fractures from closing or may reduce the extent to which the expanded fractures contract when pumping of the fracturing fluid is ceased. Once the formation is fractured, large quantities of the injected fracturing fluid are allowed to flow out of the well, and the production stream of hydrocarbons may be obtained from the formation.


To pump the fracturing fluid into the well bore, a hydraulic fracturing system may include a number of hydraulic fracturing units, each including a prime mover to supply mechanical power and a hydraulic fracturing pump driven by the prime mover. The hydraulic fracturing pump may be supplied with fracturing fluid, and the hydraulic fracturing pump, driven by the prime mover, may pump the fracturing fluid at high-pressure and high flow rates into the wellhead during a fracturing operation. In order to facilitate use of the hydraulic fracturing units and other equipment related to a fracturing operation at different locations, the hydraulic fracturing units may often include a mobile platform, such as a trailer, onto which the prime mover, hydraulic fracturing pump, and other components of the hydraulic fracturing unit may be mounted. The hydraulic fracturing unit may be transported to one wellhead location, set-up for operation, used during the fracturing operation, and once the fracturing operation is completed, it may be partially disassembled for transportation and transported to another wellhead location for use in another fracturing operation. Because the hydraulic fracturing units are often transported on public highways, the maximum dimensions of the hydraulic fracturing units may often be constrained by government regulations.


Although the maximum dimensions of the hydraulic fracturing units may be constrained, it may be desirable for the hydraulic fracturing units to be capable of increased pumping capacity. For example, by increasing the pumping capacity of the hydraulic fracturing units, it may be possible to successfully complete a fracturing operation using fewer hydraulic fracturing units, which may lead to reduced set-up and tear-down time, the need for fewer operators, more efficient operation, and more cost-effective completion of the fracturing operation. However, due at least in part to the constrained maximum dimensions of the hydraulic fracturing units, it may be difficult to increase the pumping capacity of a hydraulic fracturing unit.


In addition, larger hydraulic fracturing pumps driven by more powerful prime movers may develop relatively larger shock and vibration during operation, for example, due to torque loads generated by more powerful prime movers driving higher capacity hydraulic fracturing pumps. Such shock and vibration, if unmitigated, may result in premature wear or failure of components of the hydraulic fracturing unit and manifolds carrying the fracturing fluid to the wellhead. Thus, although hydraulic fracturing units having larger pumping capacities may be desirable, such larger capacities may result other possible drawbacks.


Accordingly, Applicant has recognized a need for hydraulic fracturing units and related methods for providing greater pumping capacity, while mitigating or eliminating possible drawbacks. The present disclosure may address one or more of the above-referenced drawbacks, as well as other possible drawbacks.


SUMMARY

As referenced above, it may be desirable to provide hydraulic fracturing units having higher pumping capacities, but achieving higher pumping capacities may be constrained by limited physical dimensions enabling transportation of hydraulic fracturing units between well sites. In addition, higher pumping capacities may require more powerful prime movers and higher capacity hydraulic fracturing pumps, and operation of such prime movers and hydraulic fracturing pumps may lead to premature wear or failure of components of the hydraulic fracturing units and the manifolds that carry the fracturing fluid to the wellhead due, for example, to increased shock and vibration during operation and proppant settling due to increased stroke lengths.


The present disclosure generally is directed to hydraulic fracturing pumps to enhance the flow of fracturing fluid into wellheads and related methods and, more particularly, to hydraulic fracturing pumps to provide increased flow of fracturing fluid into wellheads and related methods. For example, in some embodiments, a hydraulic fracturing pump may be configured to provided increased pumping capacity while retaining dimensions able to fit within physical dimension limitations for transportation between well sites. In addition, in some embodiments, the hydraulic fracturing pumps and related methods may provide higher pumping capacities while keeping shock and vibrations to relatively low levels, or in some instances, reducing shock and vibration levels. As a result, at least some embodiments may reduce the likelihood of, or prevent, premature component wear or failure in hydraulic fracturing systems.


According to some embodiments, a hydraulic fracturing pump to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation may include a pump frame at least partially defining a shaft aperture, and a crankshaft extending through the shaft aperture. The hydraulic fracturing pump further may include a plurality of first plungers connected to the crankshaft and positioned to reciprocate relative to the crankshaft as the crankshaft rotates. Each of the plurality of first plungers may reciprocate in a first plane and draw-in fracturing fluid at a first pressure and discharge the fracturing fluid at a second pressure greater than the first pressure. The hydraulic fracturing pump also may include a plurality of second plungers connected to the crankshaft and positioned to reciprocate relative to the crankshaft as the crankshaft rotates. Each of the plurality of second plungers may reciprocate in a second plane and draw-in fracturing fluid at a third pressure and discharge the fracturing fluid at a fourth pressure greater than the third pressure. The first plane and the second plane may define a non-zero offset angle between the first plane and the second plane.


In some embodiments, a hydraulic fracturing pump to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation may include a pump frame at least partially defining a shaft aperture, and a crankshaft extending through the shaft aperture. The crankshaft may include a plurality of crankpins, and each of the crankpins may be offset from a longitudinal rotation axis of the crankshaft. The hydraulic fracturing pump further may include a plurality of first plungers, and each of the plurality of first plungers may be connected to the crankshaft via a respective crankpin of the plurality of crankpins and be positioned to reciprocate relative to the crankshaft as the crankshaft rotates. The hydraulic fracturing pump also may include a plurality of second plungers. Each of the plurality of second plungers may be connected to the crankshaft via a respective crankpin of the plurality of crankpins and may be positioned to reciprocate relative to the crankshaft as the crankshaft rotates. Each of plurality of crankpins may be connected to one of the plurality of first plungers and one of the plurality of second plungers.


In some embodiments, a hydraulic fracturing pump to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation may include a pump frame at least partially defining a shaft aperture, and a crankshaft extending through the shaft aperture. The hydraulic fracturing pump further may include a plurality of first plungers, and each of the plurality of first plungers may be connected to the crankshaft and may be positioned to reciprocate relative to the crankshaft as the crankshaft rotates. The hydraulic fracturing pump also may include a plurality of second plungers, and each of the plurality of second plungers may be connected to the crankshaft and may be positioned to reciprocate relative to the crankshaft as the crankshaft rotates. The plurality of first plungers may be positioned to pump a first fracturing fluid including a first fracturing fluid composition while the plurality of second plungers pump a second fracturing fluid including a second fracturing fluid composition different from the first fracturing fluid composition.


In some embodiments, a hydraulic fracturing pump to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation may include a pump frame at least partially defining a shaft aperture, and a crankshaft extending through the shaft aperture. The hydraulic fracturing pump further may include a plurality of first plungers, and each of the plurality of first plungers may be connected to the crankshaft and may be positioned to reciprocate relative to the crankshaft as the crankshaft rotates. The hydraulic fracturing pump also may include a plurality of second plungers, and each of the plurality of second plungers may be connected to the crankshaft and many be positioned to reciprocate relative to the crankshaft as the crankshaft rotates. The hydraulic fracturing pump still further may include a first fluid end connected to the pump frame such that the plurality of first plungers draw fracturing fluid into the first fluid end at a first pressure and discharge the fracturing fluid from the first fluid end at a second pressure greater than the first pressure. The hydraulic fracturing pump also may include a second fluid end connected to the pump frame such that the plurality of second plungers draw fracturing fluid into the second fluid end at a third pressure and discharge the fracturing fluid from the second fluid end at a fourth pressure greater than the third pressure.


In some embodiments, a hydraulic fracturing pump to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation may include a pump frame at least partially defining a shaft aperture, and a crankshaft extending through the shaft aperture. The hydraulic fracturing pump further may include a plunger connected to the crankshaft and may be positioned to reciprocate relative to the crankshaft as the crankshaft rotates. The hydraulic fracturing pump also may include a fluid end connected to the pump frame. One or more of the fluid end or the plunger may be positioned such that as the plunger travels in a first direction, fracturing fluid is drawn into the fluid end and fracturing fluid is discharged from the fluid end, and as the plunger travels in a second direction opposite the first direction, fracturing fluid is drawn into the fluid end and fracturing fluid is discharged from the fluid end.


In some embodiments, a hydraulic fracturing pump to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation may include a pump frame at least partially defining a shaft aperture, and a crankshaft extending through the shaft aperture. The hydraulic fracturing pump further may include at least one plunger connected to the crankshaft and may be positioned to reciprocate relative to the crankshaft as the crankshaft rotates. The hydraulic fracturing pump also may include a drive assembly configured for transferring power from the prime mover to the hydraulic fracturing pump. In one embodiment, the drive assembly may include a first pinion gear engaged with the crankshaft at a first end of the pump frame, and a connector shaft connected to the first pinion gear. The hydraulic fracturing pump still further may include a second pinion gear connected to the hydraulic fracturing pump at a second end of the pump frame and connected to the first pinion gear via the connector shaft, such that the first pinion gear drives the connector shaft and the crankshaft at the first end of the pump frame, the connector shaft drives the second pinion gear at the second end of the pump frame, and the second pinion gear drives the crankshaft at the second end of the pump frame.


In other embodiments, the drive assembly can include a planetary gear train including at least one planetary gearbox positioned at the first end of the pump frame. In some embodiments, an additional planetary gearbox also can be provided at the second end of the pump frame. The at least one planetary gearbox may include a first drive gear, which can be configured as a ring gear having a first series of gear teeth formed about an inner circumference thereof, and a second series of gear teeth formed about an outer circumference thereof. A sun gear can be positioned within the first drive gear, generally being arranged approximately in the center thereof and aligned with the longitudinal axis of the crankshaft. The sun gear can engage with the crankshaft, and further can be connected to a prime mover of the hydraulic fracturing unit; for example, such as by being coupled to a transmission arranged between the prime mover and the hydraulic fracturing pump. A series of planet gears may be positioned about the sun gear, each of the planet gears including a series of gear teeth configured to engage gear teeth of the sun gear, and engage with the first series of teeth formed about the inner circumference of the first drive gear. A first pinon gear can be arranged below the first drive gear and can be engaged with a first end of a connector shaft that extends through the pump frame. The first pinion gear further may have a series of gear teeth formed about its circumference, which gear teeth are configured to engage with the second series of gear teeth formed about the outer circumference of the first drive gear.


As the sun gear is driven by operation of the prime mover, the crankshaft is rotated, and at substantially the same time, the engagement of the gear teeth of the planet gears with the gear teeth of the sun gear and with the first series of gear teeth formed about the inner circumference of the first drive gear will correspondingly drive rotation of the first drive gear. As the first drive gear is rotated, the engagement of its second series of teeth arranged about its outer circumference with the teeth of the first pinion gear turn drives rotation of the first pinion gear, which in turn drives rotation of the connector shaft coupled at its first end to the first pinion gear. The connector shaft further can be coupled at a second, opposite end to a second pinion gear located at the second end of the pump frame. The second pinion gear may have a series of gear teeth configured to engage with the gear teeth of a second drive gear located at the second end of the pump frame such that as the connector shaft is rotated, this rotation is translated to the second drive gear by the second pinion gear for additionally driving rotation of the crankshaft by the second drive gear. The second drive gear thus can engage with the crankshaft so as to support and drive rotation of the crankshaft from the second end of the crankshaft, to help reduce torque therealong.


In embodiments, a second planetary gearbox such as utilized at the first end of the pump frame can be used at the second end of the pump frame. In such embodiments, the second drive gear can be configured as a ring gear having gear teeth along an inner and an outer circumference thereof, with a sun gear and a series of planet gears arranged approximately in the center of the second drive gear. The sun gear can be connected to or engaged with the second end of the crankshaft so as to support and drive rotation of the crankshaft so that the crankshaft is driven from both sides of the pump frame. Alternatively, the second drive gear can comprise a single gear engaged with the second end of the crankshaft and driven by the rotation of the second pinion gear by the connector shaft.


In some embodiments, a hydraulic fracturing pump to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation may include a pump frame including a plurality of pump frame sections, and one or more of the plurality of pump frame sections may at least partially define a shaft aperture. The hydraulic fracturing pump further may include a crankshaft extending through the shaft aperture, and one or more of the plurality of pump frame sections may have an inverted V-shaped cross-section as viewed in a direction substantially parallel to a longitudinal axis of the crankshaft. The hydraulic fracturing pump also may include a plunger connected to the crankshaft and positioned to reciprocate relative to the crankshaft as the crankshaft rotates.


In some embodiments, a hydraulic fracturing unit to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation may include a platform having a longitudinal platform axis and a width perpendicular to the longitudinal platform axis. The hydraulic fracturing unit further may include a prime mover supported by the platform, and the prime mover may include an output shaft. The hydraulic fracturing unit also may include a transmission including an input shaft and a transmission output shaft, and the transmission may be supported by the platform and connected to the output shaft of the prime mover via the input shaft. The hydraulic fracturing unit still further may include a hydraulic fracturing pump supported by the platform at a longitudinal position opposite the prime mover relative to the transmission. The hydraulic fracturing pump may include a pump frame at least partially defining a shaft aperture, and a crankshaft extending through the shaft aperture. The crankshaft may have a longitudinal axis of rotation substantially parallel to the longitudinal platform axis. The hydraulic fracturing pump further may include a plurality of first plungers connected to the crankshaft and positioned to reciprocate relative to the crankshaft as the crankshaft rotates. Each of the plurality of first plungers may reciprocate in a first plane and may draw-in fracturing fluid at a first pressure and discharge the fracturing fluid at a second pressure greater than the first pressure. The hydraulic fracturing pump also may include a plurality of second plungers connected to the crankshaft and positioned to reciprocate relative to the crankshaft as the crankshaft rotates. Each of the plurality of second plungers may reciprocate in a second plane and may draw-in fracturing fluid at a third pressure and discharge the fracturing fluid at a fourth pressure greater than the third pressure. The first plane and the second plane may define a non-zero offset angle between the first plane and the second plane.


In some embodiments, a method to enhance output of a hydraulic fracturing unit associated with a high-pressure fracturing operation may include connecting a plurality of first plungers to a crankshaft of a hydraulic fracturing pump. Each of the plurality of first plungers may be positioned to reciprocate relative to the crankshaft as the crankshaft rotates, and each of the plurality of first plungers may reciprocate in a first plane and may draw-in fracturing fluid at a first pressure and discharge the fracturing fluid at a second pressure greater than the first pressure. The method further may include connecting a plurality of second plungers to the crankshaft of the hydraulic fracturing pump. Each of the plurality of second plungers may be positioned to reciprocate relative to the crankshaft as the crankshaft rotates, and each of the plurality of second plungers may reciprocate in a second plane and may draw-in fracturing fluid at a third pressure and discharge the fracturing fluid at a fourth pressure greater than the third pressure. The first plane and the second plane may define a non-zero offset angle between the first plane and the second plane.


In some embodiments, a method to increase a service interval of a hydraulic fracturing pump associated with a high-pressure fracturing operation may include pumping a first fracturing fluid including a first fracturing fluid composition via a plurality of first plungers of a hydraulic fracturing pump. The method further may include, while pumping the first fracturing fluid, pumping a second fracturing fluid including a second fracturing fluid composition via a plurality of second plungers of the hydraulic fracturing pump. The first fracturing fluid composition may be different than the second fracturing fluid composition.


In some embodiments, a method to reduce torque shock magnitude generated during operation of a hydraulic fracturing pump associated with a high-pressure fracturing operation may include connecting a plurality of first plungers to a crankshaft of the hydraulic fracturing pump. Each of the plurality of first plungers may be positioned to reciprocate relative to the crankshaft as the crankshaft rotates. Each of the plurality of first plungers may reciprocate in a first plane and draw-in fracturing fluid at a first pressure and discharge the fracturing fluid at a second pressure greater than the first pressure. The method also may include connecting a plurality of second plungers to the crankshaft of the hydraulic fracturing pump. Each of the plurality of second plungers may be positioned to reciprocate relative to the crankshaft as the crankshaft rotates. Each of the plurality of second plungers may reciprocate in a second plane and draw-in fracturing fluid at a third pressure and discharge the fracturing fluid at a fourth pressure greater than the third pressure. The first plane and the second plane may define a non-zero offset angle between the first plane and the second plane.


According to one aspect, a pump comprises: a pump frame at least partially defining a shaft aperture; a crankshaft extending through the shaft aperture; a plurality of first plungers connected to the crankshaft and configured to reciprocate relative to the crankshaft as the crankshaft rotates, each of the plurality of first plungers configured to reciprocate in a first plane; and a plurality of second plungers connected to the crankshaft and configured to reciprocate relative to the crankshaft as the crankshaft rotates, each of the plurality of second plungers configured to reciprocate in a second plane; wherein a non-zero offset angle is defined between the first plane and the second plane.


In one embodiment of the pump, the non-zero offset angle ranges from about forty-five degrees to about one-hundred-eighty degrees.


In one embodiment, the pump further comprises a plurality of crankpins mounted along the crankshaft, wherein each of the plurality of crankpins being offset from a longitudinal rotation axis of the crankshaft, and each of the plurality of crankpins being connected to one of the plurality of first plungers and one of the plurality of second plungers; wherein the first and second plungers are configured to move in opposite directions to draw fluid and to discharge fluid; wherein each of the plurality of first plungers configured to draw in fluid at a first pressure and discharge fluid at a second pressure greater than the first pressure, and each of the plurality of second plungers configured to draw in fluid at a third pressure and discharge fluid at a fourth pressure greater than the third pressure.


In embodiments, the pump can include a first pair of plungers comprising a first one of the plurality of first plungers and a first one of the plurality of second plungers, and a second pair of plungers comprising a second one of the plurality of first plungers and a second one of the plurality of second plungers; and wherein the first pair of plungers is offset from the second pair of plungers such that the first pair of plungers and the second pair of plungers are engaged in a non-consecutive firing sequence sufficient to provide at least partial cancellation of forces generated by the first and second pairs of plungers.


In embodiments, the pump further comprises a plurality of connector rods, each of the connector rods configured to connect one of the plurality first plungers to one of a plurality of crankpins or one of the plurality of second plungers to one of the plurality of crankpins; each of the connector rods comprising a plunger end connected to one of the plurality first plungers or one of the plurality of second plungers; and a crank end connected to one of the plurality of crankpins, each of the crank ends comprising at least one crank end connector.


In embodiments, the pump further comprises a drive assembly configured to be driven by one or more prime movers. In some embodiments of the pump, the one or more prime movers comprise one or more gas turbine engines, electric motors, or combinations thereof.


In embodiments of the pump, the drive assembly comprises: a first pinion gear engaged with the crankshaft at a first end of the pump frame; a connector shaft having a first end connected to the first pinion gear; and a second pinion gear connected to a second end of the connector shaft at a second end of the pump frame, and engaged with the crankshaft at the second end of the pump frame; wherein the first pinion gear is configured to drive the crankshaft at the first end of the pump frame upon rotation of the crankshaft, such that the connector shaft drives the second pinion gear at the second end of the pump frame, and the second pinion gear drives the crankshaft at the second end of the pump frame.


In embodiments of the pump, the drive assembly comprises: at least one planetary gearbox connected to the pump at a first end of the pump frame, at a second end of the pump frame, or at both the first and the second end of the pump frame, the planetary gearbox comprising: a sun gear engaged with the crankshaft at the first end of the pump frame; a ring gear surrounding the sun gear; and a plurality of planetary gears disposed between the ring gear and the sun gear and configured to engage with the ring gear, and sun gear such that rotation of the sun gear is translated to the ring gear.


In embodiments of the pump, one or more of: the plurality of first plungers reciprocate in a first direction away from the crankshaft and a second direction opposite the first direction and toward the crankshaft, the first direction and the second direction lie in the first plane, the first direction having a downward component and an outward component, and the second direction having an upward component and an inward component; or the plurality of second plungers reciprocate in a third direction away from the crankshaft and a fourth direction opposite the third direction and toward the crankshaft, the third direction and the fourth direction lying in the second plane, the third direction having a downward component and an outward component, and the fourth direction having an upward component and an inward component.


In embodiments of the pump, the plurality of first plungers comprises at least three plungers, and the plurality of second plungers comprises at least three plungers.


In embodiments of the pump, the pump frame comprises a plurality of pump frame sections, each of the plurality of pump frame sections at least partially defining the shaft aperture; and wherein at least one of the plurality of pump frame sections has an inverted V-shaped cross-section as viewed in a direction substantially parallel to a longitudinal axis of the crankshaft.


In another aspect, a hydraulic fracturing pump is provided to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation, the hydraulic fracturing pump comprising: a pump frame at least partially defining a shaft aperture; a crankshaft extending through the shaft aperture, the crankshaft comprising a plurality of crankpins, each of the crankpins being offset from a longitudinal rotation axis of the crankshaft; a plurality of first plungers, each of the plurality of first plungers being connected to the crankshaft via a respective crankpin of the plurality of crankpins and configured to reciprocate relative to the crankshaft as the crankshaft rotates; and a plurality of second plungers, each of the plurality of second plungers being connected to the crankshaft via a respective crankpin of the plurality of crankpins and configured to reciprocate relative to the crankshaft as the crankshaft rotates, each of the plurality of crankpins being connected to one of the plurality of first plungers and one of the plurality of second plungers.


In embodiments, the hydraulic fracturing pump further comprises a plurality of connector rods, each of the connector rods connecting one of the plurality first plungers to one of the plurality of crankpins or one of the plurality of second plungers to one of the plurality of crankpins.


In embodiments of the hydraulic fracturing pump, each of the plurality of connector rods comprises: a plunger end connected to one of the plurality first plungers or one of the plurality of second plungers; and a crank end connected to one of the plurality of crankpins, each of the crank ends comprising two crank end connectors separated by a crank end space.


In embodiments of the hydraulic fracturing pump, the plurality of connector rods comprises: a plurality of first connector rods, each of the plurality of first connector rods being connected to one of the plurality of first plungers; and a plurality of second connector rods, each of the plurality of second connector rods being connected to one of the plurality of second plungers, wherein a crank end connector of each of the plurality of first connector rods is positioned at least partially in a crank end space of one of the plurality of second connector rods and a crank end connector of each of the plurality of second connector rods is positioned at least partially in a crank end space of one of the plurality of first connector rods.


In embodiments of the hydraulic fracturing pump each of the plurality of first plungers reciprocates in a first plane, and each of the plurality of second plungers reciprocates in a second plane, the first plane and the second plane defining a non-zero offset angle between the first plane and the second plane.


In embodiments of the hydraulic fracturing pump the plurality of first plungers is positioned to pump a first fracturing fluid comprising a first fracturing fluid composition while the plurality of second plungers to pumps a second fracturing fluid comprising a second fracturing fluid composition different than the first fracturing fluid composition, and wherein the first fracturing fluid composition comprises proppants, and the second fracturing fluid composition comprises water and is devoid of proppants.


In embodiments, the hydraulic fracturing pump further comprises: a first fluid end connected to the pump frame such that the plurality of first plungers draw fracturing fluid into the first fluid end at a first pressure and discharge the fracturing fluid from the first fluid end at a second pressure greater than the first pressure; and a second fluid end connected to the pump frame such that the plurality of second plungers draw fracturing fluid into the second fluid end at a third pressure and discharge the fracturing fluid from the second fluid end at a fourth pressure greater than the third pressure.


In embodiments of the hydraulic fracturing pump, one or more of: one or more of the plurality of first plungers or the first fluid end are configured such that as each of the plurality of first plungers travels in a first direction, fracturing fluid is drawn into the first fluid end and fracturing fluid is discharged from the first fluid end, and as each of the plurality of first plungers travels in a second direction opposite the first direction, fracturing fluid is drawn into the first fluid end and fracturing fluid is discharged from the first fluid end; or one or more of the plurality of second plungers or the second fluid end are configured such that as each of the plurality of second plungers travels in a third direction, fracturing fluid is drawn into the second fluid end and fracturing fluid is discharged from the second fluid end, and as each of the plurality of second plungers travels in a fourth direction opposite the third direction, fracturing fluid is drawn into the second fluid end and fracturing fluid is discharged from the second fluid end.


In embodiments of the hydraulic fracturing pump, the pump frame comprises a plurality of pump frame sections and at least one of the plurality of pump frame sections has an upright or inverted V-shaped cross-section as viewed in a direction substantially parallel to a longitudinal axis of the crankshaft.


According to another aspect, a method of assembling a hydraulic fracturing unit is provided, the method comprising: connecting a plurality of first plungers to a crankshaft of a hydraulic fracturing pump, each of the plurality of first plungers positioned to reciprocate relative to the crankshaft as the crankshaft rotates and each of the plurality of first plungers configured to reciprocate in a first plane and draw in fracturing fluid at a first pressure and discharge the fracturing fluid at a second pressure greater than the first pressure; and connecting a plurality of second plungers to the crankshaft of the hydraulic fracturing pump, each of the plurality of second plungers positioned to reciprocate relative to the crankshaft as the crankshaft rotates and each of the plurality of second plungers configured to reciprocate in a second plane and draw in fracturing fluid at a third pressure and discharge the fracturing fluid at a fourth pressure greater than the third pressure, the first plane and the second plane defining a non-zero offset angle between the first plane and the second plane.


In embodiments of the method, the crankshaft comprises a plurality of crankpins each offset from a longitudinal rotation axis of the crankshaft; and connecting the plurality of first plungers to the crankshaft and connecting the plurality of second plungers to the crankshaft comprises connecting one of the plurality of first plungers and one of the plurality of second plungers to each of the plurality of crankpins.


In embodiments of the method, each of the plurality of first plungers has a first diameter and each of the plurality of second plungers has a second diameter, and connecting one of the plurality of first plungers and one of the plurality of second plungers to each of the plurality of crankpins comprises connecting the one of the plurality of first plungers and the one of the plurality of second plungers to each of the plurality of crankpins such that a longitudinal distance occupied by the one of the plurality of first plungers and the one of the plurality of second plungers is less than a sum of the first diameter and the second diameter.


In embodiments of the method, the hydraulic fracturing unit comprises a platform having a longitudinal platform axis and a width perpendicular to the longitudinal platform axis, the method further comprising connecting the hydraulic fracturing pump to the platform, such that a longitudinal axis of the crankshaft is parallel to the longitudinal platform axis. In some embodiments, connecting the hydraulic fracturing pump to the platform comprises connecting the hydraulic fracturing pump to the platform, such that one or more of the plurality of first plungers or the plurality of second plungers are closer to the platform than the crankshaft.


In embodiments, connecting the plurality of first plungers to the crankshaft of the hydraulic fracturing pump and connecting the plurality of second plungers to the crankshaft of the hydraulic fracturing pump comprises arranging first and second plungers of each of the plurality of first plungers and the plurality of second plungers in plunger groups with adjacent groups of plungers offset by between about 45 degrees to about 90 degrees; wherein during pumping of the fracturing fluid, the plunger groups are engaged in a non-consecutive sequence to provide at least partial force cancellation of forces generated by the plunger groups.


In embodiments, the method comprises connecting a first fluid end to the hydraulic fracturing pump, such that the plurality of first plungers reciprocate in the first fluid end; and connecting a second fluid end to the hydraulic fracturing pump, such that the plurality of second plungers reciprocate in the second fluid end.


In another aspect, a method to increase a service interval of a hydraulic fracturing pump associated with a high-pressure fracturing operation is provided, the method comprising: pumping a first fracturing fluid comprising a first fracturing fluid composition via a plurality of first plungers of a hydraulic fracturing pump; and while pumping the first fracturing fluid, pumping a second fracturing fluid comprising a second fracturing fluid composition via a plurality of second plungers of the hydraulic fracturing pump, the first fracturing fluid composition being different than the second fracturing fluid composition.


In embodiments, the first and second plungers of each of the plurality of first plungers and the plurality of second plungers are arranged in plunger groups; and wherein pumping the first fracturing fluid and pumping the second fracturing fluid comprises engaging plunger groups in a non-consecutive sequence sufficient to provide at least partial force cancellation of forces generated by the plunger groups.


In embodiments of the method, pumping the first fracturing fluid and pumping the second fracturing fluid comprise driving opposite ends of a crankshaft of the hydraulic fracturing pump from opposite ends thereof.


In embodiments of the method, the hydraulic fracturing pump comprises a drive assembly including at least one planetary gearbox arranged at an end of the hydraulic fracturing pump; and wherein driving the crankshaft comprises: rotating a sun gear of the planetary gearbox coupled to a first one of the opposite ends of the crankshaft, the rotation of the sun gear being translated to a ring gear by a plurality of planetary ears arranged between the sun gear and the ring gear; driving a first pinion gear with the rotation of the ring gear, the first pinion gear engaged with a connector shaft at a first end thereof; and driving a second pinion gear engaged with the connector shaft at a second end thereof the second pinion configured to engage with and drive rotation of the crankshaft from a second one of the opposite ends of the crankshaft.


Still other aspects and advantages of these exemplary embodiments and other embodiments, are discussed in detail herein. Moreover, it is to be understood that both the foregoing information and the following detailed description provide merely illustrative examples of various aspects and embodiments, and are intended to provide an overview or framework for understanding the nature and character of the claimed aspects and embodiments. Accordingly, these and other objects, along with advantages and features of the present disclosure, will become apparent through reference to the following description and the accompanying drawings. Furthermore, it is to be understood that the features of the various embodiments described herein are not mutually exclusive and may exist in various combinations and permutations.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide a further understanding of the embodiments of the present disclosure, are incorporated in and constitute a part of this specification, illustrate embodiments of the present disclosure, and together with the detailed description, serve to explain principles of the embodiments discussed herein. No attempt is made to show structural details of this disclosure in more detail than can be necessary for a fundamental understanding of the embodiments discussed herein and the various ways in which they can be practiced. According to common practice, the various features of the drawings discussed below are not necessarily drawn to scale. Dimensions of various features and elements in the drawings can be expanded or reduced to more clearly illustrate embodiments of the disclosure.



FIG. 1 schematically illustrates an example hydraulic fracturing system including a plurality of hydraulic fracturing units according to embodiments of the disclosure.



FIG. 2A is a schematic side view of an example hydraulic fracturing unit according to embodiments of the disclosure.



FIG. 2B is a schematic end view of the example hydraulic fracturing unit shown in FIG. 2A according to embodiments of the disclosure.



FIG. 3A is a schematic perspective view of an example hydraulic fracturing pump including at least two pinion gears according to embodiments of the disclosure.



FIG. 3B is a schematic top view of the example hydraulic fracturing pump shown in FIG. 3A according to embodiments of the disclosure.



FIG. 3C is a schematic bottom view of the example hydraulic fracturing pump shown in FIG. 3A according to embodiments of the disclosure.



FIG. 3D is a schematic close-up view of an example connector rod and plunger arrangement for the example hydraulic fracturing pump shown in FIG. 3A according to embodiments of the disclosure.



FIG. 3E is a schematic end view of the example hydraulic fracturing pump shown in FIG. 3A according to embodiments of the disclosure.



FIG. 4A is a schematic perspective view, with parts removed, of an example hydraulic fracturing pump including a planetary gear train according to embodiments of the disclosure.



FIG. 4B is a schematic is a schematic top view of the hydraulic fracturing pump of FIG. 4A according to additional embodiments of the disclosure.



FIG. 4C is a schematic close-up view of an example connection rod and plunger for the example hydraulic fracturing pump shown in FIGS. 4A-4B, according to embodiments of the disclosure



FIG. 4D is a schematic end view taken in partial cross-section along the pump frame and illustrating a planetary gear arrangement of the planetary gear train according to embodiments of the present disclosure.



FIG. 4E is a schematic end view, taken in partial cross-section, of a second or fluid inlet end of the example hydraulic fracturing pump of FIG. 4A-4B, illustrating an arrangement of connection rods coupled to a crankshaft according to embodiments of the present disclosure.



FIG. 4F is a schematic view, taken in partial cross-section, of the example hydraulic fracturing pump of FIGS. 4A-4B according to embodiments of the disclosure.



FIG. 5A is a schematic partial perspective view of an example hydraulic fracturing pump, including a partial section view of an example fluid end according to embodiments of the disclosure.



FIG. 5B is a schematic partial side section view of an example fluid end with an example plunger moving in a first direction according to embodiments of the disclosure.



FIG. 5C is a schematic partial side section view of the example fluid end shown in FIGS. 5A-5B with the example plunger moving in a second direction opposite the first direction, according to embodiments of the disclosure.



FIG. 5D is a schematic partial side section view of the example fluid end shown in FIGS. 5A-5B with the example plunger continuing to move in the second direction according to embodiments of the disclosure.



FIG. 5E is a schematic partial side section view of the example fluid end shown in FIGS. 5A-5B with the example plunger reversing directions and moving in the first direction, according to embodiments of the disclosure.



FIG. 6 is a block diagram of an example method to enhance output of a hydraulic fracturing unit associated with a high-pressure fracturing operation according to embodiments of the disclosure.



FIG. 7 is a block diagram of an example method to increase a service interval of a hydraulic fracturing pump associated with a high-pressure fracturing operation according to embodiments of the disclosure.



FIG. 8 is a block diagram of an example method to reduce torque shock magnitude generated during operation of a hydraulic fracturing pump associated with a high-pressure fracturing operation according to embodiments of the disclosure.





DETAILED DESCRIPTION

The drawings include like numerals to indicate like parts throughout the several views, the following description is provided as an enabling teaching of exemplary embodiments, and those skilled in the relevant art will recognize that many changes may be made to the embodiments described. It also will be apparent that some of the desired benefits of the embodiments described can be obtained by selecting some of the features of the embodiments without utilizing other features. Accordingly, those skilled in the art will recognize that many modifications and adaptations to the embodiments described are possible and may even be desirable in certain circumstances. Thus, the following description is provided as illustrative of the principles of the embodiments and not in limitation thereof.


The phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. As used herein, the term “plurality” refers to two or more items or components. The terms “comprising,” “including,” “carrying,” “having,” “containing,” and “involving,” whether in the written description or the claims and the like, are open-ended terms, i.e., to mean “including but not limited to,” unless otherwise stated. Thus, the use of such terms is meant to encompass the items listed thereafter, and equivalents thereof, as well as additional items. The transitional phrases “consisting of” and “consisting essentially of,” are closed or semi-closed transitional phrases, respectively, with respect to any claims. Use of ordinal terms such as “first,” “second,” “third,” and the like in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish claim elements.



FIG. 1 schematically illustrates a top view of an example hydraulic fracturing system 10 including a plurality of hydraulic fracturing units 12 and showing an example pump 14 according to embodiments of the disclosure. The pump 14 may be suitable for pumping any one or more fluid(s). In some embodiments, the pump 14 may be a hydraulic fracturing pump. In some embodiments, the hydraulic fracturing pump 14 may be capable of providing a higher pumping capacity while still having physical dimensions enabling transportation of the hydraulic fracturing unit 12 including the hydraulic fracturing pump 14 on public highways, as explained in more detail herein. Alternatively, or in addition, some embodiments of the hydraulic fracturing pump 14 may operate with relatively low shock magnitude and/or or vibration magnitude resulting from, for example, torque pulses generated by the hydraulic fracturing pump 14.


In some embodiments, one or more of the hydraulic fracturing units 12 may include a hydraulic fracturing pump 14 driven by a prime mover 16, such as an internal combustion engine. For example, the prime movers 16 may include gas turbine engines (GTEs) or reciprocating-piston engines. In some embodiments, each of the hydraulic fracturing units 12 may include a directly-driven turbine (DDT) hydraulic fracturing pump 14, in which the hydraulic fracturing pump 14 is connected to one or more GTEs that supply power to the respective hydraulic fracturing pump 14 for supplying fracturing fluid at high pressure and high flow rates to a formation. For example, the GTE may be connected to a respective hydraulic fracturing pump 14 via a transmission 18 (e.g., a reduction transmission) connected to a drive shaft, which, in turn, is connected to a driveshaft or input flange of a respective hydraulic fracturing pump 14, which may be a reciprocating hydraulic fracturing pump. Other types of engine-to-pump arrangements are contemplated as will be understood by those skilled in the art.


In some embodiments, one or more of the GTEs may be a dual-fuel or bi-fuel GTE, for example, capable of being operated using of two or more different types of fuel, such as natural gas and diesel fuel, although other types of fuel are contemplated. For example, a dual-fuel or bi-fuel GTE may be capable of being operated using a first type of fuel, a second type of fuel, and/or a combination of the first type of fuel and the second type of fuel. For example, the fuel may include gaseous fuels, such as, for example, compressed natural gas (CNG), natural gas, field gas, pipeline gas, methane, propane, butane, and/or liquid fuels, such as, for example, diesel fuel (e.g., #2 diesel), bio-diesel fuel, bio-fuel, alcohol, gasoline, gasohol, aviation fuel, and other fuels as will be understood by those skilled in the art. Gaseous fuels may be supplied by CNG bulk vessels, a gas compressor, a liquid natural gas vaporizer, line gas, and/or well-gas produced natural gas. Other types and associated fuel supply sources are contemplated. The one or more prime movers 16 may be operated to provide horsepower to drive the transmission 18 connected to one or more of the hydraulic fracturing pumps 14 to safely and successfully fracture a formation during a well stimulation project or fracturing operation.


In some embodiments, the prime mover 16 may include one or more electric motors. The electric motor may be rated for over 2,000 hp over 5,000 hp, or over 10,000 hp, for example, for the hydraulic fracturing pump 14 to generate a desired pressure and flow rate. The electric motor may include a stator having stator windings for generating a rotating magnetic field at a synchronous speed corresponding to a frequency of a voltage applied to the stator windings. The motor may also include a rotor having rotor windings for interacting with the rotating magnetic field to rotate the rotor. The rotor windings may be configured to generate rotating magnetic poles for interacting with the rotating magnetic field. In one or more embodiments, the electric motor may be an induction electric motor in which the rotating magnetic poles in the rotor are induced by the rotating magnetic field in the stator. In one or more embodiments, the electric motor may be a multi-phase electric motor, such as a three-phase motor for example.


The electric motor may include a single shaft electric motor or a dual shaft electric motor. In one or more embodiments, the electric motor and two or more hydraulic fracturing pump 14 may be disposed upon a single chassis. For example, the electric a motor may be disposed on a single chassis and arranged between two hydraulic fracturing pumps 14 in manner similar to the pump arrangements described in U.S. Pat. No. 9,395,049, the disclosure of which is incorporated by reference herein in its entirety. In some embodiments, two or more electric motors and two or more hydraulic fracturing pumps 14 may be disposed upon a single chassis. For example, a first electric motor may be connected to or otherwise mechanically linked with a first hydraulic fracturing pump 14 and a second electric motor may be connected to or otherwise mechanically linked with a second hydraulic fracturing pump 14, each first and second electric motor and the first and second hydraulic fracturing pump 14 being disposed on a single chassis and may be arranged in a manner similar to the pump arrangements described in U.S. Pat. No. 11,118,438, the disclosure of which is incorporated by reference herein in its entirety. For example, each electric motor and corresponding hydraulic fracturing pump 14 may be contained as a single module and a plurality of such modules may be disposed on a single chassis.


In one or more embodiments, the electric motor may be supplied with a voltage having a fixed frequency or a voltage having a variable frequency. For example, a voltage with a fixed frequency may be applied to a stator of the electric motor and, hence, the electric motor may be referred to as a fixed-frequency motor. Electric power to a motor control center may be supplied by an on-site power source, such as on-site diesel generators, natural gas reciprocating engine generators, or turbine generators, or by an off-site power source, such as utility grid power. In some embodiments, the motor control center may be disposed with the electric motor and the hydraulic fracturing pump 14 on a single chassis. In other embodiments, a voltage with a variable frequency may be applied to a stator of the electric motor. In such embodiments, a remotely controllable variable frequency drive (VFD) may be disposed, along with the electric motor(s) and the hydraulic fracturing pump(s) 14, on a single chassis. The VFD may be coupled to or otherwise electrically linked with a power source as described herein. The VFD may be configured to provide electric power to the one or more electric motors.


In some embodiments, a plurality of electric motors may be connected to or otherwise mechanically linked with one hydraulic fracturing pump 14. For example, the plurality of electric motors may each be connected to a crankshaft of the hydraulic fracturing pump 14. The plurality of electric motors may include any suitable number of electric motors (e.g., from 2 electric motors to 7 electric motors or more). In some embodiments, at least five electric motors may be coupled to the crankshaft in a manner such that each electric motor may be positioned about the pump crankshaft axis so that an output shaft of each electric motor is spaced apart from a longitudinal rotation axis of the crankshaft. For example, the plurality of electric motors can be arranged on or connected to the hydraulic fracturing pump 14 in a manner similar to the electric motor arrangement(s) described in U.S. Pre-Grant Publication No. 2021/0095648, the disclosure of which is incorporated by reference herein in its entirety.


In some embodiments, the fracturing fluid may include, for example, water, proppants, and/or other additives, such as thickening agents and/or gels. For example, proppants may include grains of sand, ceramic beads or spheres, shells, and/or other particulates, and may be added to the fracturing fluid, along with gelling agents to create a slurry as will be understood by those skilled in the art. The slurry may be forced via the hydraulic fracturing pumps 14 into the formation at rates faster than can be accepted by the existing pores, fractures, faults, or other spaces within the formation. As a result, pressure in the formation may build rapidly to the point where the formation fails and begins to fracture. By continuing to pump the fracturing fluid into the formation, existing fractures in the formation may be caused to expand and extend in directions away from a well bore, thereby creating additional flow paths for hydrocarbons to flow to the well. The proppants may serve to prevent the expanded fractures from closing or may reduce the extent to which the expanded fractures contract when pumping of the fracturing fluid is ceased. Once the well is fractured, large quantities of the injected fracturing fluid may be allowed to flow out of the well, and the water and any proppants not remaining in the expanded fractures may be separated from hydrocarbons produced by the well to protect downstream equipment from damage and corrosion. In some instances, the production stream of hydrocarbons may be processed to neutralize corrosive agents in the production stream resulting from the fracturing process.


In the example shown in FIG. 1, the hydraulic fracturing system 10 may include one or more water tanks 20 for supplying water for fracturing fluid, one or more chemical additive units 22 for supplying gels or agents for adding to the fracturing fluid, and one or more proppant tanks 24 (e.g., sand tanks) for supplying proppants for the fracturing fluid. The example fracturing system 10 shown also includes a hydration unit 26 for mixing water from the water tanks 20 and gels and/or agents from the chemical additive units 22 to form a mixture, for example, gelled water. The example shown also includes a blender 28, which receives the mixture from the hydration unit 26 and proppants via conveyers 30 from the proppant tanks 24. The blender 28 may mix the mixture and the proppants into a slurry to serve as fracturing fluid for the hydraulic fracturing system 10. Once combined, the slurry may be discharged through low-pressure hoses, which convey the slurry into two or more low-pressure lines in a fracturing manifold 32. In the example shown, the low-pressure lines in the fracturing manifold 32 may feed the slurry to the hydraulic fracturing pumps 14 through low-pressure suction hoses as will be understood by those skilled in the art.


The hydraulic fracturing pumps 14, driven by the respective internal GTEs 16, discharge the slurry (e.g., the fracturing fluid including the water, agents, gels, and/or proppants) at high flow rates and/or high pressures through individual high-pressure discharge lines into two or more high-pressure flow lines, sometimes referred to as “missiles,” on the fracturing manifold 32. The flow from the high-pressure flow lines is combined at the fracturing manifold 32, and one or more of the high-pressure flow lines provide fluid flow to a manifold assembly 34, sometimes referred to as a “goat head.” The manifold assembly 34 delivers the slurry into a wellhead manifold 36. The wellhead manifold 36 may be configured to selectively divert the slurry to, for example, one or more wellheads 38 via operation of one or more valves. Once the fracturing process is ceased or completed, flow returning from the fractured formation discharges into a flowback manifold, and the returned flow may be collected in one or more flowback tanks as will be understood by those skilled in the art.


As schematically depicted in FIG. 1, one or more of the components of the fracturing system 10 may be configured to be portable, so that the hydraulic fracturing system 10 may be transported to a well site, quickly assembled, operated for a relatively short period of time, at least partially disassembled, and transported to another location of another well site for use. For example, the components may be connected to and/or supported on a chassis 40, for example, a trailer and/or a support incorporated into a truck, so that they may be easily transported between well sites. In some embodiments, the prime mover 16, the transmission 18, and/or the hydraulic fracturing pump 14 may be connected to the chassis 40. For example, the chassis 40 may include a platform 42, and the transmission 18 may be connected to the platform 42, and the prime mover 16 may be connected to the transmission 18. In some embodiments, the prime mover 16 may be connected to the transmission 18 without also connecting the prime mover 16 directly to the platform 42, which may result in fewer support structures being needed for supporting the prime mover 16, transmission 18, and/or hydraulic fracturing pump 14 on the chassis 40.


In some embodiments, two or more hydraulic fracturing pumps 14 may be connected to the chassis 40. For example, the chassis 40 may include the prime mover 16 disposed or situated between two hydraulic fracturing pumps 14. In such example, the prime mover 16 may be a dual-shaft electric motor wherein each output shaft of the motor is connected to one of the hydraulic fracturing pumps 14. In one or more embodiments, the chassis 40 may include a plurality of prime movers 16 and hydraulic fracturing pumps 14. For example, the chassis 40 may include a first prime mover 16 mechanically linked to a first hydraulic fracturing pump 14 and a second prime mover 16 mechanically linked to a second hydraulic fracturing pump 14.


As shown in FIG. 1, some embodiments of the hydraulic fracturing system 10 may include one or more fuel supplies 44 for supplying the prime movers 16 and any other fuel-powered components of the hydraulic fracturing system 10, such as auxiliary equipment, with fuel. The fuel supplies 44 may include gaseous fuels, such as compressed natural gas (CNG), natural gas, field gas, pipeline gas, methane, propane, butane, and/or liquid fuels, such as, for example, diesel fuel (e.g., #2 diesel), bio-diesel fuel, bio-fuel, alcohol, gasoline, gasohol, aviation fuel, and other fuels as will be understood by those skilled in the art. Gaseous fuels may be supplied by CNG bulk vessels, such as fuel tanks coupled to trucks, a gas compressor, a liquid natural gas vaporizer, line gas, and/or well-gas produced natural gas. The fuel may be supplied to the hydraulic fracturing unit assemblies 12 by one of more fuel lines supplying the fuel to a fuel manifold and unit fuel lines between the fuel manifold and the hydraulic fracturing units 12. Other types and associated fuel supply sources and arrangements are contemplated as will be understood by those skilled in the art.


As shown in FIG. 1, some embodiments also may include one or more data centers 46 configured to facilitate receipt and transmission of data communications related to operation of one or more of the components of the hydraulic fracturing system 10. Such data communications may be received and/or transmitted via hard-wired communications cables and/or wireless communications, for example, according to known communications protocols. For example, the data centers 46 may contain at least some components of a hydraulic fracturing control assembly, such as a supervisory controller configured to receive signals from components of the hydraulic fracturing system 10 and/or communicate control signals to components of the hydraulic fracturing system 10, for example, to at least partially control operation of one or more components of the hydraulic fracturing system 10, such as, for example, the prime movers 16, the transmissions 18, and/or the hydraulic fracturing pumps 14 of the hydraulic fracturing units 12, the chemical additive units 22, the hydration units 26, the blender 28, the conveyers 30, the fracturing manifold 32, the manifold assembly 34, the wellhead manifold 36, and/or any associated valves, pumps, and/or other components of the hydraulic fracturing system 10.



FIG. 2A is a schematic side view of an example hydraulic fracturing unit 12 according to embodiments of the disclosure, and FIG. 2B is a schematic end view of the example hydraulic fracturing unit 12 shown in FIG. 2A according to embodiments of the disclosure. As shown in FIG. 2A, in some embodiments, the transmission 18 may include a transmission input shaft 48 connected to a prime mover output shaft 50 (e.g., a turbine output shaft), such that the transmission input shaft 48 rotates at the same rotational speed as the prime mover output shaft 50. The transmission 18 may also include a transmission output shaft 52 positioned to be driven by the transmission input shaft 48 at a different rotational speed than the transmission input shaft 48. In some embodiments, the transmission 18 may be a reduction transmission, such as a reduction gearbox, which results in the transmission output shaft 52 having a relatively slower rotational speed than the transmission input shaft 48. The transmission 18 may include a continuously variable transmission, an automatic transmission including one or more planetary gear trains 200 (FIGS. 4A-4F), a transmission shiftable between different ratios of input-to-output, etc., or any other suitable of types of transmissions as will be understood by those skilled in the art.


As shown in FIG. 2A, in some embodiments, the hydraulic fracturing pump 14 may be, for example, a reciprocating fluid pump, as explained herein. In some embodiments, the hydraulic fracturing pump 14 may include a pump drive shaft 54 connected to the transmission output shaft 52, such that the transmission output shaft 52 drives the pump drive shaft 54 at a desired rotational speed. For example, the transmission output shaft 52 may include an output shaft connection flange, and the pump drive shaft 54 may include a drive shaft connection flange, and the output shaft connection flange and the drive shaft connection flange may be coupled to one another, for example, directly connected to one another. In some embodiments, the transmission output shaft 52 and the pump drive shaft 54 may be connected to one another via any known coupling types as will be understood by those skilled in the art (e.g., such as a universal joint and/or a torsional coupling).


As shown in FIG. 2A, in some embodiments, the chassis 40 may be or include a trailer 56 including the platform 42 for supporting components of the hydraulic fracturing unit 12, one or more pairs of wheels 58 facilitating movement of the trailer 56, a pair of retractable supports 60 to support the hydraulic fracturing unit 12 during use, and a tongue 62 including a coupler 64 for connecting the trailer 56 to a truck for transport of the hydraulic fracturing unit 12 between well sites to be incorporated into a hydraulic fracturing system 10 of a well site fracturing operation, as will be understood by those skilled in the art.


As shown in FIGS. 1, 2A, and 2B, some embodiments of the hydraulic fracturing unit 12 may include an enclosure 66 connected to and supported by the chassis 40 according to embodiments of the disclosure. In some embodiments, as shown in FIG. 1, the prime mover 16 may be connected to the transmission 18 via the prime mover output shaft 50 and the transmission input shaft 48, both of which may be substantially contained within the enclosure 66. The prime mover 16 may include an air intake duct 68 and a turbine exhaust duct 70 (e.g., when the prime mover is a GTE) passing through walls of the enclosure 66 and connected to the prime mover 16. The prime mover 16 may be connected to the hydraulic fracturing pump 14 via the transmission 18, with the transmission output shaft 52 connected to the pump drive shaft 54, for example, as explained herein.


As shown in FIGS. 1, 2A, and 2B, some embodiments of the hydraulic fracturing pump 14 may have physical dimensions configured such that the hydraulic fracturing pump 14 does not exceed the space available on the platform 42, for example, while still providing a desired pressure output and/or flow output to assist with performing the fracturing operation as explained herein. For example, referring to FIG. 2A, the hydraulic fracturing pump 14 may have a pump length dimension L substantially parallel to a longitudinal axis X of the platform 42 that facilitates placement and/or connection of the hydraulic fracturing pump 14 on the platform 42, for example, without causing the hydraulic fracturing unit 12 to exceed a length permitted for transportation on public highways, for example, in compliance with government regulations. The pump length dimension L the hydraulic fracturing pump 14 may be greater than 1 meter (m). In one or more embodiments, the pump length dimension L may be from about 0.5 m to about 3 m, from about 0.75 m to about 2.5 m, or from about 1 m to about 2 m. In some embodiments, for example, as shown in FIG. 2B, the hydraulic fracturing pump 14 may have a pump width dimension W substantially perpendicular to a longitudinal axis X of the platform 42 that facilitates placement and/or connection of the hydraulic fracturing pump 14 on the platform 42, for example, without causing the hydraulic fracturing unit 12 to exceed a width permitted for transportation on public highways, for example, in compliance with government regulations. For example, the hydraulic fracturing pump 14 may have a pump width W perpendicular to the longitudinal axis X of the platform, such that the pump width W is less than or equal to the width of the platform WP, for example, as shown in FIG. 2B. In some embodiments, the pump width W may be at least 50%, at least 75%, or at least 90% of the width of the platform WP. For example, a ratio of the pump width W to the width of the platform WP, expressed as W:WP, may be from about 0.8:1, about 0.9:1, about 0.93:1, or about 0.95:1 to about 0.98:1, about 1:1, about 1.05:1, or about 1.1 to 1. As shown in FIGS. 1 and 2B, in some embodiments, as viewed from the rear of the platform 42 and in a direction substantially parallel to the longitudinal axis X of the platform 42, an end of the hydraulic fracturing pump 14 may take on the appearance of an inverted V, as explained in more detail herein.



FIG. 3A is a schematic perspective view of an example hydraulic fracturing pump 14 including at least two pinion gears according to embodiments of the disclosure. As shown in FIG. 3A, in some embodiments, the hydraulic fracturing pump 14 may include a single power end 72 and respective first and second fluid ends 74a and 74b connected to the single power end 72. For example, the single power end 72 may include a pump frame 76, the crankshaft 78, and/or the plungers 84 and/or 88. The first fluid end 74a and the second fluid end 74b may each be connected to the pump frame 76, for example, on opposite lateral sides of the hydraulic fracturing pump 14. In some embodiments, for example, as shown in FIGS. 1, 2A, 2B, and 3A, the first and second fluid ends 74a and 74b may be connected to the hydraulic fracturing pump 14, and the hydraulic fracturing pump 14 may be connected to the platform 42, such that the first and second fluid ends 74a and 74b are closer to the platform 42 than the power end 72. For example, the first and second fluid ends 74a and 74b may be relatively closer to the ground than if the hydraulic fracturing pump 14 was oriented such that the first and second fluid ends 74a and 74b were farther away from the platform 42 than the power end 72. The example orientation shown may render the fluid ends 74a and 74b relatively more easily accessible to operators and/or maintenance service personal, for example, during set-up of the hydraulic fracturing unit 12 for a fracturing operation, take-down of the hydraulic fracturing unit 12, for example, once a fracturing operation is completed, and/or during maintenance or service of the hydraulic fracturing unit 12.



FIG. 3B is a schematic top view of the example hydraulic fracturing pump 14 shown in FIG. 3A according to embodiments of the disclosure. FIG. 3C is a schematic bottom view of the example hydraulic fracturing pump 14 shown in FIG. 3A according to embodiments of the disclosure. FIG. 3D is a schematic close-up view of an example connector rod and plunger arrangement for the example hydraulic fracturing pump 14 shown in FIG. 3A according to embodiments of the disclosure. FIG. 3E is a schematic end view of the example hydraulic fracturing pump 14 shown in FIG. 3A according to embodiments of the disclosure.


As shown in FIGS. 3A, 3B, 3C, 3D, and 3E in some embodiments, the hydraulic fracturing pump 14 may include the pump frame 76, which may at least partially define a shaft aperture, and a crankshaft 78 extending through the shaft aperture. In some embodiments, the pump frame 76 may include a plurality of pump frame sections 80, and each of the pump frame sections 80 may at least partially define the shaft aperture. For example, as shown in FIG. 3A, the example pump frame 76 includes five pump frame sections 80a, 80b, 80c, 80d, and 80e. Pump frames 76 having different numbers of pump frame sections 80 are contemplated. For example, the hydraulic fracturing pump 14 may include the pump frame 76 may include any suitable number of pump frame sections 80. In some embodiments, the hydraulic fracturing pump 14 may include from two, three, or four to five, six, eight, ten, or twelve pump frame sections 80. As shown in FIG. 3E, one or more of the pump frame sections 80 may have an inverted V-shaped cross-section as viewed in a direction substantially parallel to a longitudinal axis of the crankshaft CR. In other embodiments (not shown), one or more of the pump frame sections 80 may have an upright V-shaped cross-section as viewed in a direction substantially parallel to a longitudinal axis of the crankshaft CR. In some embodiments, one or more of the pump frame sections 80 may be connected to one another to form the pump frame 76, for example, via frame connectors 82 and/or the first and second fluid ends 74a and 74b. Though first and second fluid ends 74a and 74b are shown, the hydraulic fracturing pump 14 may include three or more fluid ends (not shown). In some embodiments, the fracturing pump 14 may include at least three fluid ends and at least three corresponding banks of plungers. For example, one or more pump frame sections may have an inverted Y-shaped cross-section as viewed in a direction substantially parallel to a longitudinal axis of the crankshaft CR, wherein the third fluid end is disposed above the crankshaft 78. In other embodiments, the fracturing pump 14 may include four fluid ends and four corresponding banks of plungers. For example, one or more pump frame sections may have an X-shaped cross-section as viewed in a direction substantially parallel to a longitudinal axis of the crankshaft CR, wherein the third fluid end is disposed above the first fluid end 74a and the fourth fluid end is disposed above the second fluid end 74b.


As shown in FIGS. 3A, 3B, 3C, 3D, and 3E, in some embodiments, the hydraulic fracturing pump 14 may include a plurality of first plungers 84 connected to the crankshaft 78 and positioned to reciprocate relative to the crankshaft 78 as the crankshaft 78 rotates. For example, as shown in FIGS. 3B and 3C, the hydraulic fracturing pump 14 may include a first bank 86 of four first plungers 84a, 84b, 84c, and 84d. In addition, in some embodiments, the hydraulic fracturing pump 14 may include a plurality of second plungers 88 connected to the crankshaft 78 and positioned to reciprocate relative to the crankshaft 78 as the crankshaft 78 rotates. For example, as shown in FIGS. 3B and 3C, the hydraulic fracturing pump 14 may include a second bank 90 of four second plungers 88a, 88b, 88c, and 88d. Though four first plungers and four second plungers are shown, the hydraulic fracturing pump 14 may include any suitable number of first and second plungers. In some embodiments, the hydraulic fracturing pump 14 may include from two, three, or four to five, six, eight, ten, or twelve first plungers 84 and from two, three, or four to five, six, eight, ten, or twelve second plungers 88.


Each of the of first plungers 84 may be configured to reciprocate and draw-in fracturing fluid at a first pressure and discharge the fracturing fluid at a second pressure greater than the first pressure. Each of the second plungers 88 may be configured to reciprocate and draw-in fracturing fluid at a third pressure and discharge the fracturing fluid at a fourth pressure greater than the third pressure. For example, the first pressure and/or the third pressure may be substantially equal to a pressure associated with the fracturing fluid being supplied to the hydraulic fracturing pump 14 from the blender 28 (FIG. 1). The second pressure and the fourth pressure may be substantially equivalent to the high pressure of the fracturing fluid being supplied to the wellhead 38 by operation of the prime mover 16, the transmission 18, and the hydraulic fracturing pump 14 of the hydraulic fracturing unit 12. In some embodiments, the first pressure and the third pressure may be substantially the same. In some embodiments, the second pressure and the fourth pressure may be substantially the same. In some embodiments, the first pressure and the third pressure may be different, and/or the second pressure and the fourth pressure may be different.


In some embodiments, for example, as shown in FIG. 3E, each of the first plungers 84 may reciprocate in a first plane P1 and draw-in fracturing fluid at the first pressure and discharge the fracturing fluid at the second pressure, and/or each of the second plungers 88 may reciprocate in a second plane P2 and draw-in fracturing fluid at the third pressure and discharge the fracturing fluid at the fourth pressure. In one or more embodiments, the first plane P1 and the second plane P2 may intersect at the crankshaft axis CR and/or define an offset angle A between the first plane P1 and the second plane P2. For example, the offset angle A may range from zero degree to three hundred and sixty degrees, for example, from about ten degrees to about three hundred degrees, from about thirty degrees to about one two hundred and seventy degrees, or from about forty-five degrees to about one hundred eighty degrees. In some embodiments, the offset angle A between the first plane P1 and the second plane P2 may be a non-zero offset angle. For example, the offset angle A may range from about thirty degrees to about one hundred-eighty degrees, for example, from about ninety degrees to about one hundred-eighty degrees, from about thirty degrees to about one hundred-fifty degrees, from about forty-five degrees to about one hundred thirty-five degrees, from about sixty degrees to about one hundred-twenty degrees, or from about seventy-five degrees to about one hundred-five degrees, for example, about ninety degrees.


In some embodiments, providing the first and second plungers 84 and 88 in different planes may result in increasing the pumping capacity of the hydraulic fracturing pump 14, for example, without substantially increasing the physical dimensions of the hydraulic fracturing pump 14, for example, without substantially increasing the pump length L and/or without substantially increasing the pump width W. In some embodiments, providing the first and second plungers 84 and 88 in different planes may result in relatively reducing the level of shock and/or vibration associated with operation of the hydraulic fracturing pump 14, for example, the level of shock and/or vibration associated with torque shock and/or torque vibration generated during operation of the hydraulic fracturing pump 14, for example, as each of the first plungers 84 and/or each of the second plungers 88 discharges fracturing fluid at the second and fourth pressures, respectively. For example, in some embodiments, the shock and/or torque generated by one or more of the first plungers 84 and/or one or more of the second plungers 88 may substantially offset or cancel one another.


As shown in FIGS. 3B and 3C, in some embodiments, the crankshaft 78 may include a plurality of crankpins 92, and each of the crankpins 92 may be offset from a longitudinal rotation axis RA of the crankshaft 78. In some embodiments, the crankshaft axis CR and the longitudinal rotation axis RA may be substantially co-existent. For example, the crankpins 92 may be spaced from, but parallel to, the longitudinal rotation axis RA, such that as the crankshaft 78 rotates, the first plungers 84 and the second plungers 88 are caused to reciprocate, for example, in respective chambers of the first and second fluid ends 74a and 74b, for example, a distance equal to two times the offset of the respective crankpin 92 to which the plunger is connected. In some embodiments, one or more of the crankpins 92 may be radially spaced from one another, for example, such that the respective reciprocations of the plungers occur according to a desired timing relative to one another. The crankshaft 78 may include any suitable number of crankpins 92. In some embodiments, the crankshaft 78 may include 1, 2, 3, or 4 to 5, 6, 8, 10, or 12 or more crankpins 92. For example, in the embodiment shown in FIGS. 3B and 3C, the example crankshaft 78 includes four crankpins 92. In some embodiments, each of the crankpins 92 may be radially offset relative to one another by, for example, ninety degrees. This may result in the respective reciprocations of the plungers being spaced from one another. The spacing of the plunger reciprocations may result in at least some force cancellation due to the plungers moving in different directions as more fully described below.


As shown in FIGS. 3B, 3C, and 3D, in some embodiments, the hydraulic fracturing pump 14 may include a plurality of connector rods 94. In some embodiments, the plurality of connector rods 94 may include from 2, 4, or 6 to 8, 10, 12, 16, 20, or 24 or more connector rods 94. For example, each of connector rods 94 may connect one of the first plungers 84 to each of the plurality of crankpins 92 or one of the second plungers 88 to each of the of crankpins 92 (e.g., connector rods 94a and 94b, respectively), for example, such that each of the crankpins 92 is connected to one of the first plungers 84 and one of the second plungers 88. For example, each of the connector rods 94a and 94b may include a plunger end 96 connected to either one of the first plungers 84 or one of the second plungers 88 (e.g., plunger ends 96a and 96b, respectively), and a crank end 98 connected to one of the crankpins 92 (e.g., crank ends 96a and 96b, respectively). For example, each of the plunger ends 96 may be connected to a respective plunger via a pin that permits the plunger to pivot with respect to the respective connector rod 94 as the plunger reciprocates in a chamber of a respective fluid end, and each of the respective crank ends 98 may be connected to a respective crankpin 92, such that the crankpin 92 is able to rotate freely relative to the respective crank end 98 as the crankshaft 78, driven by the prime mover 16 and/or the transmission 18, rotates. As shown in FIGS. 3B, 3C, and 3D, in some embodiments, the plurality of connector rods 94a may have a longitudinal axis offset from a longitudinal axis of connector rods 94b. In other embodiments, the plurality of connector rods 94a may be axially aligned with the plurality of connector rods 94b as more fully discussed below.


In some embodiments, the crankshaft 78 and/or the crankpins 92 may be configured such that different pairs of the first and second plungers 84 and 88 are in different locations along their respective stroke paths as the crankshaft 78 rotates. In some embodiments, the crankshaft 78 and/or the crankpins 92 may be configured such that different pairs of first and second plungers of the first and second banks of plungers and are offset by the crank pins, e.g., in embodiments, the plungers of the first and third pairs of plungers shown in the FIGS. can be offset from each other by the crank pins by about 90 degrees, for example, and can move in different directions, e.g. along an intake stroke direction toward the crankshaft 78 for drawing-in fracturing fluid and a discharge stroke direction away from the crankshaft 78 for discharging fracturing fluid. For example, a first pair of plungers may include a first one of the first plungers 84 (e.g., first plunger 84a) and a first one of the second plungers 88 (e.g., second plunger 88a), and a second pair of plungers may include a second one of the first plungers 84 (e.g., first plunger 84b) and a second one of the second plungers 88 (e.g., second plunger 88b), and the crankshaft 78 may be configured such that the first pair of plungers moves in a first direction to discharge at least a portion of the fracturing fluid while the second pair of plungers moves in a second direction to draw-in at least a portion of the fracturing fluid. In some embodiments, each of the pairs of first and second plungers 84 and 88 may be connected to a common crankpin 92 of the crankshaft 78. In some embodiments, different pairs and/or additional pairs of the first and second plungers 84 and 88 may similarly move in different directions. This example movement of plunger pairs in different directions may result in relatively reducing the level of shock and/or vibration associated with operation of the hydraulic fracturing pump 14, for example, the level of shock and/or vibration associated with torque shock and/or torque vibration generated during operation of the hydraulic fracturing pump 14, for example, as each of the first plungers 84 and/or each of the second plungers 88 discharges fracturing fluid at the second and fourth pressures, respectively. For example, in some embodiments, the shock and/or torque generated by one or more of the pairs of first and second plungers 84 and 88 may substantially offset or cancel one another.


As shown in FIG. 3D, in some embodiments, each of the first plungers 84 has a first longitudinal dimension LD1 (e.g., relative to the hydraulic fracturing pump 14, for example, a first diameter), and each of the second plungers 88 has a second longitudinal dimension LD2 (e.g., relative to the hydraulic fracturing pump 14, for example, a second diameter). In some embodiments, for example, as shown, the first longitudinal dimension LD1 is substantially equal to the second longitudinal dimension LD2. In some embodiments, the first plungers 84 and the second plungers 88 are each connected to one of the crankpins 92, such that, for example, a total longitudinal distance occupied by the first plunger 84 and the second plunger 88 is less than a sum of the first longitudinal dimension LD1 and the second longitudinal dimension LD2.


For example, as shown in FIG. 3D, each of the crank ends 98a and 98b of the respective connector rods 94a and 94b includes two crank end connectors 100 (e.g., crank end connectors 100a and 100b, respectively) separated by a crank end space 102 (e.g., crank end spaces 102a and 102b, respectively). For example, each of a group of first connector rods 94a may be connected to one of the first plungers 84, and each of a group of second connector rods 94b may be connected to one of the second plungers 88. The respective crank end connector 100a of each of the first connector rods 94a may be positioned at least partially in a respective crank end space 102b of one of the second connector rods 94b, and the respective crank end connector 100b of each of the second connector rods 94b may be positioned at least partially in a crank end space 102a of one of the first connector rods 94a. This example intermeshing of the connector rods 94a and 94b connected to the first and second plungers 84 and 88 may result in further reducing the pump length L of at least some embodiments of the hydraulic fracturing pump 14.


As shown in FIGS. 3A, 3B, 3C, and 3E, in some embodiments, the hydraulic fracturing pump 14 may include a first pinion gear 108 engaged with the crankshaft 78, for example, via a first drive gear 110, at a first end 112 of the pump frame 76, and a connector shaft 114 connected to the first pinion gear 108. In some embodiments, the hydraulic fracturing pump 14 also may include a second pinion gear 116 connected to the hydraulic fracturing pump 14 at a second end 118 of the pump frame 76 and connected to the first pinion gear 108 via the connector shaft 114. In some such embodiments, the first pinion gear 108 may drive the connector shaft 114 and the crankshaft 78 at the first end 112 of the pump frame 76. The connector shaft 114 may transfer the torque from the first pinion gear 108 and drive the second pinion gear 116 at the second end 118 of the pump frame 76. The second pinion gear 116 may drive the crankshaft 78 at the second end 118 of the pump frame 76, for example, via a second drive gear 120. In some such embodiments, because the crankshaft 78 is driven at both ends, the torque tending to twist the crankshaft 78 may be relatively reduced as compared to a crankshaft that is driven at one end. This may result in an ability to drive the crankshaft 78 with relatively more torque and/or power without damaging the crankshaft 78 (e.g., for a crankshaft of a given strength) and/or adversely affecting operation of the hydraulic fracturing pump 14. In some embodiments, the hydraulic fracturing pump 14 may be configured to be driven by one or more prime movers 16 located at opposite ends of the hydraulic fracturing pump 14. For example, the hydraulic fracturing pump 14 may be driven by one or more prime movers 16 from each of both the first end 112 and the second end 118 of the pump frame 76, for example, via the first pinion gear 108 and the second pinion gear 116. For example, a second prime mover may be connected to the hydraulic fracturing pump 14 at an end of the hydraulic fracturing pump 14 opposite a first prime mover 16, for example, via a second transmission, to supply power to the hydraulic fracturing pump 14.


An additional embodiment a hydraulic fracturing pump 14′ is illustrated in FIGS. 4A-4F. The hydraulic fracturing pump 14′ may have a similar construction the hydraulic pump 14 illustrated in FIGS. 3A-3E, and thus like numerals will be used to refer to similar parts in the present embodiment shown in FIGS. 4A-4F. In this embodiment, the drive assembly of the hydraulic fracturing pump 14′ includes a planetary gear drive train 200 that includes at least one planetary gearbox 201, typically located at the first end of the hydraulic fracturing pump 14′, though an additional planetary gearbox further can be provided at the second end of the hydraulic fracturing pump for driving the crankshaft from a second end thereof. As with the hydraulic fracturing pump 14 of FIG. 3A, hydraulic fracturing pump 14′ will be mounted on the platform 42 and supported on the chassis 40 of the transportable hydraulic fracturing unit 10. The hydraulic fracturing pump further will be configured for pumping one or more fluids, such as fluids for use in hydraulic fracking operations. The hydraulic fracturing pump 14′ further generally will be mounted in a substantially centrally aligned position adjacent the rear of the platform 42, such as indicated in FIGS. 2A and 2B.


As illustrated in FIGS. 4A-4B and 4F, the hydraulic fracturing pump 14′ generally will include a pump frame 76 with at least one power end or section 72 defined along an upper portion of the pump frame, and one or more fluid sections or ends 74 (e.g. as indicated at 74a/74b) defined along a lower portion of the pump frame. The pump frame further will include a first or upstream end 112 at which at least one planetary gearbox 201 will be located, and a second or downstream end 118 at which fluid is discharged from the hydraulic fracturing pump 14′.


As further illustrated in FIGS. 4B and 4F, the pump frame further can include a series of pump frame sections 80 (e.g. shown at 80, 80b, 80, 80d and 80e in FIG. 4F) extending between the power and fluid ends 72/74 of the pump frame. Each pump frame section can be connected together to form the pump frame 76, with each pump frame section including a body 81 having an upper end 81a that can be formed with a substantially circular configuration, and which can include a bearing assembly, and a lower end 81b. The upper ends of each pump frame section further can include an aperture or opening 81c, with the openings of the pump frame sections being aligned such that together they define a crankshaft aperture 78a along which a crankshaft 78 is extended through the pump frame 76 of the hydraulic fracturing pump 14′.


As illustrated in FIGS. 4A, 4B and 4E, the hydraulic fracturing pump 14′ can include a series of plungers 84 and 88, which can be arranged assets or banks of first plungers 84a-84d and second plungers 88a-88d, as indicated at 86 and 90 and, arranged along each side of the pump frame. For example, FIGS. 4A and 4B illustrate two banks of plungers arranged on opposite sides of the pump frame 76 and which may be coupled to the crankshaft 78 in an offset arrangement so as to be driven in a reciprocating motion toward and away from/into and out of fluid chambers 124 arranged along the each of the first and second fluid ends of the pump frame, in an alternating motion. For example, as indicated in FIG. 4F, as the plungers 84a-84d of the first bank 86 of plungers driven along a downward stroke in a first direction toward the first fluid end 74a, the plungers 88a-88d of the second bank 90 of plungers will be retracted from the fluid chamber of the second fluid end.


In addition, the opposed first and second plungers of the first and second banks of plungers can be arranged in pairs or groups of first and second plungers, with the plungers of each pair of plungers offset from the first and second plungers of other ones of the pairs of plungers. For example, as further indicated in FIG. 4F, the plungers of a first pair of plungers can be arranged at an offset with respect to a second and/or third pair of first and second plungers, e.g. at an offset angle of approximately 90 degrees; although in some embodiments, the offset angles between the pairs of first and second plungers can be less or can be greater, e.g. such offset angles can range between about 0 degrees to about 180 degrees.


As illustrated in FIGS. 4A-4B, 4D and 4E, the fluid end or section 74 of the pump frame 76 can include at least first and second fluid ends or sections 74a.74b each including a fluid chamber 124 into which the plungers of the first and second banks 86/90 of plungers will be received. As discussed above with respect to the hydraulic fracturing pump 14 of FIGS. 3A-3E, while the hydraulic fracturing pump 14′ (FIGS. 4A-4F) is shown with a pair of fluid ends 74a/74b and two banks of four plungers on each side of the pump frame 76 in FIGS. 4A-4B, it will be understood by those skilled in the art that additional plungers and additional fluid ends or chambers also can be provided. Thus, depending on applications, the pump frame of the hydraulic fracturing pump 14′ can be configured (e.g., can be lengthened or extended, or reduced in length as needed) to accommodate any suitable number of plungers as well as more or less numbers of fluid ends and or fluid chambers. By way of example only and not by limitation, in embodiments, the hydraulic fracturing pump 14′ can include multiple banks of plungers, each of which may include 1, 2, 3, 4, 5, 6, 8, 10, or 12 plungers arranged on each side of the pump frame; and, in embodiments, the hydraulic fracturing pump 14′ could include three or more fluid ends with three or more sets or banks of plungers, each corresponding to one of the fluid ends.


In embodiments, the pump frame sections 80a-80e, as generally illustrated in FIGS. 4A and 4E, can have a substantially inverted Y-shaped cross-section or configuration, as viewed in a direction substantially parallel to a longitudinal axis CR of the crankshaft. In embodiments, such as where the hydraulic fracturing pump 14′ includes three or more fluid ends, the additional fluid ends can be stacked along the sides of the pump frame, e.g. a third fluid end can be disposed above the crankshaft adjacent upper ends of the pump frame sections, which can have a Y-shaped configuration; while in other embodiments where four or more fluid ends are provided, the pump frame sections may have a substantially X-shaped cross section or configuration, as viewed in the direction substantially parallel to the longitudinal axis CR of the crankshaft, the fluid ends or sections can be stacked or disposed with one above another, e.g. a third fluid end could be disposed above the first fluid end, and a fourth fluid end could be disposed above the second fluid end.


As illustrated in FIGS. 4A, 4C and 4E, each of the plungers 84/88 can be received within a sleeve 205 or guide that can be configured to help direct or guide the reciprocating motion of each of the plungers into and out of the chambers 124 of each of their respective or associated first and second fluid ends 74a/74b of the hydraulic fracturing pump 14′. As indicated in FIG. 4C, the sleeves can be formed with a generally cylindrical configuration that substantially matches the configuration of the plungers, generally being configured to help control/guide the movement of the plungers so as to substantially minimize or reduce transverse movement or vibration of the plungers during their reciprocating motion. The sleeves 205 can be mounted along the pump frame, such as being positioned between each of the pump frame sections as shown in FIGS. 4A and 4C and secured by fasteners along a mounting plate or support 206, and can be arranged at an angle corresponding to the angle of the movement or stroke of their associated plungers.


In embodiments, as indicated in FIGS. 4A, 4C and 4E, each of the plungers further generally will be coupled at an upper end to a connecting rod 94. Each of the connecting rods can include an elongated body having a first end that connects to an upper end of a corresponding one of the plungers 84/88, and a second end that is generally pivotally attached to the crankshaft 78 by a crank pin 92. The crankshaft can have a plurality of crank pins as needed for driving the connector rods and plungers of the hydraulic fracturing pump 14′, which crank pins may be offset from the longitudinal rotation axis RA of the crankshaft. As noted with respect to the embodiment of the hydraulic fracturing pump 14 shown in FIGS. 3A-3E, the crankshaft axis CR in the longitudinal rotation axis RA may be substantially aligned or coexistent, with the crank pins 92 being arranged substantially parallel to the longitudinal rotation axis RA.


In embodiments, each of the crank pins connected to alternating ones of the connecting rods and plungers may be radially offset with respect to one another, for example by 90 degrees, although greater or lesser offsets (e.g. between about 0 degrees to about 180 degrees), can be used. As a result, the respective reciprocation of the plungers of the first bank of plungers can be opposite of the reciprocal movement of the plungers of the second bank of first plungers, e.g. as the first plungers are moved in the first direction toward their corresponding fluid end, so as to discharge fluid from the fluid end, the second plungers can be retracted in the second direction away from their corresponding fluid end. This can enable a plunger firing sequence whereby two consecutive plunger groups fire one after the other, e.g. a plunger firing sequence of 1-3-2-4 can be provided. The spacing of the plunger reciprocations thus can potentially result in at least some degree of force cancellation in at least some of the bearings due to a 90-degree phasing of the plungers so as to reduce peak loads acting on at least some of the bearings of the pump frame sections.


As further illustrated in FIGS. 4A and 4E, each of the connector rods 94 can be connected to their corresponding plungers 84/88 by a pivotal connection between the plunger end of each connector rod and its corresponding plunger, such as by pin or similar pivoting connector that permits each plunger to pivot with respect to its corresponding connector rod as the plunger reciprocates into and out of the chamber 124 of its corresponding or associated fluid end 74a/74b. The crank ends of each of the connector rods 94 further will be connected to their respective crank pins 92 such that each of the crank pins is able to freely rotate relative to the crank end of its associated or corresponding connector rods as the crankshaft is driven (e.g. by the prime mover 16 and/or the transmission 18 shown in FIG. 2A). In addition, each of the connector rods corresponding to each of the plungers of the first and second banks of plungers may be axially aligned so as to move along substantially axially aligned stroke paths as the crankshaft is rotated.


In other embodiments, the crank pins can be arranged along the crankshaft such that different pairs of the plungers of the first and second banks of plungers will be at different locations along their respective stroke paths as the crankshaft rotates; and, as discussed above, further can be moved in different directions, for example and intake or stroke direction towards the crankshaft or drawing in fracturing fluid and a discharge stroke direction away from the crankshaft for discharging the fracturing fluid.


Each of the of first and second plungers 84/88 may be configured to reciprocate in first and second directions to discharge draw-in fracturing fluid at different pressures. For example, the first plungers may be aligned and reciprocate in a first plane to draw-in fracturing fluid at a first pressure and discharge the fracturing fluid at a second pressure that can be greater than the first pressure, while the second plungers 88 may be configured to reciprocate in a second plane to draw-in fracturing fluid at a third pressure and discharge the fracturing fluid at a fourth pressure that can be greater than the third pressure; such as discussed above with respect to FIG. 3E. In embodiments, the first pressure and/or the third pressure may be substantially equal to a pressure associated with the fracturing fluid being supplied to the hydraulic fracturing pump 14 from the blender 28 (FIG. 1); and the second pressure and the fourth pressure may be substantially equivalent to the high pressure of the fracturing fluid being supplied to the wellhead 38 by operation of the prime mover 16, the transmission 18, and the hydraulic fracturing pump 14 of the hydraulic fracturing unit 12. In some embodiments, the first pressure and the third pressure may be substantially the same. In some embodiments, the second pressure and the fourth pressure may be substantially the same. In some embodiments, the first pressure and the third pressure may be different, and/or the second pressure and the fourth pressure may be different.


In addition, reciprocating the first and second plungers 84 and 88 in their respective planes also may result in increasing the pumping capacity of the hydraulic fracturing pump 14′ without substantially increasing a pump length L and/or without substantially increasing a pump width W thereof; and further may assist in relatively reducing the level of shock and/or vibration associated with operation of the hydraulic fracturing pump 14, e.g., the level of shock and/or vibration associated with torque shock and/or torque vibration generated during operation of the hydraulic fracturing pump 14′, as each of the first plungers 84 and/or each of the second plungers 88 discharges fracturing fluid at different pressures. This further can lead to the shock and/or torque generated by one or more of the first plungers 84 and/or one or more of the second plungers 88 substantially offsetting or canceling one another.


As illustrated in FIG. 4A and in the present embodiment, the drive assembly of the hydraulic fracturing pump 14′ can comprise an epicyclic or planetary gear train 200, with at least one planetary gear box 201 located at the first or upstream end 112 of the pump frame 76. The planetary gearbox 201 generally will be coupled to the prime mover 16, such as via the transmission 18 (FIG. 2A) of the hydraulic fracturing unit 10. The planetary gearbox 201 can include a housing or cover that seals and protects drive gears of the planetary gear train, including a first drive gear 210 (FIG. 4F) that is received therein.


The first drive gear can be configured as a ring gear having an inner circumference 211 defining an interior chamber or area, and further can include a first series of gear teeth 212 projecting radially inward, and a second series of gear teeth 213 arranged about an outer circumference 214 of the first drive gear 210. A planetary gear arrangement 215 will be received within the interior of the first drive gear chamber such that the planetary gear arrangement is surrounded by and engages the first drive gear. In an example embodiment as shown in FIG. 4D, the planetary gear arrangement can include a central or sun gear 216 that can engage with or be mounted to a first end of the crankshaft 78, generally being aligned with the longitudinal axis CR of the crankshaft and the rotational axis RA of the crankshaft, and a series of planet gears 217 arranged about the central or sun gear 216. In the embodiment shown in FIG. 4D, a series of four planet gears 217 are provided, though it will be understood by those skilled in the art that other types of planetary gear arrangements also could be used. The sun gear 216 and each of the planet gears 217 can include a series of gear teeth 218/219 formed about the outer circumferences thereof. The gear teeth of the planet gears are configured to engage both the gear teeth 212 of the inner circumference 211 of the first drive gear 210 as well as the gear teeth 218 of the sun gear 216. Each of the planet gears further can be rotatably mounted to a support 219 so as to be held in a substantially fixed orientation, while still being freely rotatable with respect to their support.


During operation of the hydraulic fracturing pump 14′, the prime mover of the hydraulic fracturing unit will supply power so as to drive rotation of the sun gear, which in turn drives rotation of the crankshaft from the first end thereof, As the crankshaft is rotated, the first plungers of the first set or bank or plungers and the second set of bank or plungers accordingly will be reciprocated in an alternating fashion in opposite directions toward and away from their chambers of their respective or corresponding fluid ends. For example, one or more of the first plungers of the first set or bank of plungers can be moved in a first or substantially downwardly extending direction discharge stroke so as to discharge at least a portion of fracturing fluid contained within the chamber 124 of the first fluid end 74a. The discharge fluid can be directed out of the chamber of the first fluid end and along a first fluid output conduit 106 such as indicated in FIGS. 4A and 4B. At substantially same time, one or more of second plungers of the second bank of plungers can be moved in a second, substantially upward direction along an intake stroke to draw in at least a portion of fracturing fluid into the chamber 124 of the second fluid end 74b. The fracturing fluid can be drawn into the chamber 124 via a fluid inlet conduit or pipe 104 that will be connected to a source or supply of the fracturing fluid. In embodiments, different pairs and/or multiple pairs of the first and second plungers may be configured to similarly move in different directions, which may further help reduce a level of shock and/or vibration associated with the operation of the hydraulic fracturing pump 14′, such as when each of the first plungers and/or each of the second plungers discharges the fracturing fluid at different pressures.


In addition, rotation of the sun gear also drives rotation of the first drive gear 210 of the planetary gear drive train 200. As the sun gear rotates, the engagement of the teeth of the planet gears with the teeth of the sun gear causes rotation of the planet gears, which further engage the first series of teeth 212 formed about the inner circumference 211 of the first gear so as to translate the rotational motion of the sun gear to the first drive gear and thus drive rotation of the first drive gear 210. As indicated in FIG. 4F, the second series of gear teeth 213 defined about the outer circumference 214 of the first drive gear 210 engage with gear teeth 224 of a first pinion gear 108 arranged along the first end of the pump frame. The first pinion gear 108 further may engage with the first end of a connector shaft 114 that extends through the pump frame at the first end thereof.


As discussed with respect to the embodiment shown in FIGS. 3A-3E, a second end of the connector shaft 114 further can be connected to or can engage with a second pinion gear at the second end of the pump frame 76. The second pinion gear may have a series of gear teeth configured to engage with a second drive gear that can be corrected to or can engage with a second end of the crankshaft. Thus, the crankshaft can be supported and driven from opposite sides of the pump frame.


In embodiments, the planetary gear train 200 can include a second planetary gear box that can be located at the second end of the pump frame for driving the crankshaft from its second end. The second planetary gear box can have a similar construction to the planetary gear box 201 shown in FIG. 4D, with the second drive gear comprising a ring gear having a sun gear and a series of planet gears mounted therein. Alternatively, the second end of the crankshaft can be supported and driven by a drive gear arrangement such as illustrated in FIG. 3A whereby a large second drive gear can be mounted to the second end of the crankshaft and can be rotated by rotation of a smaller second pinion gear located along the lower end of the pump frame and driven by the rotation of the connector shaft by the planetary gear box at the first end of the pump frame.


As shown in FIGS. 3A, 3B, 3C, and 3E, and in FIGS. 4A-4F, in some embodiments, the hydraulic fracturing pump 14/14′ may be configured to pump fracturing fluids from two independent fracturing fluid supplies. For example, as shown in FIGS. 3A, 3B, 3C, 3E, and 4F the first bank 86 of first plungers 84 may be supplied by a first input conduit 104a for supplying a first fracturing fluid from a first fracturing fluid supply, and a first output conduit 106a for outputting the first fracturing fluid at high pressure and/or a high flow rate. The second bank 90 of second plungers 88 may be supplied by a second input conduit 104b for supplying a second fracturing fluid from a second fracturing fluid supply, and a second output conduit 106b for outputting the second fracturing fluid at high pressure and/or a high flow rate. In some embodiments, the first fracturing fluid may have a first fracturing fluid composition, and the second fracturing fluid may have a second fracturing fluid composition. In some embodiments, the first fracturing fluid composition and the second fracturing fluid composition may be substantially the same.


In some embodiments, the first fracturing fluid composition and the second fracturing fluid composition may be different. For example, the first fracturing fluid composition may include water and proppant having a first size and/or first bulk density, and the second fracturing fluid composition may include water and proppant having a second size and/or second bulk density. For example, the first formation fluid composition may include water and proppant having a size of greater than 100 Mesh, from about 80 Mesh to about 20 Mesh, from about 70 Mesh to about 30 Mesh, from about 20 Mesh to about 40 Mesh, or from about 40 Mesh to about 60 Mesh and the second fracturing fluid composition may include water and proppant having a size of less than 100 Mesh, less than 150 Mesh, from about 150 Mesh to about 500 Mesh, or from about 200 Mesh to about 400 Mesh.


In some embodiments, the first fracturing fluid composition may include water, gels, and/or proppants, and the second fracturing fluid composition may include water and/or other components, but may be substantially devoid of proppants. In such embodiments, the first bank 86 of the first plungers 84 may pump a fracturing fluid including proppants while the second bank 90 of the second plungers 88 pumps water, etc., without proppants. Some such embodiments may result in increasing a service interval for the hydraulic fracturing pump 14, for example, because the plungers pumping water (e.g., without proppants) will be expected to experience relatively less wear (e.g., have a slower wear rate) as compared to plungers that pump a fracturing fluid that includes proppants, for example, because pumping proppants may result in increasing the wear rates of plungers and associated fluid ends.


In some embodiments, the hydraulic fracturing pump 14/14′ may be configured to pump fracturing fluids from three or more independent fracturing fluid supplies. For example, the first fracturing fluid may exit the first fluid end 74a via the first output conduit 106a, the second fracturing fluid may exit the second fluid end 74b via the second output conduit 106b, a third fracturing fluid may exit a third fluid end via a third output conduit, and optionally a fourth fracturing fluid may exit a fourth fluid end via a fourth output conduit.


In some embodiments, each of the first, second, third, and forth fracturing fluids may have substantially the same compositions. In other embodiments, the compositions of the first, second, third, and forth fracturing fluids may be different. For example, the first fracturing fluid composition may include water and proppant having a first size and/or first bulk density, and the second fracturing fluid composition may include water and proppant having a second size and/or second bulk density, the third fracturing fluid composition may include water and proppant having a third size and/or third bulk density, and the fourth fracturing fluid composition may include water and proppant having a fourth size and/or fourth bulk density. In some embodiments, the proppant having a size of greater than 100 Mesh, from about 80 Mesh to about 20 Mesh, from about 70 Mesh to about 30 Mesh, from about 20 Mesh to about 40 Mesh, or from about 40 Mesh to about 60 Mesh and the second fracturing fluid composition may include water and proppant having a size of less than 100 Mesh, less than 150 Mesh, from about 150 Mesh to about 500 Mesh, or from about 200 Mesh to about 400 Mesh.


In some embodiments, the first fracturing fluid composition may include water, gels, and/or proppants, and the second fracturing fluid composition may include water and/or other components, but may be substantially devoid of proppants. In such embodiments, the first bank 86 of the first plungers 84 may pump a fracturing fluid including proppants while the second bank 90 of the second plungers 88 pumps water, etc., without proppants. Some such embodiments may result in increasing a service interval for the hydraulic fracturing pump 14/14′, for example, because the plungers pumping water (e.g., without proppants) will be expected to experience relatively less wear (e.g., have a slower wear rate) as compared to plungers that pump a fracturing fluid that includes proppants, for example, because pumping proppants may result in increasing the wear rates of plungers and associated fluid ends


In some embodiments the hydraulic fracturing pump may be in fluid communication with two or more wells. For example, the hydraulic fracturing pump 14 may in fluid communication with 1, 2, 3, 4, or 5 or more wells. In some such embodiments, the first output conduit 106a for outputting the first fracturing fluid at a high pressure and/or a high flow rate may be in fluid communication with a first well for receiving the first fracturing fluid at the high pressure and/or the high flow rate and the second output conduit 106b for outputting the second fracturing fluid at high pressure and/or a high flow rate may be in fluid communication with a second well for receiving the second fracturing fluid at the high pressure and/or the high flow rate. In some embodiments, the first output conduit 106a may be in fluid communication with a first well for receiving the first fracturing fluid, the second output conduit 106b may be in fluid communication with a second well for receiving the second fracturing fluid, the third output conduit may be in fluid communication with a third well for receiving the third fracturing fluid, and the fourth output conduit may be in fluid communication with a fourth well for receiving the fourth fracturing fluid.


As shown in FIGS. 3E and 4A, and mentioned previously herein, in some embodiments, the hydraulic fracturing pump 14/14′ may include the first fluid end 74a connected to the pump frame 76, such that the first plungers 84 draw fracturing fluid into the first fluid end 74a at the first pressure and discharge the fracturing fluid from the first fluid end 74a at the second pressure. The hydraulic fracturing pump 14 may include the second fluid end 74b connected to the pump frame 76, such that the second plungers 88 draw fracturing fluid into the second fluid end 74b at the third pressure and discharge the fracturing fluid from the second fluid end 74b at the fourth pressure. In some embodiments, one or more of the first plungers 84 or the first fluid end 74a may be configured such that as each of the first plungers 84 travels in a first direction, fracturing fluid is drawn into the first fluid end 74a and fracturing fluid is discharged from the first fluid end 74a, and as each of the first plungers 84 travels in a second direction opposite the first direction, fracturing fluid is drawn into the first fluid end 74a and fracturing fluid is discharged from the first fluid end 74a. In addition, or alternatively, in some embodiments, one or more of the second plungers 88 or the second fluid end 74b may be configured such that as each of the second plungers 88 travels in a third direction, fracturing fluid is drawn into the second fluid end 74b and fracturing fluid is discharged from the second fluid end 74b, and as each of the second plungers 88 travels in a fourth direction opposite the third direction, fracturing fluid is drawn into the second fluid end 74b and fracturing fluid is discharged from the second fluid end 74b. Thus, in some embodiments, the hydraulic fracturing pump 14 may be configured to both draw-in and discharge fracturing fluid relative to the fluid end chambers with each stroke of the respective plungers, regardless of the direction of the respective strokes. This, in at least some embodiments, may result in a significant increase in the output capability of the hydraulic fracturing pump 14 relative to, for example, fracturing pumps having plungers that draw-in fluid only when moving in a first direction and discharge fluid only when moving in the opposite direction.



FIG. 5A is a schematic partial perspective view of an example hydraulic fracturing pump (such as hydraulic fracturing pump 14 shown in FIG. 3A, and/or hydraulic fracturing pump 14′ shown in FIGS. 4A and 4F), including a partial section view of an example first and/or second fluid end 74a and/or 74b according to embodiments of the disclosure. In particular, the first and/or second fluid end 74a and/or 74b depicted in FIG. 5A may be configured to both draw-in and discharge fracturing fluid relative to the fluid end chambers with each stroke of the respective plungers as described herein. As shown, in some embodiments, the first fluid end 74a and/or the second fluid end 74b may include a fluid end body 122 at least partially defining a chamber 124, a first inlet port 126a, a second inlet port 126b, a first discharge port 128a, and a second discharge port 128b. The first and/or second plungers 84 and/or 88 may be configured to reciprocate within the chamber 124 between the first discharge port 128a and the second discharge port 128b as the crankshaft 78 rotates. For example, as the first and/or second plunger 84 and/or 88 travels in the first direction, fracturing fluid is drawn into the chamber 124 via the first inlet port 126a and fracturing fluid is discharged from the chamber 124 via the first discharge port 128a, and as the first and/or second plunger 84 and/or 88 travels in the second direction opposite the first direction, fracturing fluid is drawn into the chamber 124 via the second inlet port 126b and fracturing fluid is discharged from the chamber 124 via the second discharge port 128b. In the example shown, the first inlet port 126a and the first discharge port 128a are adjacent opposite ends of the chamber 124. Similarly, in the example shown, the second inlet port 126b and the second discharge port 128b are adjacent opposite ends of the chamber 124.



FIG. 5B is a schematic partial side section view of an example fluid end 74 and an example first plunger 84 moving in a first direction D1 according to embodiments of the disclosure. FIG. 5C is a schematic partial side section view of the example fluid end 74 shown in FIG. 5B with the example first plunger 84 moving in a second direction D2 opposite the first direction D1, according to embodiments of the disclosure. FIG. 5D is a schematic partial side section view of the example fluid end 74 shown in FIG. 5B with the example first plunger 84 continuing to move in the second direction D2 according to embodiments of the disclosure. FIG. 5E is a schematic partial side section view of the example fluid end 74 shown in FIG. 5B with the example first plunger 84 reversing directions and moving in the first direction D1, according to embodiments of the disclosure. Although FIGS. 5A through 5D show example fluid ends 74 and a first plunger 84, in some embodiments, the second fluid end 74b and the respective second plungers 88 may operate in an at least similar manner.


As shown in FIGS. 5A through 5D, in some embodiments, the hydraulic fracturing pump 14 may include a first inlet valve 130a upstream relative to the first inlet port 126a, a first discharge valve 132a downstream relative to the first discharge port 128a, a second inlet valve 130b upstream relative to the second inlet port 126b, and a second discharge valve 132b downstream relative to the second discharge port 128b. As shown in FIG. 5B, in some embodiments, as the first plunger 84 travels in the first direction D1, the first inlet valve 130a is open, the first discharge valve 132a is open, the second inlet valve 130b is closed, the second discharge valve is closed 132b. The fracturing fluid is drawn into the chamber 124 as the first plunger 84 travels in the first direction D1 via the first inlet valve 130a and the first inlet port 126a, and fracturing fluid is discharged from the chamber 124 via the first discharge port 128a and the first discharge valve 132a. As shown in FIG. 5C, as the first plunger 84 completes its stroke in the first direction D1, for example, just before reaching the first discharge port 128a and/or the second inlet port 126b, and begins to travel in the opposite, second direction D2, the first inlet valve 130a closes, the first discharge valve 132a closes, the second inlet valve 130b opens, and the second discharge valve 132 opens. The fracturing fluid is drawn into the chamber 124 as the first plunger 84 travels in the second direction D2 via the second inlet valve 130a and the second inlet port 126b, and fracturing fluid is discharged from the chamber 124 via the second discharge port 128b and the second discharge valve 132b.



FIG. 5D shows the first plunger 84 reaching the end of its stroke in the second direction D2 with the second discharge valve 132b still open, the second inlet valve 130b still open, the first inlet valve 130a still closed, and the first discharge valve 132a still closed. As shown in FIG. 5E, the first plunger 84 reverses direction and begins to travel in the first direction D1, the second discharge valve 132b and the second inlet valve 130b close, and the first inlet valve 130a and the first discharge valve 132a open, such that the fracturing fluid may be drawn into the chamber 124 via the first inlet port 126a and the first inlet valve 130a, while fracturing fluid is discharged from the first discharge port 128a and first discharge valve 132a. In this example manner, the hydraulic fracturing pump 14 may be configured to both draw-in and discharge fracturing fluid relative to the fluid end chambers with each stroke of the respective plungers, regardless of the direction of the respective strokes. This, in at least some embodiments, may result in a significant increase in the output capability of the hydraulic fracturing pump 14 relative to, for example, fracturing pumps having plungers that draw-in fluid only when moving in a first direction and discharge fluid only when moving in the opposite direction.



FIG. 6, FIG. 7, and FIG. 8 show block diagrams of example methods 600, 700, and 800 according to embodiments of the disclosure, illustrated as respective collections of blocks in logical flow graphs, which represent a sequence of operations. FIG. 6 is a block diagram of an example method 600 to enhance output of a hydraulic fracturing unit associated with a high-pressure fracturing operation according to embodiments of the disclosure. FIG. 7 is a block diagram of an example method 700 to increase a service interval of a hydraulic fracturing pump associated with a high-pressure fracturing operation according to embodiments of the disclosure. FIG. 8 is a block diagram of an example method 800 to reduce torque shock magnitude generated during operation of a hydraulic fracturing pump associated with a high-pressure fracturing operation according to embodiments of the disclosure. For each of the respective example methods, the order in which the operations are described is not intended to be construed as a limitation, and any number of the described blocks may be combined in any order and/or in parallel to implement the method.



FIG. 6 is a block diagram of an example method 600 to enhance output of a hydraulic fracturing unit associated with a high-pressure fracturing operation according to embodiments of the disclosure. As shown in FIG. 6, the example method 600, at 602, may include connecting first plungers to a crankshaft of a hydraulic fracturing pump, such that each of the first plungers reciprocates in a first plane relative to the crankshaft as the crankshaft rotates.


At 604, the example method 600 may include connecting second plungers to the crankshaft of the hydraulic fracturing pump, such that each of the second plungers reciprocates in a second plane relative to the crankshaft as the crankshaft rotates. For example, the crankshaft may include a plurality of crankpins each offset from a longitudinal rotation axis of the crankshaft, and connecting the plurality of first plungers to the crankshaft and connecting the plurality of second plungers to the crankshaft may include connecting one of the plurality of first plungers and one of the plurality of second plungers to each of the plurality of crankpins, for example, as described herein. In some embodiments, each of the plurality of first plungers may have a first diameter, and each of the plurality of second plungers has a second diameter. The first and second diameters may the same or different. Connecting one of the plurality of first plungers and one of the plurality of second plungers to each of the plurality of crankpins may include connecting one of the first plungers and one of the second plungers to each of the crankpins, such that a longitudinal distance occupied by the one of the first plungers and the one of the second plungers is less than a sum of the first diameter and the second diameter, for example, as described previously herein. In some embodiments, the crankshaft may define a longitudinal crankshaft axis extending between opposite longitudinal crankshaft ends, and the example method 600 further may include driving the crankshaft via the opposite longitudinal crankshaft ends, for example, as previously described herein.


The example method 600, at 606, may include connecting a first fluid end to the hydraulic fracturing pump, such that the first plungers reciprocate in the first fluid end.


At 608, the example method 600 may include connecting a second fluid end to the hydraulic fracturing pump, such that the second plungers reciprocate in the second fluid end.


The example method 600, at 610, may include connecting the hydraulic fracturing pump to a platform, such that the first plungers and/or the second plungers are closer to the platform than the crankshaft of the hydraulic fracturing pump. In some embodiments, the platform may have a longitudinal platform axis and a width perpendicular to the longitudinal platform axis. The hydraulic fracturing pump may be connected to the platform, such that a longitudinal axis of the crankshaft is parallel to the longitudinal platform axis.


At 612, the example method 600 may include supplying a first fracturing fluid having a first fracturing fluid composition to the first fluid end.


The example method 600, at 614, may include supplying a second fracturing fluid having a second fracturing fluid composition to the second fluid end. The first fracturing fluid composition and the second fracturing fluid composition may be the same or different, for example, as described previously herein.


At 616, the example method 600 may include discharging the first fracturing fluid from the first fluid end of the hydraulic fracturing pump. In some embodiments, this may include causing the first fluid end to discharge fracturing fluid as each of the plurality of first plungers moves in a first direction and discharge fracturing fluid as each of the plurality of first plungers moves in a second direction opposite the first direction, for example, as previously described herein.


At 618, the example method 600 may include, while discharging the first fracturing fluid from the first fluid end, discharging the second fracturing fluid from the second fluid end. In some embodiments, this may include causing the second fluid end to discharge fracturing fluid as each of the plurality of second plungers moves in a third direction and discharge fracturing fluid as each of the plurality of second plungers moves in a fourth direction opposite the third direction, for example, as previously described herein.



FIG. 7 is a block diagram of an example method 700 to increase a service interval of a hydraulic fracturing pump associated with a high-pressure fracturing operation according to embodiments of the disclosure. At 702, the example method 700 may include connecting first plungers to a crankshaft of a hydraulic fracturing pump.


At 704, the example method 700 may include connecting second plungers to the crankshaft of the hydraulic fracturing pump.


The example method 700, at 706 may include connecting a first fluid end to the hydraulic fracturing pump, such that the first plungers reciprocate in the first fluid end.


At 708, the example method 700 may include connecting a second fluid end to the hydraulic fracturing pump, such that the second plungers reciprocate in the second fluid end.


The example method 700, at 710, may include supplying a first fracturing fluid having a first fracturing fluid composition to the first fluid end.


At 712, the example method 700 may include supplying a second fracturing fluid having a second fracturing fluid composition to the second fluid end. In some embodiments of the example method 700, the first fracturing fluid composition and the second fracturing fluid composition may be different. For example, the first fracturing fluid composition may include water, gels, and/or proppants, and the second fracturing fluid composition may include water and/or other components, but may be substantially devoid of proppants. In such embodiments, the first plungers may pump a fracturing fluid including proppants while the second plungers may pump water, etc., without proppants. Some such embodiments may result in increasing a service interval for the hydraulic fracturing pump because the plungers pumping water (e.g., without proppants) will be expected to experience relatively less wear (e.g., have a slower wear rate) as compared to plungers that pump a fracturing fluid that includes proppants, for example, because pumping proppants may result in increasing the wear rates of plungers and associated fluid ends.


The example method 700, at 714, may include discharging the first fracturing fluid from the first fluid end of the hydraulic fracturing pump.


At 716, the example method 700 may include, while discharging the first fracturing fluid from the first fluid end, discharging the second fracturing fluid from the second fluid end.



FIG. 8 is a block diagram of an example method 800 to reduce torque shock magnitude generated during operation of a hydraulic fracturing pump associated with a high-pressure fracturing operation according to embodiments of the disclosure. At 802, the example method 800 may include connecting first plungers to a crankshaft of a hydraulic fracturing pump, such that each of the first plungers reciprocates in a first plane relative to the crankshaft as the crankshaft rotates.


At 804, the example method 800 may include connecting second plungers to the crankshaft of the hydraulic fracturing pump, such that each of the second plungers reciprocates in a second plane relative to the crankshaft as the crankshaft rotates. For example, the crankshaft may include a plurality of crankpins each offset from a longitudinal rotation axis of the crankshaft, and connecting the plurality of first plungers to the crankshaft and connecting the plurality of second plungers to the crankshaft may include connecting one of the plurality of first plungers and one of the plurality of second plungers to each of the plurality of crankpins, for example, as described herein. In some embodiments, the first plane and the second plane may define a non-zero offset angle between the first plane and the second plane, for example, as described previously herein.


The example method 800, at 806, may include connecting a first fluid end to the hydraulic fracturing pump, such that the first plungers reciprocate in the first fluid end.


At 808, the example method 800 may include connecting a second fluid end to the hydraulic fracturing pump, such that the second plungers reciprocate in the second fluid end.


The example method 800, at 810, may include connecting the hydraulic fracturing pump to a platform, such that the first plungers and/or the second plungers are closer to the platform than a crankshaft of the hydraulic fracturing pump.


At 812, the example method 800, may include supplying fracturing fluid to the first fluid end and the second fluid end of the hydraulic fracturing pump.


The example method 800, at 814, may include discharging the fracturing fluid from the first fluid end and the second fluid end of the hydraulic fracturing pump. In some embodiments, this may include causing the first fluid end to discharge fracturing fluid as each of the plurality of first plungers moves in a first direction and discharge fracturing fluid as each of the plurality of first plungers moves in a second direction opposite the first direction, for example, as previously described herein. In some embodiments, this also may include causing the second fluid end to discharge fracturing fluid as each of the plurality of second plungers moves in a third direction and discharge fracturing fluid as each of the plurality of second plungers moves in a fourth direction opposite the third direction, for example, as previously described herein.


In addition to the embodiments described above, embodiments of the present disclosure further relate to one or more of the following Examples, which can include various embodiments method steps features or elements and/or combinations of features steps or elements as disclosed herein. The following disclosed Examples further are not to be taken as limiting the scope of the present disclosure and any of the embodiments.


Example 1

A hydraulic fracturing pump to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation, the hydraulic fracturing pump


including: a pump frame at least partially defining a shaft aperture;


a crankshaft extending through the shaft aperture;


a plurality of first plungers connected to the crankshaft and positioned to reciprocate relative to the crankshaft as the crankshaft rotates, each of the plurality of first plungers reciprocating in a first plane and drawing in fracturing fluid at a first pressure and discharging the fracturing fluid at a second pressure greater than the first pressure; and


a plurality of second plungers connected to the crankshaft and positioned to reciprocate relative to the crankshaft as the crankshaft rotates, each of the plurality of second plungers reciprocating in a second plane and drawing in fracturing fluid at a third pressure and discharging the fracturing fluid at a fourth pressure greater than the third pressure, the first plane and the second plane defining a non-zero offset angle between the first plane and the second plane.


The hydraulic fracturing pump of Example 1 of paragraph [0169], wherein the non-zero offset angle ranges from ninety degrees to one hundred-eighty degrees.


The hydraulic fracturing pump of Example 1 of paragraph [0169] 1, wherein the crankshaft includes a plurality of crankpins, each of the plurality of crankpins being offset from a longitudinal rotation axis of the crankshaft, and each of the plurality of crankpins being connected to one of the plurality of first plungers and one of the plurality of second plungers.


The hydraulic fracturing pump of Example 1 of paragraph [0169] in view of paragraph [0171], wherein: a first pair of plungers includes a first one of the plurality of first plungers and a first one of the plurality of second plungers, and a second pair of plungers includes a second one of the plurality of first plungers and a second one of the plurality of second plungers; and the crankshaft is configured such that the first pair of plungers moves in a first direction to discharge the fracturing fluid while the second pair of plungers moves in a second direction to draw-in the fracturing fluid.


The hydraulic fracturing pump of Example 1 of paragraph [0169] in view of paragraph [0172], further includes a plurality of connector rods, each of the connector rods connecting one of one of the plurality first plungers to each of the plurality of crankpins or one of the plurality of second plungers to each of the plurality of crankpins.


The hydraulic fracturing pump of Example 1 of paragraph [0169] in view of paragraph [0173], wherein each of the plurality of connector rods includes: a plunger end connected to one of one of the plurality first plungers or one of the plurality of second plungers; and a crank end connected to one of the plurality of crankpins, each of the crank ends including two crank end connectors separated by a crank end space.


The hydraulic fracturing pump of Example 1 of paragraph [0169] in view of paragraph [0174], wherein the plurality of connector rods includes: a plurality of first connector rods, each of the plurality of first connector rods being connected to one of the plurality of first plungers; and a plurality of second connector rods, each of the plurality of second connector rods being connected to one of the plurality of second plungers, wherein a crank end connector of each of the plurality of first connector rods is positioned at least partially in a crank end space of one of the plurality of second connector rods, and a crank end connector of each of the plurality of second connector rods is positioned at least partially in a crank end space of one of the plurality of first connector rods.


The hydraulic fracturing pump of the Example 1 of paragraph [0169], wherein the plurality of first plungers is positioned to pump a first fracturing fluid including a first fracturing fluid composition while the plurality of second plungers pumps a second fracturing fluid including a second fracturing fluid composition different than the first fracturing fluid composition.


The hydraulic fracturing pump of Example 1 of paragraph [0169] in view of paragraph [0176], wherein the first fracturing fluid composition includes proppants, and the second fracturing fluid composition includes water and is devoid of proppants.


The hydraulic fracturing pump of Example 1 of paragraph [0169], wherein the hydraulic fracturing pump is configured to be driven by one or more prime movers at opposite ends of the hydraulic fracturing pump.


The hydraulic fracturing pump of Example 1 of paragraph [0169], further including: a first pinion gear engaged with the crankshaft at a first end of the pump frame; a connector shaft connected to the first pinion gear; and a second pinion gear connected to the hydraulic fracturing pump at a second end of the pump frame and connected to the first pinion gear via the connector shaft, such that the first pinion gear drives the connector shaft and the crankshaft at the first end of the pump frame, the connector shaft drives the second pinion gear at the second end of the pump frame, and the second pinion gear drives the crankshaft at the second end of the pump frame.


The hydraulic fracturing pump of Example 1 of paragraph [0169], further including: a first fluid end connected to the pump frame such that the plurality of first plungers draw fracturing fluid into the first fluid end at the first pressure and discharge the fracturing fluid from the first fluid end at the second pressure; and a second fluid end connected to the pump frame such that the plurality of second plungers draw fracturing fluid into the second fluid end at the third pressure and discharge the fracturing fluid from the second fluid end at the fourth pressure greater than the third pressure.


The hydraulic fracturing pump of Example 1 of paragraph [0169] of paragraph [0180], wherein one or more of: one or more of the plurality of first plungers or the first fluid end are configured such that as each of the plurality of first plungers travels in a first direction, fracturing fluid is drawn into the first fluid end and fracturing fluid is discharged from the first fluid end, and as each of the plurality of first plungers travels in a second direction opposite the first direction, fracturing fluid is drawn into the first fluid end and fracturing fluid is discharged from the first fluid end; or one or more of the plurality of second plungers or the second fluid end are configured such that as each of the plurality of second plungers travels in a third direction, fracturing fluid is drawn into the second fluid end and fracturing fluid is discharged from the second fluid end, and as each of the plurality of second plungers travels in a fourth direction opposite the third direction, fracturing fluid is drawn into the second fluid end and fracturing fluid is discharged from the second fluid end.


14. The hydraulic fracturing pump of Example of paragraph [0169] one or more of: the plurality of first plungers reciprocate in a first direction away from the crankshaft and a second direction opposite the first direction and toward the crankshaft, the first direction and the second direction lying in the first plane, the first direction having a downward component and an outward component, and the second direction having an upward component and an inward component; or the plurality of second plungers reciprocate in a third direction away from the crankshaft and a fourth direction opposite the third direction and toward the crankshaft, the third direction and the fourth direction lying in the second plane, the third direction having a downward component and an outward component, and the fourth direction having an upward component and an inward component.


The hydraulic fracturing pump of Example 1 of paragraph [0169], wherein the plurality of first plungers includes at least three plungers, and the plurality of second plungers includes at least three plungers.


The hydraulic fracturing pump of Example 1 of paragraph [0169], wherein the pump frame includes a plurality of pump frame sections, each of the plurality of pump frame sections at least partially defining the shaft aperture.


The hydraulic fracturing pump of Example 1 of paragraph [0169] in view of paragraph [0184], wherein at least one of the plurality of pump frame sections has an inverted V-shaped cross-section as viewed in a direction substantially parallel to a longitudinal axis of the crankshaft.


Example 2

A hydraulic fracturing pump to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation, the hydraulic fracturing pump including: a pump frame at least partially defining a shaft aperture; a crankshaft extending through the shaft aperture, the crankshaft including a plurality of crankpins, each of the crankpins being offset from a longitudinal rotation axis of the crankshaft; a plurality of first plungers, each of the plurality of first plungers being connected to the crankshaft via a respective crankpin of the plurality of crankpins and being positioned to reciprocate relative to the crankshaft as the crankshaft rotates; and a plurality of second plungers, each of the plurality of second plungers being connected to the crankshaft via a respective crankpin of the plurality of crankpins and being positioned to reciprocate relative to the crankshaft as the crankshaft rotates, each of the plurality of crankpins being connected to one of the plurality of first plungers and one of the plurality of second plungers.


The hydraulic fracturing pump of Example 2 of paragraph [0186], further including a plurality of connector rods, each of the connector rods connecting one of one of the plurality first plungers to each of the plurality of crankpins or one of the plurality of second plungers to each of the plurality of crankpins.


The hydraulic fracturing pump of Example 2 of paragraph [0186] in view of paragraph [087], wherein each of the plurality of connector rods includes: a plunger end connected to one of one of the plurality first plungers or one of the plurality of second plungers; and a crank end connected to one of the plurality of crankpins, each of the crank ends including two crank end connectors separated by a crank end space.


The hydraulic fracturing pump of Example 2 of paragraph [0186] in view of paragraph [0188] the plurality of connector rods includes: a plurality of first connector rods, each of the plurality of first connector rods being connected to one of the plurality of first plungers; and a plurality of second connector rods, each of the plurality of second connector rods being connected to one of the plurality of second plungers, wherein a crank end connector of each of the plurality of first connector rods is positioned at least partially in a crank end space of one of the plurality of second connector rods and a crank end connector of each of the plurality of second connector rods is positioned at least partially in a crank end space of one of the plurality of first connector rods.


The hydraulic fracturing pump of Example 2 of paragraph [0186] a first pair of plungers includes a first one of the plurality of first plungers and a first one of the plurality of second plungers, and a second pair of plungers includes a second one of the plurality of first plungers and a second one of the plurality of second plungers; and the crankshaft is configured such that the first pair of plungers moves in a first direction to discharge the fracturing fluid while the second pair of plungers moves in a second direction to draw-in the fracturing fluid.


The hydraulic fracturing pump of Example 2 of paragraph [0186], wherein each of the plurality of first plungers reciprocates in a first plane, and each of the plurality of second plungers reciprocates in a second plane, the first plane and the second plane defining a non-zero offset angle between the first plane and the second plane.


The hydraulic fracturing pump of Example 2 of paragraph [0186], wherein the plurality of first plungers is positioned to pump a first fracturing fluid including a first fracturing fluid composition while the plurality of second plungers to pumps a second fracturing fluid including a second fracturing fluid composition different than the first fracturing fluid composition, and wherein the first fracturing fluid composition includes proppants, and the second fracturing fluid composition includes water and is devoid of proppants.


The hydraulic fracturing pump of Example 2 of paragraph [0186], further including: a first fluid end connected to the pump frame such that the plurality of first plungers draw fracturing fluid into the first fluid end at a first pressure and discharge the fracturing fluid from the first fluid end at a second pressure greater than the first pressure; and a second fluid end connected to the pump frame such that the plurality of second plungers draw fracturing fluid into the second fluid end at a third pressure and discharge the fracturing fluid from the second fluid end at a fourth pressure greater than the third pressure.


The hydraulic fracturing pump of Example 2 of paragraph [0186] in view of paragraph [0193], wherein one or more of: one or more of the plurality of first plungers or the first fluid end are configured such that as each of the plurality of first plungers travels in a first direction, fracturing fluid is drawn into the first fluid end and fracturing fluid is discharged from the first fluid end, and as each of the plurality of first plungers travels in a second direction opposite the first direction, fracturing fluid is drawn into the first fluid end and fracturing fluid is discharged from the first fluid end; or one or more of the plurality of second plungers or the second fluid end are configured such that as each of the plurality of second plungers travels in a third direction, fracturing fluid is drawn into the second fluid end and fracturing fluid is discharged from the second fluid end, and as each of the plurality of second plungers travels in a fourth direction opposite the third direction, fracturing fluid is drawn into the second fluid end and fracturing fluid is discharged from the second fluid end.


The hydraulic fracturing pump of Example 2 of paragraph [0186] further including: a first pinion gear engaged with the crankshaft at a first end of the pump frame; a connector shaft connected to the first pinion gear; and a second pinion gear connected to the hydraulic fracturing pump at a second end of the pump frame and connected to the first pinion gear via the connector shaft, such that the first pinion gear drives the connector shaft and the crankshaft at the first end of the pump frame, the connector shaft drives the second pinion gear at the second end of the pump frame, and the second pinion gear drives the crankshaft at the second end of the pump frame.


The hydraulic fracturing pump of Example 2 of paragraph [0186] paragraph [0194], wherein the pump frame includes a plurality of pump frame sections, each of the plurality of pump frame sections at least partially defining the shaft aperture.


The hydraulic fracturing pump of Example 2 of paragraph [0186], wherein at least one of the plurality of pump frame sections has an inverted V-shaped cross-section as viewed in a direction substantially parallel to a longitudinal axis of the crankshaft.


Example 3

A hydraulic fracturing pump to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation, the hydraulic fracturing pump including: a pump frame at least partially defining a shaft aperture; a crankshaft extending through the shaft aperture; a plurality of first plungers, each of the plurality of first plungers being connected to the crankshaft and positioned to reciprocate relative to the crankshaft as the crankshaft rotates; and a plurality of second plungers, each of the plurality of second plungers being connected to the crankshaft and being positioned to reciprocate relative to the crankshaft as the crankshaft rotates, the plurality of first plungers being positioned to pump a first fracturing fluid including a first fracturing fluid composition while the plurality of second plungers pump a second fracturing fluid includes a second fracturing fluid composition different from the first fracturing fluid composition.


The hydraulic fracturing pump of Example 3 of paragraph [0198], wherein the first fracturing fluid composition includes proppants, and the second fracturing fluid composition includes water and is devoid of proppants.


The hydraulic fracturing pump of Example 3 of paragraph [0198], wherein each of the plurality of first plungers reciprocates in a first plane, and each of the plurality of second plungers reciprocates in a second plane, the first plane and the second plane defining a non-zero offset angle between the first plane and the second plane.


The hydraulic fracturing pump of Example 3 of paragraph [0198], wherein the crankshaft includes a plurality of crankpins, each of the plurality of crankpins being offset from a longitudinal rotation axis of the crankshaft, and each of the plurality of crankpins being connected to one of the plurality of first plungers and one of the plurality of second plungers.


34. The hydraulic fracturing pump of Example 3 of paragraph [0198] in view of paragraph [0201], wherein: a first pair of plungers includes a first one of the plurality of first plungers and a first one of the plurality of second plungers, and a second pair of plungers includes a second one of the plurality of first plungers and a second one of the plurality of second plungers; and the crankshaft is configured such that the first pair of plungers moves in a first direction to discharge the fracturing fluid while the second pair of plungers moves in a second direction to draw-in the fracturing fluid.


The hydraulic fracturing pump of Example 3 of paragraph [0198] in view of paragraph [0201], further including a plurality of connector rods, each of the connector rods connecting one of one of the plurality first plungers to each of the plurality of crankpins or one of the plurality of second plungers to each of the plurality of crankpins.


The hydraulic fracturing pump of Example 3 of paragraph [0198], further including: a first fluid end connected to the pump frame such that the plurality of first plungers draw fracturing fluid into the first fluid end at a first pressure and discharge the fracturing fluid from the first fluid end at a second pressure greater than the first pressure; and a second fluid end connected to the pump frame such that the plurality of second plungers draw fracturing fluid into the second fluid end at a third pressure and discharge the fracturing fluid from the second fluid end at a fourth pressure greater than the third pressure.


The hydraulic fracturing pump of Example 3 of paragraph [0198] in view of paragraph [0204], wherein one or more of: one or more of the plurality of first plungers or the first fluid end are configured such that as each of the plurality of first plungers travels in a first direction, fracturing fluid is drawn into the first fluid end and fracturing fluid is discharged from the first fluid end, and as each of the plurality of first plungers travels in a second direction opposite the first direction, fracturing fluid is drawn into the first fluid end and fracturing fluid is discharged from the first fluid end; or one or more of the plurality of second plungers or the second fluid end are configured such that as each of the plurality of second plungers travels in a third direction, fracturing fluid is drawn into the second fluid end and fracturing fluid is discharged from the second fluid end, and as each of the plurality of second plungers travels in a fourth direction opposite the third direction, fracturing fluid is drawn into the second fluid end and fracturing fluid is discharged from the second fluid end.


The hydraulic fracturing pump of Example 3 of paragraph [0198], further including: a first pinion gear engaged with the crankshaft at a first end of the pump frame; a connector shaft connected to the first pinion gear; and a second pinion gear connected to the hydraulic fracturing pump at a second end of the pump frame and connected to the first pinion gear via the connector shaft, such that the first pinion gear drives the connector shaft and the crankshaft at the first end of the pump frame, the connector shaft drives the second pinion gear at the second end of the pump frame, and the second pinion gear drives the crankshaft at the second end of the pump frame.


The hydraulic fracturing pump of Example 3 of paragraph [0198], wherein the pump frame includes a plurality of pump frame sections, each of the plurality of pump frame sections at least partially defining the shaft aperture.


The hydraulic fracturing pump of Example 3 of paragraph [0198] in view of paragraph [0207], wherein at least one of the plurality of pump frame sections has an inverted V-shaped cross-section as viewed in a direction substantially parallel to a longitudinal axis of the crankshaft.


Example 4

A hydraulic fracturing pump to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation, the hydraulic fracturing pump including: a pump frame at least partially defining a shaft aperture; a crankshaft extending through the shaft aperture; a plurality of first plungers, each of the plurality of first plungers being connected to the crankshaft and positioned to reciprocate relative to the crankshaft as the crankshaft rotates; and a plurality of second plungers, each of the plurality of second plungers being connected to the crankshaft and being positioned to reciprocate relative to the crankshaft as the crankshaft rotates; a first fluid end connected to the pump frame such that the plurality of first plungers draw fracturing fluid into the first fluid end at a first pressure and discharge the fracturing fluid from the first fluid end at a second pressure greater than the first pressure; and a second fluid end connected to the pump frame such that the plurality of second plungers draw fracturing fluid into the second fluid end at a third pressure and discharge the fracturing fluid from the second fluid end at a fourth pressure greater than the third pressure.


The hydraulic fracturing pump of Example 4 of paragraph [0209], wherein one or more of: one or more of the plurality of first plungers or the first fluid end are configured such that as each of the plurality of first plungers travels in a first direction, fracturing fluid is drawn into the first fluid end and fracturing fluid is discharged from the first fluid end, and as each of the plurality of first plungers travels in a second direction opposite the first direction, fracturing fluid is drawn into the first fluid end and fracturing fluid is discharged from the first fluid end; or one or more of the plurality of second plungers or the second fluid end are configured such that as each of the plurality of second plungers travels in a third direction, fracturing fluid is drawn into the second fluid end and fracturing fluid is discharged from the second fluid end, and as each of the plurality of second plungers travels in a fourth direction opposite the third direction, fracturing fluid is drawn into the second fluid end and fracturing fluid is discharged from the second fluid end.


The hydraulic fracturing pump of Example 4 of paragraph [0209], wherein each of the plurality of first plungers reciprocates in a first plane, and each of the plurality of second plungers reciprocates in a second plane, the first plane and the second plane defining a non-zero offset angle between the first plane and the second plane.


The hydraulic fracturing pump of Example 4 of paragraph [0209], wherein the crankshaft includes a plurality of crankpins, each of the plurality of crankpins being offset from a longitudinal rotation axis of the crankshaft, and each of the plurality of crankpins being connected to one of the plurality of first plungers and one of the plurality of second plungers.


The hydraulic fracturing pump of Example 4 of paragraph [0209] in view of paragraph [0212], wherein:


a first pair of plungers includes a first one of the plurality of first plungers and a first one of the plurality of second plungers, and a second pair of plungers includes a second one of the plurality of first plungers and a second one of the plurality of second plungers; and


the crankshaft is configured such that the first pair of plungers moves in a first direction to discharge the fracturing fluid while the second pair of plungers moves in a second direction to draw-in the fracturing fluid.


The hydraulic fracturing pump of Example 4 of paragraph [0209] in view of paragraph [0212], further including a plurality of connector rods, each of the connector rods connecting one of one of the plurality first plungers to each of the plurality of crankpins or one of the plurality of second plungers to each of the plurality of crankpins.


The hydraulic fracturing pump of Example 4 of paragraph [0209], wherein the plurality of first plungers is positioned to pump a first fracturing fluid including a first fracturing fluid composition while the plurality of second plungers to pumps a second fracturing fluid including a second fracturing fluid composition different than the first fracturing fluid composition, and wherein the first fracturing fluid composition includes proppants, and the second fracturing fluid composition includes water and is devoid of proppants.


The hydraulic fracturing pump of Example 4 of paragraph [0209], further including: a first pinion gear engaged with the crankshaft at a first end of the pump frame; a connector shaft connected to the first pinion gear; and a second pinion gear connected to the hydraulic fracturing pump at a second end of the pump frame and connected to the first pinion gear via the connector shaft, such that the first pinion gear drives the connector shaft and the crankshaft at the first end of the pump frame, the connector shaft drives the second pinion gear at the second end of the pump frame, and the second pinion gear drives the crankshaft at the second end of the pump frame.


The hydraulic fracturing pump of Example 4 of paragraph [0209], wherein the pump frame includes a plurality of pump frame sections, each of the plurality of pump frame sections at least partially defining the shaft aperture.


The hydraulic fracturing pump of Example 4 of paragraph [0209] in view of paragraph [0217], wherein at least one of the plurality of pump frame sections has an inverted V-shaped cross-section as viewed in a direction substantially parallel to a longitudinal axis of the crankshaft.


Example 5

A hydraulic fracturing pump to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation is provided, the hydraulic fracturing pump including: a pump frame at least partially defining a shaft aperture;


a crankshaft extending through the shaft aperture;


a plunger connected to the crankshaft and positioned to reciprocate relative to the crankshaft as the crankshaft rotates; and


a fluid end connected to the pump frame, one or more of the fluid end or the plunger being positioned such that as the plunger travels in a first direction, fracturing fluid is drawn into the fluid end and fracturing fluid is discharged from the fluid end, and as the plunger travels in a second direction opposite the first direction, fracturing fluid is drawn into the fluid end and fracturing fluid is discharged from the fluid end.


The hydraulic fracturing pump of Example 5 of paragraph [0219], wherein:


the fluid end includes a fluid end body at least partially defining a chamber, a first inlet port, a second inlet port, a first discharge port, and a second discharge port; and


the plunger reciprocates within the chamber between the first discharge port and the second discharge port as the crankshaft rotates.


The hydraulic fracturing pump of Example 5 of paragraph [0219] in view of paragraph [0220], wherein:


as the plunger travels in the first direction, fracturing fluid is drawn into the chamber via the first inlet port and fracturing fluid is discharged from the chamber via the first discharge port; and


as the plunger travels in the second direction, fracturing fluid is drawn into the chamber via the second inlet port and fracturing fluid is discharged from the chamber via the second discharge port.


The hydraulic fracturing pump of Example 5 of paragraph [0219] in view of paragraph [0221], wherein: the first inlet port and the first discharge port are adjacent opposite ends of the chamber; and the second inlet port and the second discharge port are adjacent opposite ends of the chamber.


The hydraulic fracturing pump of Example 5 of paragraph [0219] in view of paragraph [0221], further including: a first inlet valve upstream relative to the first inlet port; a first discharge valve downstream relative to the first discharge port; a second inlet valve upstream relative to the second inlet port; and a second discharge valve downstream relative to the second discharge port.


The hydraulic fracturing pump of Example 5 of paragraph [0219] in view of paragraph [[0223], wherein:


as the plunger travels in the first direction, the first inlet valve is open, the first discharge valve is open, the second inlet valve is closed, the second discharge valve is closed, fracturing fluid is drawn into the chamber via the first inlet valve and the first inlet port, and fracturing fluid is discharged from the chamber via the first discharge port and the first discharge valve; and


as the plunger travels in the second direction, the first inlet valve is closed, the first discharge valve is closed, the second inlet valve is open, the second discharge valve is open, fracturing fluid is drawn into the chamber via the second inlet valve and the second inlet port, and fracturing fluid is discharged from the chamber via the second discharge port and the second discharge valve.


The hydraulic fracturing pump of Example 5 of paragraph [0219] in view of paragraph [0220], wherein: the plunger includes a plurality of plungers, each of the plurality of plungers being connected to the crankshaft and positioned to reciprocate relative to the crankshaft as the crankshaft rotates; the fluid end at least partially defines a plurality of chambers, a plurality of first inlet ports, a plurality of second inlet ports, a plurality of first discharge ports, and a plurality of second discharge ports; and each of the plurality of plungers reciprocates within a respective chamber between a respective first discharge port and a respective second discharge port as the crankshaft rotates.


The hydraulic fracturing pump of Example 5 of paragraph [0219] in view of paragraph [0226], wherein the plurality of plungers


includes: a plurality of first plungers, each of the plurality of first plungers being connected to the crankshaft and positioned to reciprocate relative to the crankshaft as the crankshaft rotates, each of the plurality of first plungers reciprocating in a first plane and drawing in fracturing fluid at a first pressure and discharging the fracturing fluid at a second pressure greater than the first pressure; and


a plurality of second plungers, each of the plurality of second plungers being connected to the crankshaft and being positioned to reciprocate relative to the crankshaft as the crankshaft rotates, each of the plurality of second plungers reciprocating in a second plane and drawing in fracturing fluid at a third pressure and discharging the fracturing fluid at a fourth pressure greater than the third pressure, the first plane and the second plane defining a non-zero offset angle between the first plane and the second plane.


Example 6

A hydraulic fracturing pump to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation, the hydraulic fracturing pump


including: a pump frame at least partially defining a shaft aperture;


a crankshaft extending through the shaft aperture;


a plunger connected to the crankshaft and positioned to reciprocate relative to the crankshaft as the crankshaft rotates;


a first pinion gear engaged with the crankshaft at a first end of the pump frame;


a connector shaft connected to the first pinion gear; and


a second pinion gear connected to the hydraulic fracturing pump at a second end of the pump frame and connected to the first pinion gear via the connector shaft, such that the first pinion gear drives the connector shaft and the crankshaft at the first end of the pump frame, the connector shaft drives the second pinion gear at the second end of the pump frame, and the second pinion gear drives the crankshaft at the second end of the pump frame.


Example 7

A hydraulic fracturing pump to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation, the hydraulic fracturing pump


including: a pump frame including a plurality of pump frame sections, one or more of the plurality of pump frame sections at least partially defining a shaft aperture;


a crankshaft extending through the shaft aperture,


one or more of the plurality of pump frame sections having an inverted V-shaped cross-section as viewed in a direction substantially parallel to a longitudinal axis of the crankshaft; and


a plunger connected to the crankshaft and positioned to reciprocate relative to the crankshaft as the crankshaft rotates.


Example 8

A hydraulic fracturing unit to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation, the hydraulic fracturing unit including: a platform having a longitudinal platform axis and a width perpendicular to the longitudinal platform axis; a prime mover supported by the platform, the prime mover including an output shaft; a transmission including an input shaft and a transmission output shaft, the transmission supported by the platform and connected to the output shaft of the prime mover via the input shaft; a hydraulic fracturing pump supported by the platform at a longitudinal position opposite the prime mover relative to the transmission, the hydraulic fracturing pump including: a pump frame at least partially defining a shaft aperture; a crankshaft extending through the shaft aperture, the crankshaft having a longitudinal axis of rotation substantially parallel to the longitudinal platform axis; a plurality of first plungers connected to the crankshaft and positioned to reciprocate relative to the crankshaft as the crankshaft rotates, each of the plurality of first plungers reciprocating in a first plane and drawing in fracturing fluid at a first pressure and discharging the fracturing fluid at a second pressure greater than the first pressure; and a plurality of second plungers connected to the crankshaft and positioned to reciprocate relative to the crankshaft as the crankshaft rotates, each of the plurality of second plungers reciprocating in a second plane and drawing in fracturing fluid at a third pressure and discharging the fracturing fluid at a fourth pressure greater than the third pressure, the first plane and the second plane defining a non-zero offset angle between the first plane and the second plane.


The hydraulic fracturing unit of Example 8 of paragraph [0229], wherein the offset angle ranges from ninety degrees to one hundred-eighty degrees.


The hydraulic fracturing unit of Example 8 of paragraph [0229], wherein one or more of the plurality of first plungers or the plurality of second plungers are between the crankshaft and the platform.


The hydraulic fracturing unit of Example 8 of paragraph [0229] in view of paragraph [0231], further including: a first fluid end connected to the hydraulic fracturing pump such that the plurality of first plungers draw fracturing fluid into the first fluid end at the first pressure and discharge the fracturing fluid from the first fluid end at the second pressure; and a second fluid end connected to the hydraulic fracturing pump such that the plurality of second plungers draw fracturing fluid into the second fluid end at the third pressure and discharge the fracturing fluid from the second fluid end at the fourth pressure, the first fluid end and the second fluid end being closer to the platform than the crankshaft.


The hydraulic fracturing unit of Example 8 of paragraph [0229], wherein the hydraulic fracturing pump has a pump width perpendicular to the longitudinal axis of rotation of the crankshaft and is supported by the platform such that the pump width is less than or equal to the width of the platform.


The hydraulic fracturing unit of Example 8 of paragraph]0229], wherein the plurality of first plungers includes four or more plungers, and the plurality of second plungers includes four or more plungers.


The hydraulic fracturing unit of Example 8 of paragraph [0229], wherein the pump frame includes a plurality of pump frame sections, one or more of the plurality of pump frame sections at least partially defining the shaft aperture, and wherein one or more of the plurality of pump frame sections has an inverted V-shaped cross-section as viewed in a direction substantially parallel to longitudinal axis of rotation of the crankshaft.


The hydraulic fracturing unit of Example 8 of paragraph [0229], wherein the crankshaft includes a plurality of crankpins, each of the plurality of crankpins being offset from the longitudinal rotation axis of the crankshaft, and each of the plurality of crankpins being connected to one of the plurality of first plungers and one of the plurality of second plungers.


The hydraulic fracturing unit of Example 8 of paragraph [0229] in view of paragraph [0236], wherein the plurality of crankpins includes four or more crankpins, the plurality of first plungers includes four or more plungers, and the plurality of second plungers includes four or more plungers.


The hydraulic fracturing unit of Example 8 of paragraph [0229] in view of paragraph [0236], further including a plurality of connector rods, each of the connector rods connecting one of one of the plurality first plungers to each of the plurality of crankpins or one of the plurality of second plungers to each of the plurality of crankpins, each of the plurality of connector rods including: a plurality of first connector rods, each of the plurality of first connector rods being connected to one of the plurality of first plungers; and a plurality of second connector rods, each of the plurality of second connector rods being connected to one of the plurality of second plungers, a portion of each of the plurality of first connector rods longitudinally intermeshing with a portion of each of the plurality of second connector rods.


The hydraulic fracturing unit of Example 8 of paragraph [0229], wherein the prime mover is a first prime mover located at a first end of the hydraulic fracturing pump, and the hydraulic fracturing unit further includes a second prime mover located at a second end of the hydraulic fracturing pump opposite the first end of the hydraulic fracturing pump, the second prime mover being connected to the hydraulic fracturing pump to supply power to the hydraulic fracturing pump.


Example 9

A method to enhance output of a hydraulic fracturing unit associated with a high-pressure fracturing operation, the method including: connecting a plurality of first plungers to a crankshaft of a hydraulic fracturing pump, each of the plurality of first plungers positioned to reciprocate relative to the crankshaft as the crankshaft rotates and each of the plurality of first plungers reciprocating in a first plane and drawing in fracturing fluid at a first pressure and discharging the fracturing fluid at a second pressure greater than the first pressure; and connecting a plurality of second plungers to the crankshaft of the hydraulic fracturing pump, each of the plurality of second plungers positioned to reciprocate relative to the crankshaft as the crankshaft rotates and each of the plurality of second plungers reciprocating in a second plane and drawing in fracturing fluid at a third pressure and discharging the fracturing fluid at a fourth pressure greater than the third pressure, the first plane and the second plane defining a non-zero offset angle between the first plane and the second plane.


The method of Example 9 of paragraph [0240], wherein: the crankshaft includes a plurality of crankpins each offset from a longitudinal rotation axis of the crankshaft; and connecting the plurality of first plungers to the crankshaft and connecting the plurality of second plungers to the crankshaft includes connecting one of the plurality of first plungers and one of the plurality of second plungers to each of the plurality of crankpins.


The method of Example 9 of paragraph [0240] in view of paragraph [0241], wherein each of the plurality of first plungers has a first diameter and each of the plurality of second plungers has a second diameter, and connecting one of the plurality of first plungers and one of the plurality of second plungers to each of the plurality of crankpins includes connecting the one of the plurality of first plungers and the one of the plurality of second plungers to each of the plurality of crankpins such that a longitudinal distance occupied by the one of the plurality of first plungers and the one of the plurality of second plungers is less than a sum of the first diameter and the second diameter.


The method of Example 9 of paragraph [0240], wherein the hydraulic fracturing unit includes a platform having a longitudinal platform axis and a width perpendicular to the longitudinal platform axis, and wherein the method further including connecting the hydraulic fracturing pump to the platform, such that a longitudinal axis of the crankshaft is parallel to the longitudinal platform axis.


The method of Example 9 of paragraph [0240] in view of paragraph [0243], wherein connecting the hydraulic fracturing pump to the platform includes connecting the hydraulic fracturing pump to the platform, such that one or more of the plurality of first plungers or the plurality of second plungers are closer to the platform than the crankshaft.


The method of Example 9 of paragraph [0240], further


includes connecting a first fluid end to the hydraulic fracturing pump, such that the plurality of first plungers reciprocate in the first fluid end; and


connecting a second fluid end to the hydraulic fracturing pump, such that the plurality of second plungers reciprocate in the second fluid end.


The method of Example 9 of paragraph [0240] in view of paragraph [0245], further


includes supplying a first fracturing fluid having a first fracturing fluid composition to the first fluid end; and


supplying a second fracturing fluid having a second fracturing fluid composition to the second fluid end, the second fracturing fluid composition being different than the first fracturing fluid composition.


The method of Example 9 of paragraph [0240] in view of paragraph [0245], further including one or more of:


causing the first fluid end to discharge fracturing fluid as each of the plurality of first plungers moves in a first direction and discharge fracturing fluid as each of the plurality of first plungers moves in a second direction opposite the first direction; or


causing the second fluid end to discharge fracturing fluid as each of the plurality of second plungers moves in a third direction and discharge fracturing fluid as each of the plurality of second plungers moves in a fourth direction opposite the third direction.


The method of Example 9 of paragraph [0240], wherein the crankshaft defines a longitudinal crankshaft axis extending between opposite longitudinal crankshaft ends, and the method further includes driving the crankshaft via the opposite longitudinal crankshaft ends.


Example 10

A method to increase a service interval of a hydraulic fracturing pump associated with a high-pressure fracturing operation, the method includes: pumping a first fracturing fluid including a first fracturing fluid composition via a plurality of first plungers of a hydraulic fracturing pump; and while pumping the first fracturing fluid, pumping a second fracturing fluid including a second fracturing fluid composition via a plurality of second plungers of the hydraulic fracturing pump, the first fracturing fluid composition being different than the second fracturing fluid composition.


The method of Example 10 of paragraph [0249], wherein pumping the first fracturing fluid and pumping the second fracturing fluid include driving opposite ends of a crankshaft of the hydraulic fracturing pump.


The method of Example 9 of paragraph [0249], wherein the first fracturing fluid composition includes proppants, and the second fracturing fluid composition includes water and is devoid of proppants.


Example 11

A method to reduce torque shock magnitude generated during operation of a hydraulic fracturing pump associated with a high-pressure fracturing operation, the method including: connecting a plurality of first plungers to a crankshaft of the hydraulic fracturing pump, each of the plurality of first plungers positioned to reciprocate relative to the crankshaft as the crankshaft rotates and each of the plurality of first plungers reciprocating in a first plane and drawing in fracturing fluid at a first pressure and discharging the fracturing fluid at a second pressure greater than the first pressure; and connecting a plurality of second plungers to the crankshaft of the hydraulic fracturing pump, each of the plurality of second plungers positioned to reciprocate relative to the crankshaft as the crankshaft rotates and each of the plurality of second plungers reciprocating in a second plane and drawing in fracturing fluid at a third pressure and discharging the fracturing fluid at a fourth pressure greater than the third pressure, the first plane and the second plane defining a non-zero offset angle between the first plane and the second plane.


The hydraulic fracturing pumps such as disclosed in the example embodiments set forth in the present disclosure can provide a substantially non-consecutive firing sequence between at least two or more pairs or groups of first and second plungers arranged on opposite sides of the pump frame. For example, a plunger firing sequence of 4 plunger pairs that are offset by about forty-five to about ninety degrees can be provided wherein engaging or firing of the plunger pairs or groups can be executed in a 1-3-2-4 sequence. While the two consecutive plunger pairs (e.g. plunger pairs 3 and 2) firing one after the other can result in a higher than maximum connector rod load through half the duration of one crankshaft revolution, the generally overall non-consecutive engagement of firing of the plunger pairs provides at least some degree of force cancellation in the bearings of the frame sections due to the 90-degree phasing of the crank pin pairs such that peak loads acting on the other bearings generally will not reach full connector rod loads.


In addition, the total fluid output of hydraulic fracturing pumps such as disclosed in various embodiments of the present disclosure, including 8 plungers are able to provide increased fluid flow output over 4-plunger pumps having approximately twice the stroke length of the 8-plunger pump configurations illustrated in at least some of the embodiments of hydraulic fracturing pumps disclosed herein, while being implemented in a compact design with a lower size, weight and mechanical feasibility than 4-pump configurations, e.g. a smaller size and weight 10″ stroke a 8-plunger pumps such as disclosed in embodiments of this disclosure can perform as a 20″ stroke 4-plunger pump.


Having now described some illustrative embodiments of the disclosure, it should be apparent to those skilled in the art that the foregoing is merely illustrative and not limiting, having been presented by way of example only. Numerous modifications and other embodiments are within the scope of one of ordinary skill in the art and are contemplated as falling within the scope of the disclosure. In particular, although many of the examples presented herein involve specific combinations of method acts or system elements, it should be understood that those acts and those elements may be combined in other ways to accomplish the same objectives. Those skilled in the art should appreciate that the parameters and configurations described herein are exemplary and that actual parameters and/or configurations will depend on the specific application in which the systems, methods, and/or aspects or techniques of the disclosure are used. Those skilled in the art should also recognize or be able to ascertain, using no more than routine experimentation, equivalents to the specific embodiments of the disclosure. It is, therefore, to be understood that the embodiments described herein are presented by way of example only and that, within the scope of any appended claims and equivalents thereto, the disclosure may be practiced other than as specifically described.


Furthermore, the scope of the present disclosure shall be construed to cover various modifications, combinations, additions, alterations, etc., above and to the above-described embodiments, which shall be considered to be within the scope of this disclosure. Accordingly, various features and characteristics as discussed herein may be selectively interchanged and applied to other illustrated and non-illustrated embodiment, and numerous variations, modifications, and additions further may be made thereto without departing from the spirit and scope of the present disclosure as set forth in the appended claims.

Claims
  • 1. A pump, comprising: a pump frame at least partially defining a shaft aperture;a crankshaft extending through the shaft aperture;a plurality of first plungers connected to the crankshaft and configured to reciprocate relative to the crankshaft as the crankshaft rotates, each of the plurality of first plungers configured to reciprocate in a first plane;a plurality of second plungers connected to the crankshaft and configured to reciprocate relative to the crankshaft as the crankshaft rotates, each of the plurality of second plungers configured to reciprocate in a second plane so as to define a non-zero offset angle between the first plane and the second plane;a plurality of crankpins coupled to the crankshaft and each being connected to one of the plurality of first plungers and one of the plurality of second plungers; anda plurality of connector rods to connect the plurality first plungers to the plurality of crankpins and to connect the plurality of second plungers to the plurality of crankpins, each of the plurality of connector rods comprising a crank end connected to a corresponding crankpin of the plurality of crankpins and each of the crank ends comprising a pair of crank end connectors such that, for each of the plurality of connector rods, the pair of crank end connectors are intermeshed with the pair of crank end connectors of another of the plurality of connector rods along the corresponding crankpin.
  • 2. The pump of claim 1, wherein the non-zero offset angle ranges from about forty-five degrees to about one-hundred-eighty degrees.
  • 3. The pump of claim 1, wherein each of the plurality of crankpins is offset from a longitudinal rotation axis of the crankshaft; wherein the first and second plungers each are configured to move in first and second directions to discharge and to draw-in fluid; andwherein each of the plurality of first plungers is configured to draw in fluid at a first pressure and discharge fluid at a second pressure greater than the first pressure, and each of the plurality of second plungers configured to draw in fluid at a third pressure and discharge fluid at a fourth pressure greater than the third pressure.
  • 4. The pump of claim 3, further comprising: a first pair of plungers comprises a first one of the plurality of first plungers and a first one of the plurality of second plungers, and a second pair of plungers comprises a second one of the plurality of first plungers and a second one of the plurality of second plungers; andwherein the first pair of plungers is offset from the second pair of plungers such that the first pair of plungers and the second pair of plungers are engaged in a non-consecutive firing sequence sufficient to provide at least partial cancellation of forces generated by the first and second pairs of plungers.
  • 5. The pump of claim 3, wherein each of the plurality of connector rods comprises a plunger end pivotably connected to one of the plurality first plungers or one of the plurality of second plungers.
  • 6. The pump of claim 1, further comprising a drive assembly configured to be driven by one or more prime movers.
  • 7. The pump of claim 6, wherein the one or more prime movers comprise one or more gas turbine engines, electric motors, or combinations thereof.
  • 8. The pump of claim 6, wherein the drive assembly comprises: a first pinion gear engaged with the crankshaft at a first end of the pump frame;a connector shaft having a first end connected to the first pinion gear; anda second pinion gear connected to a second end of the connector shaft at a second end of the pump frame, and engaged with the crankshaft at the second end of the pump frame;wherein the first pinion gear is configured to drive the crankshaft at the first end of the pump frame, such that the connector shaft drives the second pinion gear at the second end of the pump frame, and the second pinion gear drives the crankshaft at the second end of the pump frame.
  • 9. The pump of claim 6, wherein the drive assembly comprises: at least one planetary gearbox connected to the pump at a first end of the pump frame, at a second end of the pump frame, or at both the first and the second end of the pump frame, the planetary gearbox comprising: a sun gear engaged with the crankshaft at the first end of the pump frame;a ring gear surrounding the sun gear; anda plurality of planetary gears disposed between the ring gear and the sun gear and configured to engage with the ring gear, and sun gear such that rotation of the sun gear is translated to the ring gear.
  • 10. The pump of claim 1, wherein one or more of: the plurality of first plungers reciprocate in a first direction away from the crankshaft and a second direction opposite the first direction and toward the crankshaft, the first direction and the second direction lie in the first plane, the first direction having a downward component and an outward component, and the second direction having an upward component and an inward component; orthe plurality of second plungers reciprocate in a third direction away from the crankshaft and a fourth direction opposite the third direction and toward the crankshaft, the third direction and the fourth direction lying in the second plane, the third direction having a downward component and an outward component, and the fourth direction having an upward component and an inward component.
  • 11. The pump of claim 1, wherein the plurality of first plungers comprises at least three plungers, and the plurality of second plungers comprises at least three plungers.
  • 12. The pump of claim 1, wherein the pump frame comprises a plurality of pump frame sections, each of the plurality of pump frame sections at least partially defining the shaft aperture; and wherein at least one of the plurality of pump frame sections has an inverted V-shaped cross-section as viewed in a direction substantially parallel to a longitudinal axis of the crankshaft.
  • 13. The pump of claim 1, wherein for each of the plurality of connector rods, one of the pair of crank end connectors is positioned between the pair of crank end connectors of another of the plurality of connector rods along the corresponding crankpin.
CROSS-REFERENCE TO RELATED APPLICATION

The present application claims benefit of U.S. Provisional Patent Application No. 63/202,031, filed May 24, 2021.

US Referenced Citations (881)
Number Name Date Kind
1716049 Greve Jun 1929 A
1726633 Smith Sep 1929 A
2178662 Hanson Nov 1939 A
2427638 Vilter Sep 1947 A
2498229 Adler Feb 1950 A
2535703 Smith et al. Dec 1950 A
2572711 Fischer Oct 1951 A
2820341 Amann Jan 1958 A
2868004 Runde Jan 1959 A
2940377 Darnell et al. Jun 1960 A
2947141 Russ Aug 1960 A
2956738 Af Rosenschold Oct 1960 A
3068796 Pfluger et al. Dec 1962 A
3191517 Solzman Jun 1965 A
3257031 Dietz Jun 1966 A
3274768 Klein Sep 1966 A
3378074 Kiel Apr 1968 A
3382671 Ehni, III May 1968 A
3401873 Privon Sep 1968 A
3463612 Whitsel Aug 1969 A
3496880 Wolff Feb 1970 A
3550696 Kenneday Dec 1970 A
3586459 Zerlauth Jun 1971 A
3632222 Cronstedt Jan 1972 A
3656582 Alcock Apr 1972 A
3667868 Brunner Jun 1972 A
3692434 Schnear Sep 1972 A
3739872 McNair Jun 1973 A
3757581 Mankin Sep 1973 A
3759063 Bendall Sep 1973 A
3765173 Harris Oct 1973 A
3771916 Flanigan et al. Nov 1973 A
3773438 Hall et al. Nov 1973 A
3786835 Finger Jan 1974 A
3791682 Mitchell Feb 1974 A
3796045 Foster Mar 1974 A
3814549 Cronstedt Jun 1974 A
3820922 Buse et al. Jun 1974 A
3847511 Cole Nov 1974 A
3866108 Yannone Feb 1975 A
3875380 Rankin Apr 1975 A
3963372 McLain et al. Jun 1976 A
4010613 McInerney Mar 1977 A
4019477 Overton Apr 1977 A
4031407 Reed Jun 1977 A
4050862 Buse Sep 1977 A
4059045 McClain Nov 1977 A
4086976 Holm et al. May 1978 A
4117342 Melley, Jr. Sep 1978 A
4173121 Yu Nov 1979 A
4204808 Reese et al. May 1980 A
4209079 Marchal et al. Jun 1980 A
4209979 Woodhouse et al. Jul 1980 A
4222229 Uram Sep 1980 A
4269569 Hoover May 1981 A
4311395 Douthitt et al. Jan 1982 A
4330237 Battah May 1982 A
4341508 Rambin, Jr. Jul 1982 A
4357027 Zeitlow Nov 1982 A
4383478 Jones May 1983 A
4402504 Christian Sep 1983 A
4430047 Ilg Feb 1984 A
4442665 Fick Apr 1984 A
4457325 Green Jul 1984 A
4470771 Hall et al. Sep 1984 A
4483684 Black Nov 1984 A
4505650 Hannett et al. Mar 1985 A
4574880 Handke Mar 1986 A
4584654 Crane Apr 1986 A
4620330 Izzi, Sr. Nov 1986 A
4672813 David Jun 1987 A
4754607 Mackay Jul 1988 A
4782244 Wakimoto Nov 1988 A
4796777 Keller Jan 1989 A
4869209 Young Sep 1989 A
4913625 Gerlowski Apr 1990 A
4983259 Duncan Jan 1991 A
4990058 Eslinger Feb 1991 A
5032065 Yamamuro Jul 1991 A
5135361 Dion Aug 1992 A
5167493 Kobari Dec 1992 A
5245970 Iwaszkiewicz et al. Sep 1993 A
5291842 Sallstrom et al. Mar 1994 A
5326231 Pandeya Jul 1994 A
5362219 Paul et al. Nov 1994 A
5511956 Hasegawa Apr 1996 A
5537813 Davis et al. Jul 1996 A
5553514 Walkowc Sep 1996 A
5560195 Anderson et al. Oct 1996 A
5586444 Fung Dec 1996 A
5622245 Reik Apr 1997 A
5626103 Haws et al. May 1997 A
5634777 Albertin Jun 1997 A
5651400 Corts et al. Jul 1997 A
5678460 Walkowc Oct 1997 A
5717172 Griffin, Jr. et al. Feb 1998 A
5720598 de Chizzelle Feb 1998 A
5839888 Harrison Nov 1998 A
5846062 Yanagisawa et al. Dec 1998 A
5875744 Vallejos Mar 1999 A
5983962 Gerardot Nov 1999 A
5992944 Hara Nov 1999 A
6041856 Thrasher et al. Mar 2000 A
6050080 Horner Apr 2000 A
6067962 Bartley et al. May 2000 A
6071188 O'Neill et al. Jun 2000 A
6074170 Bert et al. Jun 2000 A
6123751 Nelson et al. Sep 2000 A
6129335 Yokogi Oct 2000 A
6145318 Kaplan et al. Nov 2000 A
6230481 Jahr May 2001 B1
6279309 Lawlor, II et al. Aug 2001 B1
6321860 Reddoch Nov 2001 B1
6334746 Nguyen et al. Jan 2002 B1
6401472 Pollrich Jun 2002 B2
6530224 Conchieri Mar 2003 B1
6543395 Green Apr 2003 B2
6655922 Flek Dec 2003 B1
6669453 Breeden Dec 2003 B1
6765304 Baten et al. Jul 2004 B2
6786051 Kristich et al. Sep 2004 B2
6832900 Leu Dec 2004 B2
6851514 Han et al. Feb 2005 B2
6859740 Stephenson et al. Feb 2005 B2
6901735 Lohn Jun 2005 B2
6962057 Kurokawa et al. Nov 2005 B2
7007966 Campion Mar 2006 B2
7047747 Tanaka May 2006 B2
7065953 Kopko Jun 2006 B1
7143016 Discenzo et al. Nov 2006 B1
7222015 Davis et al. May 2007 B2
7281519 Schroeder Oct 2007 B2
7388303 Seiver Jun 2008 B2
7404294 Sundin Jul 2008 B2
7442239 Armstrong et al. Oct 2008 B2
7524173 Cummins Apr 2009 B2
7545130 Latham Jun 2009 B2
7552903 Dunn et al. Jun 2009 B2
7563076 Brunet et al. Jul 2009 B2
7563413 Naets et al. Jul 2009 B2
7574325 Dykstra Aug 2009 B2
7594424 Fazekas Sep 2009 B2
7614239 Herzog et al. Nov 2009 B2
7627416 Batenburg et al. Dec 2009 B2
7677316 Butler et al. Mar 2010 B2
7721521 Kunkle et al. May 2010 B2
7730711 Kunkle et al. Jun 2010 B2
7779961 Matte Aug 2010 B2
7789452 Dempsey et al. Sep 2010 B2
7836949 Dykstra Nov 2010 B2
7841394 McNeel et al. Nov 2010 B2
7845413 Shampine et al. Dec 2010 B2
7886702 Jerrell et al. Feb 2011 B2
7900724 Promersberger et al. Mar 2011 B2
7921914 Bruins et al. Apr 2011 B2
7938151 Höckner May 2011 B2
7955056 Pettersson Jun 2011 B2
7980357 Edwards Jul 2011 B2
8056635 Shampine et al. Nov 2011 B2
8083504 Williams et al. Dec 2011 B2
3099942 Alexander Jan 2012 A1
8186334 Ooyama May 2012 B2
8196555 Ikeda et al. Jun 2012 B2
8202354 Iijima Jun 2012 B2
8316936 Roddy et al. Nov 2012 B2
8336631 Shampine et al. Dec 2012 B2
8388317 Sung Mar 2013 B2
8414673 Raje et al. Apr 2013 B2
8469826 Brosowske Jun 2013 B2
8500215 Gastauer Aug 2013 B2
8506267 Gambier et al. Aug 2013 B2
8575873 Peterson et al. Nov 2013 B2
8616005 Cousino, Sr. et al. Dec 2013 B1
8621873 Robertson et al. Jan 2014 B2
8641399 Mucibabic Feb 2014 B2
8656990 Kajaria et al. Feb 2014 B2
8672606 Glynn et al. Mar 2014 B2
8707853 Dille et al. Apr 2014 B1
8714253 Sherwood et al. May 2014 B2
8757918 Ramnarain et al. Jun 2014 B2
8770329 Spitler Jul 2014 B2
8784081 Blume Jul 2014 B1
8789601 Broussard et al. Jul 2014 B2
8794307 Coquilleau et al. Aug 2014 B2
8801394 Anderson Aug 2014 B2
8851186 Shampine et al. Oct 2014 B2
8851441 Acuna et al. Oct 2014 B2
8905056 Kendrick Dec 2014 B2
8951019 Hains et al. Feb 2015 B2
8973560 Krug Mar 2015 B2
8997904 Cryer et al. Apr 2015 B2
9011111 Lesko Apr 2015 B2
9016383 Shampine et al. Apr 2015 B2
9032620 Frassinelli et al. May 2015 B2
9057247 Kumar et al. Jun 2015 B2
9097249 Petersen Aug 2015 B2
9103193 Coli et al. Aug 2015 B2
9121257 Coli et al. Sep 2015 B2
9140110 Coli et al. Sep 2015 B2
9175810 Hains Nov 2015 B2
9187982 Dehring et al. Nov 2015 B2
9206667 Khvoshchev et al. Dec 2015 B2
9212643 Deliyski Dec 2015 B2
9222346 Walls Dec 2015 B1
9324049 Thomeer et al. Apr 2016 B2
9341055 Weightman et al. May 2016 B2
9346662 Van Vliet et al. May 2016 B2
9366114 Coli et al. Jun 2016 B2
9376786 Numasawa Jun 2016 B2
9394829 Cabeen et al. Jul 2016 B2
9395049 Vicknair et al. Jul 2016 B2
9401670 Minato et al. Jul 2016 B2
9410410 Broussard et al. Aug 2016 B2
9410546 Jaeger et al. Aug 2016 B2
9429078 Crowe et al. Aug 2016 B1
9435333 McCoy et al. Sep 2016 B2
9488169 Cochran et al. Nov 2016 B2
9493997 Liu et al. Nov 2016 B2
9512783 Veilleux et al. Dec 2016 B2
9534473 Morris et al. Jan 2017 B2
9546652 Yin Jan 2017 B2
9550501 Ledbetter Jan 2017 B2
9556721 Jang et al. Jan 2017 B2
9562420 Morris et al. Feb 2017 B2
9570945 Fischer Feb 2017 B2
9579980 Cryer et al. Feb 2017 B2
9587649 Oehring Mar 2017 B2
9611728 Oehring Apr 2017 B2
9617808 Liu et al. Apr 2017 B2
9638101 Crowe et al. May 2017 B1
9638194 Wiegman et al. May 2017 B2
9650871 Oehring et al. May 2017 B2
9656762 Kamath et al. May 2017 B2
9689316 Crom Jun 2017 B1
9695808 Giessbach et al. Jul 2017 B2
9739130 Young Aug 2017 B2
9764266 Carter Sep 2017 B1
9777748 Lu et al. Oct 2017 B2
9803467 Tang et al. Oct 2017 B2
9803793 Davi et al. Oct 2017 B2
9809308 Aguilar et al. Nov 2017 B2
9829002 Crom Nov 2017 B2
9840897 Larson Dec 2017 B2
9840901 Oering et al. Dec 2017 B2
9845730 Betti et al. Dec 2017 B2
9850422 Lestz et al. Dec 2017 B2
9856131 Moffitt Jan 2018 B1
9863279 Laing et al. Jan 2018 B2
9869305 Crowe et al. Jan 2018 B1
9879609 Crowe et al. Jan 2018 B1
RE46725 Case et al. Feb 2018 E
9893500 Oehring et al. Feb 2018 B2
9893660 Peterson et al. Feb 2018 B2
9897003 Motakef et al. Feb 2018 B2
9920615 Zhang et al. Mar 2018 B2
9945365 Hernandez et al. Apr 2018 B2
9964052 Millican et al. May 2018 B2
9970278 Broussard et al. May 2018 B2
9981840 Shock May 2018 B2
9995102 Dillie et al. Jun 2018 B2
9995218 Oehring et al. Jun 2018 B2
10008880 Vicknair et al. Jun 2018 B2
10008912 Davey et al. Jun 2018 B2
10018096 Wallimann et al. Jul 2018 B2
10020711 Oehring et al. Jul 2018 B2
10024123 Steflenhagen et al. Jul 2018 B2
10029289 Wendorski et al. Jul 2018 B2
10030579 Austin et al. Jul 2018 B2
10036238 Oehring Jul 2018 B2
10040541 Wilson et al. Aug 2018 B2
10060293 Del Bono Aug 2018 B2
10060349 Álvarez et al. Aug 2018 B2
10077933 Nelson et al. Sep 2018 B2
10082137 Graham et al. Sep 2018 B2
10094366 Marica Oct 2018 B2
10100827 Devan et al. Oct 2018 B2
10107084 Coli et al. Oct 2018 B2
10107085 Coli et al. Oct 2018 B2
10114061 Frampton et al. Oct 2018 B2
10119381 Oehring et al. Nov 2018 B2
10125750 Pfaff Nov 2018 B2
10134257 Zhang et al. Nov 2018 B2
10138098 Sorensen et al. Nov 2018 B2
10151244 Giancotti et al. Dec 2018 B2
10161423 Rampen Dec 2018 B2
10174599 Shampine et al. Jan 2019 B2
10184397 Austin et al. Jan 2019 B2
10196258 Kalala et al. Feb 2019 B2
10221856 Hernandez et al. Mar 2019 B2
10227854 Glass Mar 2019 B2
10227855 Coli et al. Mar 2019 B2
10246984 Payne et al. Apr 2019 B2
10247182 Zhang et al. Apr 2019 B2
10254732 Oehring et al. Apr 2019 B2
10267439 Pryce et al. Apr 2019 B2
10280724 Hinderliter May 2019 B2
10287943 Schiltz May 2019 B1
10288519 De La Cruz May 2019 B2
10303190 Shock May 2019 B2
10305350 Johnson et al. May 2019 B2
10316832 Byrne Jun 2019 B2
10317875 Pandurangan Jun 2019 B2
10337402 Austin et al. Jul 2019 B2
10358035 Cryer Jul 2019 B2
10371012 Davis et al. Aug 2019 B2
10374485 Morris et al. Aug 2019 B2
10378326 Morris et al. Aug 2019 B2
10393108 Chong et al. Aug 2019 B2
10407990 Oehring et al. Sep 2019 B2
10408031 Oehring et al. Sep 2019 B2
10415348 Zhang et al. Sep 2019 B2
10415557 Crowe et al. Sep 2019 B1
10415562 Kajita et al. Sep 2019 B2
RE47695 Case et al. Nov 2019 E
10465689 Crom Nov 2019 B2
10478753 Elms et al. Nov 2019 B1
10526882 Oehring et al. Jan 2020 B2
10563649 Zhang et al. Feb 2020 B2
10577910 Stephenson Mar 2020 B2
10584645 Nakagawa et al. Mar 2020 B2
10590867 Thomassin et al. Mar 2020 B2
10598258 Oehring et al. Mar 2020 B2
10610842 Chong Apr 2020 B2
10662749 Hill et al. May 2020 B1
10711787 Darley Jul 2020 B1
10738580 Fischer et al. Aug 2020 B1
10753153 Fischer et al. Aug 2020 B1
10753165 Fischer et al. Aug 2020 B1
10760556 Crom et al. Sep 2020 B1
10794165 Fischer et al. Oct 2020 B2
10794166 Reckels et al. Oct 2020 B2
10801311 Cui et al. Oct 2020 B1
10815764 Yeung et al. Oct 2020 B1
10815978 Glass Oct 2020 B2
10830032 Zhang et al. Nov 2020 B1
10830225 Repaci Nov 2020 B2
10859203 Cui et al. Dec 2020 B1
10864487 Han et al. Dec 2020 B1
10865624 Cui et al. Dec 2020 B1
10865631 Zhang et al. Dec 2020 B1
10870093 Zhong et al. Dec 2020 B1
10871045 Fischer et al. Dec 2020 B2
10900475 Weightman et al. Jan 2021 B2
10907459 Yeung et al. Feb 2021 B1
10927774 Cai et al. Feb 2021 B2
10927802 Oehring Feb 2021 B2
10954770 Yeung et al. Mar 2021 B1
10954855 Ji et al. Mar 2021 B1
10961614 Yeung et al. Mar 2021 B1
10961908 Yeung et al. Mar 2021 B1
10961912 Yeung et al. Mar 2021 B1
10961914 Yeung et al. Mar 2021 B1
10961993 Ji et al. Mar 2021 B1
10961995 Mayorca Mar 2021 B2
10892596 Yeung et al. Apr 2021 B2
10968837 Yeung et al. Apr 2021 B1
10982523 Hill et al. Apr 2021 B1
10989019 Cai et al. Apr 2021 B2
10989180 Yeung et al. Apr 2021 B2
10995564 Miller et al. May 2021 B2
11002189 Yeung et al. May 2021 B2
11008950 Ethier et al. May 2021 B2
11015423 Yeung et al. May 2021 B1
11015536 Yeung et al. May 2021 B2
11015594 Yeung et al. May 2021 B2
11022526 Yeung et al. Jun 2021 B1
11028677 Yeung et al. Jun 2021 B1
11035213 Dusterhoft et al. Jun 2021 B2
11035214 Cui et al. Jun 2021 B2
11047379 Li et al. Jun 2021 B1
10895202 Yeung et al. Jul 2021 B1
11053853 Li et al. Jul 2021 B2
11060455 Yeung et al. Jul 2021 B1
11085281 Yeung et al. Aug 2021 B1
11085282 Mazrooee et al. Aug 2021 B2
11092152 Yeung et al. Aug 2021 B2
11098651 Yeung et al. Aug 2021 B1
11105250 Zhang et al. Aug 2021 B1
11105266 Zhou et al. Aug 2021 B2
11109508 Yeung et al. Aug 2021 B1
11111768 Yeung et al. Sep 2021 B1
11125066 Yeung et al. Sep 2021 B1
11125156 Zhang et al. Sep 2021 B2
11129295 Yeung et al. Sep 2021 B1
11143000 Li et al. Oct 2021 B2
11143006 Zhang et al. Oct 2021 B1
11149533 Yeung et al. Oct 2021 B1
11149726 Yeung et al. Oct 2021 B1
11156159 Yeung et al. Oct 2021 B1
11168681 Boguski Nov 2021 B2
11174716 Yeung et al. Nov 2021 B1
11193360 Yeung et al. Dec 2021 B1
11193361 Yeung et al. Dec 2021 B1
11205880 Yeung et al. Dec 2021 B1
11205881 Yeung et al. Dec 2021 B2
11208879 Yeung et al. Dec 2021 B1
11208953 Yeung et al. Dec 2021 B1
11220895 Yeung et al. Jan 2022 B1
11236739 Yeung et al. Feb 2022 B2
11242737 Zhang et al. Feb 2022 B2
11243509 Cai et al. Feb 2022 B2
11251650 Liu et al. Feb 2022 B1
11261717 Yeung et al. Mar 2022 B2
11268346 Yeung et al. Mar 2022 B2
11280266 Yeung et al. Mar 2022 B2
RE49083 Case et al. May 2022 E
11339638 Yeung et al. May 2022 B1
11346200 Cai et al. May 2022 B2
11373058 Jaaskelainen et al. Jun 2022 B2
RE49140 Case et al. Jul 2022 E
11377943 Kriebel et al. Jul 2022 B2
RE49155 Case et al. Aug 2022 E
RE49156 Case et al. Aug 2022 E
11401927 Li et al. Aug 2022 B2
11441483 Li et al. Sep 2022 B2
11448122 Feng et al. Sep 2022 B2
11466680 Yeung et al. Oct 2022 B2
11480040 Han et al. Oct 2022 B2
11492887 Cui et al. Nov 2022 B2
11499405 Zhang et al. Nov 2022 B2
11506039 Zhang et al. Nov 2022 B2
11512570 Yeung Nov 2022 B2
11519395 Zhang et al. Dec 2022 B2
11519405 Deng et al. Dec 2022 B2
20020126922 Cheng et al. Sep 2002 A1
20020197176 Kondo Dec 2002 A1
20030031568 Stiefel Feb 2003 A1
20030061819 Kuroki et al. Apr 2003 A1
20040016245 Pierson Jan 2004 A1
20040074238 Wantanabe et al. Apr 2004 A1
20040076526 Fukano et al. Apr 2004 A1
20040187950 Cohen et al. Sep 2004 A1
20040219040 Kugelev et al. Nov 2004 A1
20050051322 Speer Mar 2005 A1
20050056081 Gocho Mar 2005 A1
20050139286 Poulter Jun 2005 A1
20050196298 Manning Sep 2005 A1
20050226754 Orr et al. Oct 2005 A1
20050274134 Ryu et al. Dec 2005 A1
20060061091 Osterloh Mar 2006 A1
20060062914 Garg et al. Mar 2006 A1
20060196251 Richey Sep 2006 A1
20060211356 Grassman Sep 2006 A1
20060260331 Andreychuk Nov 2006 A1
20060272333 Sundin Dec 2006 A1
20070029090 Andreychuk et al. Feb 2007 A1
20070041848 Wood et al. Feb 2007 A1
20070066406 Keller et al. Mar 2007 A1
20070098580 Petersen May 2007 A1
20070107981 Sicotte May 2007 A1
20070125544 Robinson et al. Jun 2007 A1
20070169543 Fazekas Jul 2007 A1
20070181212 Fell Aug 2007 A1
20070277982 Shampine et al. Dec 2007 A1
20070295569 Manzoor et al. Dec 2007 A1
20080006089 Adnan et al. Jan 2008 A1
20080098891 Feher May 2008 A1
20080161974 Alston Jul 2008 A1
20080264625 Ochoa Oct 2008 A1
20080264649 Crawford Oct 2008 A1
20080298982 Pabst Dec 2008 A1
20090064685 Busekros et al. Mar 2009 A1
20090068031 Gambier et al. Mar 2009 A1
20090092510 Williams et al. Apr 2009 A1
20090124191 Van Becelaere et al. May 2009 A1
20090178412 Spytek Jul 2009 A1
20090249794 Wilkes et al. Oct 2009 A1
20090252616 Brunet et al. Oct 2009 A1
20090308602 Bruins et al. Dec 2009 A1
20100019626 Stout et al. Jan 2010 A1
20100071899 Coquilleau et al. Mar 2010 A1
20100218508 Brown et al. Sep 2010 A1
20100300683 Looper et al. Dec 2010 A1
20100310384 Stephenson et al. Dec 2010 A1
20110041681 Duerr Feb 2011 A1
20110052423 Gambier et al. Mar 2011 A1
20110054704 Karpman et al. Mar 2011 A1
20110085924 Shampine et al. Apr 2011 A1
20110146244 Farman et al. Jun 2011 A1
20110146246 Farman et al. Jun 2011 A1
20110173991 Dean Jul 2011 A1
20110197988 Van Vliet et al. Aug 2011 A1
20110241888 Lu et al. Oct 2011 A1
20110265443 Ansari Nov 2011 A1
20110272158 Neal Nov 2011 A1
20120023973 Mayorca Feb 2012 A1
20120048242 Surnilla et al. Mar 2012 A1
20120085541 Love et al. Apr 2012 A1
20120137699 Montagne et al. Jun 2012 A1
20120179444 Ganguly et al. Jul 2012 A1
20120192542 Chillar et al. Aug 2012 A1
20120199001 Chillar et al. Aug 2012 A1
20120204627 Anderl et al. Aug 2012 A1
20120255734 Coli et al. Oct 2012 A1
20120310509 Pardo et al. Dec 2012 A1
20120324903 Dewis et al. Dec 2012 A1
20130068307 Hains et al. Mar 2013 A1
20130087045 Sullivan et al. Apr 2013 A1
20130087945 Kusters et al. Apr 2013 A1
20130134702 Boraas et al. May 2013 A1
20130189915 Hazard Jul 2013 A1
20130233165 Matzner et al. Sep 2013 A1
20130255953 Tudor Oct 2013 A1
20130259707 Yin Oct 2013 A1
20130284455 Kajaria et al. Oct 2013 A1
20130300341 Gillette Nov 2013 A1
20130306322 Sanborn Nov 2013 A1
20140010671 Cryer et al. Jan 2014 A1
20140013768 Laing et al. Jan 2014 A1
20140032082 Gehrke et al. Jan 2014 A1
20140044517 Saha et al. Feb 2014 A1
20140048253 Andreychuk Feb 2014 A1
20140090729 Coulter et al. Apr 2014 A1
20140090742 Coskrey et al. Apr 2014 A1
20140094105 Lundh et al. Apr 2014 A1
20140095114 Thomeer et al. Apr 2014 A1
20140095554 Thomeer et al. Apr 2014 A1
20140123621 Driessens et al. May 2014 A1
20140130422 Laing et al. May 2014 A1
20140138079 Broussard et al. May 2014 A1
20140144641 Chandler May 2014 A1
20140147291 Burnette May 2014 A1
20140158345 Jang et al. Jun 2014 A1
20140196459 Futa et al. Jul 2014 A1
20140216736 Leugemors et al. Aug 2014 A1
20140219824 Burnette Aug 2014 A1
20140250845 Jackson et al. Sep 2014 A1
20140251623 Lestz et al. Sep 2014 A1
20140277772 Lopez et al. Sep 2014 A1
20140290266 Veilleux, Jr. et al. Oct 2014 A1
20140318638 Harwood et al. Oct 2014 A1
20140322050 Marette et al. Oct 2014 A1
20150027730 Hall et al. Jan 2015 A1
20150078924 Zhang et al. Mar 2015 A1
20150101344 Jarrier et al. Apr 2015 A1
20150114652 Lestz et al. Apr 2015 A1
20150129210 Chong et al. May 2015 A1
20150135659 Jarrier et al. May 2015 A1
20150159553 Kippel et al. Jun 2015 A1
20150192117 Bridges Jul 2015 A1
20150204148 Liu et al. Jul 2015 A1
20150204322 Iund et al. Jul 2015 A1
20150211512 Wiegman et al. Jul 2015 A1
20150214816 Raad Jul 2015 A1
20150217672 Shampine et al. Aug 2015 A1
20150226140 Zhang et al. Aug 2015 A1
20150252661 Glass Sep 2015 A1
20150275891 Chong et al. Oct 2015 A1
20150337730 Kupiszewski et al. Nov 2015 A1
20150340864 Compton Nov 2015 A1
20150345385 Santini Dec 2015 A1
20150369351 Hermann et al. Dec 2015 A1
20160032703 Broussard et al. Feb 2016 A1
20160032836 Hawkinson et al. Feb 2016 A1
20160102581 Del Bono Apr 2016 A1
20160105022 Oehring et al. Apr 2016 A1
20160108713 Dunaeva et al. Apr 2016 A1
20160168979 Zhang et al. Jun 2016 A1
20160177675 Morris et al. Jun 2016 A1
20160177945 Byrne Jun 2016 A1
20160186671 Austin et al. Jun 2016 A1
20160195082 Wiegman et al. Jul 2016 A1
20160215774 Oklejas et al. Jul 2016 A1
20160230525 Lestz et al. Aug 2016 A1
20160244314 Van Vliet et al. Aug 2016 A1
20160248230 Tawy et al. Aug 2016 A1
20160253634 Thomeer et al. Sep 2016 A1
20160258267 Payne et al. Sep 2016 A1
20160273328 Oehring Sep 2016 A1
20160273346 Tang et al. Sep 2016 A1
20160290114 Oehring et al. Oct 2016 A1
20160319650 Oehring et al. Nov 2016 A1
20160326845 Djikpesse et al. Nov 2016 A1
20160348479 Oehring et al. Dec 2016 A1
20160369609 Morris et al. Dec 2016 A1
20170009905 Arnold Jan 2017 A1
20170016433 Chong et al. Jan 2017 A1
20170030177 Oehring et al. Feb 2017 A1
20170038137 Turney Feb 2017 A1
20170045055 Hoefel et al. Feb 2017 A1
20170052087 Faqihi et al. Feb 2017 A1
20170074074 Joseph et al. Mar 2017 A1
20170074076 Joseph et al. Mar 2017 A1
20170074089 Agarwal et al. Mar 2017 A1
20170082110 Lammers Mar 2017 A1
20170089189 Norris et al. Mar 2017 A1
20170114613 Lecerf et al. Apr 2017 A1
20170114625 Norris et al. Apr 2017 A1
20170122310 Ladron De Guevara May 2017 A1
20170131174 Enev et al. May 2017 A1
20170145918 Oehring et al. May 2017 A1
20170191350 Johns et al. Jul 2017 A1
20170218727 Oehring et al. Aug 2017 A1
20170226839 Broussard et al. Aug 2017 A1
20170226998 Zhang et al. Aug 2017 A1
20170227002 Mikulski et al. Aug 2017 A1
20170233103 Teicholz et al. Aug 2017 A1
20170234165 Kersey et al. Aug 2017 A1
20170234308 Buckley Aug 2017 A1
20170241336 Jones et al. Aug 2017 A1
20170248034 Dzieciol et al. Aug 2017 A1
20170248208 Tamura Aug 2017 A1
20170248308 Makarychev-Mikhailov et al. Aug 2017 A1
20170275149 Schmidt Sep 2017 A1
20170288400 Williams Oct 2017 A1
20170292409 Aguilar et al. Oct 2017 A1
20170302135 Cory Oct 2017 A1
20170305736 Haile et al. Oct 2017 A1
20170306847 Suciu et al. Oct 2017 A1
20170306936 Dole Oct 2017 A1
20170322086 Luharuka Nov 2017 A1
20170333086 Jackson Nov 2017 A1
20170334448 Schwunk Nov 2017 A1
20170335842 Robinson et al. Nov 2017 A1
20170350471 Steidl et al. Dec 2017 A1
20170370199 Witkowski et al. Dec 2017 A1
20170370480 Witkowski et al. Dec 2017 A1
20180034280 Pedersen Feb 2018 A1
20180038328 Louven et al. Feb 2018 A1
20180041093 Miranda Feb 2018 A1
20180045202 Crom Feb 2018 A1
20180038216 Zhang et al. Mar 2018 A1
20180058171 Roesner et al. Mar 2018 A1
20180087499 Zhang et al. Mar 2018 A1
20180087996 De La Cruz Mar 2018 A1
20180156210 Oehring et al. Jun 2018 A1
20180172294 Owen Jun 2018 A1
20180183219 Oehring et al. Jun 2018 A1
20180186442 Maier Jul 2018 A1
20180187662 Hill et al. Jul 2018 A1
20180209415 Zhang et al. Jul 2018 A1
20180223640 Keihany et al. Aug 2018 A1
20180224044 Penney Aug 2018 A1
20180229998 Shock Aug 2018 A1
20180258746 Broussard et al. Sep 2018 A1
20180266412 Stokkevag et al. Sep 2018 A1
20180278124 Oehring et al. Sep 2018 A1
20180283102 Cook Oct 2018 A1
20180283618 Cook Oct 2018 A1
20180284817 Cook et al. Oct 2018 A1
20180290877 Shock Oct 2018 A1
20180291781 Pedrini Oct 2018 A1
20180298731 Bishop Oct 2018 A1
20180298735 Conrad Oct 2018 A1
20180307255 Bishop Oct 2018 A1
20180313456 Bayyouk et al. Nov 2018 A1
20180328157 Bishop Nov 2018 A1
20180334893 Oehring Nov 2018 A1
20180363435 Coli et al. Dec 2018 A1
20180363436 Coli et al. Dec 2018 A1
20180363437 Coli et al. Dec 2018 A1
20180363438 Coli et al. Dec 2018 A1
20190003272 Morris et al. Jan 2019 A1
20190003329 Morris et al. Jan 2019 A1
20190010793 Hinderliter Jan 2019 A1
20190011051 Yeung Jan 2019 A1
20190048993 Akiyama et al. Feb 2019 A1
20190063263 Davis et al. Feb 2019 A1
20190063341 Davis Feb 2019 A1
20190067991 Davis et al. Feb 2019 A1
20190071992 Feng Mar 2019 A1
20190072005 Fisher et al. Mar 2019 A1
20190078471 Braglia et al. Mar 2019 A1
20190091619 Huang Mar 2019 A1
20190106316 Van Vliet et al. Apr 2019 A1
20190106970 Oehring Apr 2019 A1
20190112908 Coli et al. Apr 2019 A1
20190112910 Oehring et al. Apr 2019 A1
20190119096 Haile et al. Apr 2019 A1
20190120024 Oehring et al. Apr 2019 A1
20190120031 Gilje Apr 2019 A1
20190120134 Goleczka et al. Apr 2019 A1
20190128247 Douglas, III May 2019 A1
20190128288 Konada et al. May 2019 A1
20190131607 Gillette May 2019 A1
20190136677 Shampine et al. May 2019 A1
20190153843 Headrick et al. May 2019 A1
20190153938 Hammoud May 2019 A1
20190154020 Glass May 2019 A1
20190155318 Meunier May 2019 A1
20190264667 Byrne May 2019 A1
20190178234 Beisel Jun 2019 A1
20190178235 Coskrey et al. Jun 2019 A1
20190185312 Bush et al. Jun 2019 A1
20190203572 Morris et al. Jul 2019 A1
20190204021 Morris et al. Jul 2019 A1
20190211661 Reckies et al. Jul 2019 A1
20190211814 Weightman et al. Jul 2019 A1
20190217258 Bishop Jul 2019 A1
20190226317 Payne et al. Jul 2019 A1
20190245348 Hinderliter et al. Aug 2019 A1
20190249652 Stephenson et al. Aug 2019 A1
20190249754 Oehring et al. Aug 2019 A1
20190257297 Botting et al. Aug 2019 A1
20190277279 Byrne et al. Sep 2019 A1
20190277295 Clyburn et al. Sep 2019 A1
20190309585 Miller et al. Oct 2019 A1
20190316447 Oehring et al. Oct 2019 A1
20190316456 Beisel et al. Oct 2019 A1
20190323337 Glass et al. Oct 2019 A1
20190330923 Gable et al. Oct 2019 A1
20190331117 Gable et al. Oct 2019 A1
20190337392 Joshi et al. Nov 2019 A1
20190338762 Curry et al. Nov 2019 A1
20190345920 Suijaatmadja et al. Nov 2019 A1
20190353103 Roberge Nov 2019 A1
20190356199 Morris et al. Nov 2019 A1
20190376449 Carrell Dec 2019 A1
20190383123 Hinderliter Dec 2019 A1
20200003205 Stokkevåg et al. Jan 2020 A1
20200011165 George et al. Jan 2020 A1
20200040878 Morris Feb 2020 A1
20200049136 Stephenson Feb 2020 A1
20200049153 Headrick et al. Feb 2020 A1
20200071998 Oehring et al. Mar 2020 A1
20200072201 Marica Mar 2020 A1
20200088202 Sigmar et al. Mar 2020 A1
20200095854 Hinderliter Mar 2020 A1
20200109610 Husoy et al. Apr 2020 A1
20200132058 Mollatt Apr 2020 A1
20200141219 Oehring et al. May 2020 A1
20200141326 Redford et al. May 2020 A1
20200141907 Meek et al. May 2020 A1
20200166026 Marica May 2020 A1
20200206704 Chong Jul 2020 A1
20200208733 Kim Jul 2020 A1
20200223648 Herman et al. Jul 2020 A1
20200224645 Buckley Jul 2020 A1
20200232454 Chretien et al. Jul 2020 A1
20200256333 Suijaatmadja Aug 2020 A1
20200263498 Fischer et al. Aug 2020 A1
20200263525 Reid Aug 2020 A1
20200263526 Fischer et al. Aug 2020 A1
20200263527 Fischer et al. Aug 2020 A1
20200263528 Fischer et al. Aug 2020 A1
20200267888 Putz Aug 2020 A1
20200291731 Haiderer et al. Sep 2020 A1
20200295574 Batsch-Smith Sep 2020 A1
20200300050 Oehring et al. Sep 2020 A1
20200309113 Hunter et al. Oct 2020 A1
20200325752 Clark et al. Oct 2020 A1
20200325760 Markham Oct 2020 A1
20200325761 Williams Oct 2020 A1
20200325893 Kraige et al. Oct 2020 A1
20200332784 Zhang et al. Oct 2020 A1
20200332788 Cui et al. Oct 2020 A1
20200340313 Fischer et al. Oct 2020 A1
20200340340 Oehring et al. Oct 2020 A1
20200340344 Reckels et al. Oct 2020 A1
20200340404 Stockstill Oct 2020 A1
20200347725 Morris et al. Nov 2020 A1
20200354928 Wehler et al. Nov 2020 A1
20200362760 Morenko et al. Nov 2020 A1
20200362764 Saintignan et al. Nov 2020 A1
20200370394 Cai et al. Nov 2020 A1
20200370408 Cai et al. Nov 2020 A1
20200370429 Cai et al. Nov 2020 A1
20200371490 Cai et al. Nov 2020 A1
20200340322 Sizemore et al. Dec 2020 A1
20200386222 Pham et al. Dec 2020 A1
20200388140 Gomez et al. Dec 2020 A1
20200392826 Cui et al. Dec 2020 A1
20200392827 George et al. Dec 2020 A1
20200393088 Sizemore et al. Dec 2020 A1
20200398238 Zhong et al. Dec 2020 A1
20200400000 Ghasripoor et al. Dec 2020 A1
20200400005 Han et al. Dec 2020 A1
20200407625 Stephenson Dec 2020 A1
20200408071 Li et al. Dec 2020 A1
20200408144 Feng et al. Dec 2020 A1
20200408147 Zhang et al. Dec 2020 A1
20200408149 Li et al. Dec 2020 A1
20210025324 Morris et al. Jan 2021 A1
20210025383 Bodishbaugh et al. Jan 2021 A1
20210032961 Hinderliter et al. Feb 2021 A1
20210054727 Floyd Feb 2021 A1
20210071503 Ogg et al. Mar 2021 A1
20210071574 Feng et al. Mar 2021 A1
20210071579 Li et al. Mar 2021 A1
20210071654 Brunson Mar 2021 A1
20210071752 Cui et al. Mar 2021 A1
20210079758 Yeung et al. Mar 2021 A1
20210079851 Yeung et al. Mar 2021 A1
20210086851 Zhang et al. Mar 2021 A1
20210087883 Zhang et al. Mar 2021 A1
20210087916 Zhang et al. Mar 2021 A1
20210087925 Heidari et al. Mar 2021 A1
20210087943 Cui et al. Mar 2021 A1
20210088042 Zhang et al. Mar 2021 A1
20210123425 Cui et al. Apr 2021 A1
20210123434 Cui Apr 2021 A1
20210123435 Cui et al. Apr 2021 A1
20210131409 Cui et al. May 2021 A1
20210140416 Buckley May 2021 A1
20210148208 Thomas et al. May 2021 A1
20210156240 Cicci et al. May 2021 A1
20210156241 Cook May 2021 A1
20210172282 Wang et al. Jun 2021 A1
20210180517 Zhou et al. Jun 2021 A1
20210199110 Albert et al. Jul 2021 A1
20210222690 Beisel Jul 2021 A1
20210239112 Buckley Aug 2021 A1
20210246774 Cui et al. Aug 2021 A1
20210270264 Byrne Sep 2021 A1
20210285311 Ji et al. Sep 2021 A1
20210285432 Ji et al. Sep 2021 A1
20210301807 Cui Sep 2021 A1
20210306720 Sandoval et al. Sep 2021 A1
20210308638 Zhong et al. Oct 2021 A1
20210348475 Yeung et al. Nov 2021 A1
20210348476 Yeung et al. Nov 2021 A1
20210348477 Yeung et al. Nov 2021 A1
20210355927 Jian et al. Nov 2021 A1
20210372394 Bagulayan et al. Dec 2021 A1
20210372395 Li et al. Dec 2021 A1
20210388760 Feng et al. Dec 2021 A1
20220082007 Zhang et al. Mar 2022 A1
20220090476 Zhang et al. Mar 2022 A1
20220090477 Zhang et al. Mar 2022 A1
20220090478 Zhang et al. Mar 2022 A1
20220112892 Cui et al. Apr 2022 A1
20220120262 Ji et al. Apr 2022 A1
20220145740 Yuan et al. May 2022 A1
20220154775 Liu et al. May 2022 A1
20220155373 Liu et al. May 2022 A1
20220162931 Zhong et al. May 2022 A1
20220162991 Zhang et al. May 2022 A1
20220181859 Ji et al. Jun 2022 A1
20220186724 Chang et al. Jun 2022 A1
20220213777 Cui et al. Jul 2022 A1
20220220836 Zhang et al. Jul 2022 A1
20220224087 Ji et al. Jul 2022 A1
20220228468 Cui et al. Jul 2022 A1
20220228469 Zhang et al. Jul 2022 A1
20220235639 Zhang et al. Jul 2022 A1
20220235640 Mao et al. Jul 2022 A1
20220235641 Zhang et al. Jul 2022 A1
20220235642 Zhang et al. Jul 2022 A1
20220235802 Jiang et al. Jul 2022 A1
20220242297 Tian et al. Aug 2022 A1
20220243613 Ji et al. Aug 2022 A1
20220243724 Li et al. Aug 2022 A1
20220250000 Zhang et al. Aug 2022 A1
20220255319 Liu et al. Aug 2022 A1
20220258659 Cui et al. Aug 2022 A1
20220259947 Li et al. Aug 2022 A1
20220259964 Zhang et al. Aug 2022 A1
20220268201 Feng et al. Aug 2022 A1
20220282606 Zhong et al. Sep 2022 A1
20220282726 Zhang et al. Sep 2022 A1
20220290549 Zhang et al. Sep 2022 A1
20220294194 Cao et al. Sep 2022 A1
20220298906 Zhong et al. Sep 2022 A1
20220307359 Liu et al. Sep 2022 A1
20220307424 Wang et al. Sep 2022 A1
20220314248 Ge et al. Oct 2022 A1
20220315347 Liu et al. Oct 2022 A1
20220316306 Liu et al. Oct 2022 A1
20220316362 Zhang et al. Oct 2022 A1
20220316461 Wang et al. Oct 2022 A1
20220325608 Zhang et al. Oct 2022 A1
20220330411 Liu et al. Oct 2022 A1
20220333471 Zhong et al. Oct 2022 A1
20220339646 Yu et al. Oct 2022 A1
20220341358 Ji et al. Oct 2022 A1
20220341362 Feng et al. Oct 2022 A1
20220341415 Deng et al. Oct 2022 A1
20220345007 Liu et al. Oct 2022 A1
20220349345 Zhang et al. Nov 2022 A1
20220353980 Liu et al. Nov 2022 A1
20220361309 Liu et al. Nov 2022 A1
20220364452 Wang et al. Nov 2022 A1
20220364453 Chang et al. Nov 2022 A1
20220372865 Lin et al. Nov 2022 A1
20220376280 Shao et al. Nov 2022 A1
20220381126 Cui et al. Dec 2022 A1
20220389799 Mao Dec 2022 A1
20220389803 Zhang et al. Dec 2022 A1
20220389804 Cui et al. Dec 2022 A1
20220389865 Feng et al. Dec 2022 A1
20220389867 Li et al. Dec 2022 A1
Foreign Referenced Citations (626)
Number Date Country
9609498 Jul 1999 AU
737970 Sep 2001 AU
2043184 Aug 1994 CA
2829762 Sep 2012 CA
2737321 Sep 2013 CA
2876687 May 2014 CA
2693567 Sep 2014 CA
2964597 Oct 2017 CA
2876687 Apr 2019 CA
3138533 Nov 2020 CA
2919175 Mar 2021 CA
2622404 Jun 2004 CN
2779054 May 2006 CN
2890325 Apr 2007 CN
200964929 Oct 2007 CN
101323151 Dec 2008 CN
201190660 Feb 2009 CN
201190892 Feb 2009 CN
201190893 Feb 2009 CN
101414171 Apr 2009 CN
201215073 Apr 2009 CN
201236650 May 2009 CN
201275542 Jul 2009 CN
201275801 Jul 2009 CN
201333385 Oct 2009 CN
201443300 Apr 2010 CN
201496415 Jun 2010 CN
201501365 Jun 2010 CN
201507271 Jun 2010 CN
101323151 Jul 2010 CN
201560210 Aug 2010 CN
201581862 Sep 2010 CN
201610728 Oct 2010 CN
201610751 Oct 2010 CN
201618530 Nov 2010 CN
201661255 Dec 2010 CN
101949382 Jan 2011 CN
201756927 Mar 2011 CN
101414171 May 2011 CN
102128011 Jul 2011 CN
102140898 Aug 2011 CN
102155172 Aug 2011 CN
102182904 Sep 2011 CN
202000930 Oct 2011 CN
202055781 Nov 2011 CN
202082265 Dec 2011 CN
202100216 Jan 2012 CN
202100217 Jan 2012 CN
202100815 Jan 2012 CN
202124340 Jan 2012 CN
202140051 Feb 2012 CN
202140080 Feb 2012 CN
202144789 Feb 2012 CN
202144943 Feb 2012 CN
202149354 Feb 2012 CN
102383748 Mar 2012 CN
202156297 Mar 2012 CN
202158355 Mar 2012 CN
202163504 Mar 2012 CN
202165236 Mar 2012 CN
202180866 Apr 2012 CN
202181875 Apr 2012 CN
202187744 Apr 2012 CN
202191854 Apr 2012 CN
202250008 May 2012 CN
101885307 Jul 2012 CN
102562020 Jul 2012 CN
202326156 Jul 2012 CN
202370773 Aug 2012 CN
202417397 Sep 2012 CN
202417461 Sep 2012 CN
102729335 Oct 2012 CN
202463955 Oct 2012 CN
202463957 Oct 2012 CN
202467739 Oct 2012 CN
202467801 Oct 2012 CN
202531016 Nov 2012 CN
202544794 Nov 2012 CN
102825039 Dec 2012 CN
202578592 Dec 2012 CN
202579164 Dec 2012 CN
202594808 Dec 2012 CN
202594928 Dec 2012 CN
202596615 Dec 2012 CN
202596616 Dec 2012 CN
102849880 Jan 2013 CN
102889191 Jan 2013 CN
202641535 Jan 2013 CN
202645475 Jan 2013 CN
202666716 Jan 2013 CN
202669645 Jan 2013 CN
202669944 Jan 2013 CN
202671336 Jan 2013 CN
202673269 Jan 2013 CN
202751982 Feb 2013 CN
102963629 Mar 2013 CN
202767964 Mar 2013 CN
202789791 Mar 2013 CN
202789792 Mar 2013 CN
202810717 Mar 2013 CN
202827276 Mar 2013 CN
202833093 Mar 2013 CN
202833370 Mar 2013 CN
102140898 Apr 2013 CN
202895467 Apr 2013 CN
202926404 May 2013 CN
202935216 May 2013 CN
202935798 May 2013 CN
202935816 May 2013 CN
202970631 Jun 2013 CN
103223315 Jul 2013 CN
203050598 Jul 2013 CN
103233714 Aug 2013 CN
103233715 Aug 2013 CN
103245523 Aug 2013 CN
103247220 Aug 2013 CN
103253839 Aug 2013 CN
103277290 Sep 2013 CN
103321782 Sep 2013 CN
203170270 Sep 2013 CN
203172509 Sep 2013 CN
203175778 Sep 2013 CN
203175787 Sep 2013 CN
102849880 Oct 2013 CN
203241231 Oct 2013 CN
203244941 Oct 2013 CN
203244942 Oct 2013 CN
203303798 Nov 2013 CN
102155172 Dec 2013 CN
102729335 Dec 2013 CN
103420532 Dec 2013 CN
203321792 Dec 2013 CN
203412658 Jan 2014 CN
203420697 Feb 2014 CN
203480755 Mar 2014 CN
103711437 Apr 2014 CN
203531815 Apr 2014 CN
203531871 Apr 2014 CN
203531883 Apr 2014 CN
203556164 Apr 2014 CN
203558809 Apr 2014 CN
203559861 Apr 2014 CN
203559893 Apr 2014 CN
203560189 Apr 2014 CN
102704870 May 2014 CN
203611843 May 2014 CN
203612531 May 2014 CN
203612843 May 2014 CN
203614062 May 2014 CN
203614388 May 2014 CN
203621045 Jun 2014 CN
203621046 Jun 2014 CN
203621051 Jun 2014 CN
203640993 Jun 2014 CN
203655221 Jun 2014 CN
103899280 Jul 2014 CN
103923670 Jul 2014 CN
203685052 Jul 2014 CN
203716936 Jul 2014 CN
103990410 Aug 2014 CN
103993869 Aug 2014 CN
203754009 Aug 2014 CN
203754025 Aug 2014 CN
203754341 Aug 2014 CN
203756614 Aug 2014 CN
203770264 Aug 2014 CN
203784519 Aug 2014 CN
203784520 Aug 2014 CN
104057864 Sep 2014 CN
203819819 Sep 2014 CN
203823431 Sep 2014 CN
203835337 Sep 2014 CN
104074500 Oct 2014 CN
203876633 Oct 2014 CN
203876636 Oct 2014 CN
203877364 Oct 2014 CN
203877365 Oct 2014 CN
203877375 Oct 2014 CN
203877424 Oct 2014 CN
203879476 Oct 2014 CN
203879479 Oct 2014 CN
203890292 Oct 2014 CN
203899476 Oct 2014 CN
203906206 Oct 2014 CN
104150728 Nov 2014 CN
104176522 Dec 2014 CN
104196464 Dec 2014 CN
104234651 Dec 2014 CN
203971841 Dec 2014 CN
203975450 Dec 2014 CN
204020788 Dec 2014 CN
204021980 Dec 2014 CN
204024625 Dec 2014 CN
204051401 Dec 2014 CN
204060661 Dec 2014 CN
104260672 Jan 2015 CN
104314512 Jan 2015 CN
204077478 Jan 2015 CN
204077526 Jan 2015 CN
204078307 Jan 2015 CN
204083051 Jan 2015 CN
204113168 Jan 2015 CN
104340682 Feb 2015 CN
104358536 Feb 2015 CN
104369687 Feb 2015 CN
104402178 Mar 2015 CN
104402185 Mar 2015 CN
104402186 Mar 2015 CN
204209819 Mar 2015 CN
204224560 Mar 2015 CN
204225813 Mar 2015 CN
204225839 Mar 2015 CN
104533392 Apr 2015 CN
104563938 Apr 2015 CN
104563994 Apr 2015 CN
104563995 Apr 2015 CN
104563998 Apr 2015 CN
104564033 Apr 2015 CN
204257122 Apr 2015 CN
204283610 Apr 2015 CN
204283782 Apr 2015 CN
204297682 Apr 2015 CN
204299810 Apr 2015 CN
103223315 May 2015 CN
104594857 May 2015 CN
104595493 May 2015 CN
104612647 May 2015 CN
104612928 May 2015 CN
104632126 May 2015 CN
204325094 May 2015 CN
204325098 May 2015 CN
204326983 May 2015 CN
204326985 May 2015 CN
204344040 May 2015 CN
204344095 May 2015 CN
104727797 Jun 2015 CN
204402414 Jun 2015 CN
204402423 Jun 2015 CN
204402450 Jun 2015 CN
103247220 Jul 2015 CN
104803568 Jul 2015 CN
204436360 Jul 2015 CN
204457524 Jul 2015 CN
204472485 Jul 2015 CN
204473625 Jul 2015 CN
204477303 Jul 2015 CN
204493095 Jul 2015 CN
204493309 Jul 2015 CN
103253839 Aug 2015 CN
104820372 Aug 2015 CN
104832093 Aug 2015 CN
104863523 Aug 2015 CN
204552723 Aug 2015 CN
204553866 Aug 2015 CN
204571831 Aug 2015 CN
204703814 Oct 2015 CN
204703833 Oct 2015 CN
204703834 Oct 2015 CN
105092401 Nov 2015 CN
103233715 Dec 2015 CN
103790927 Dec 2015 CN
105207097 Dec 2015 CN
204831952 Dec 2015 CN
204899777 Dec 2015 CN
102602323 Jan 2016 CN
105240064 Jan 2016 CN
204944834 Jan 2016 CN
205042127 Feb 2016 CN
205172478 Apr 2016 CN
103993869 May 2016 CN
105536299 May 2016 CN
105545207 May 2016 CN
205260249 May 2016 CN
103233714 Jun 2016 CN
104340682 Jun 2016 CN
205297518 Jun 2016 CN
205298447 Jun 2016 CN
205391821 Jul 2016 CN
205400701 Jul 2016 CN
103277290 Aug 2016 CN
104260672 Aug 2016 CN
205477370 Aug 2016 CN
205479153 Aug 2016 CN
205503058 Aug 2016 CN
205503068 Aug 2016 CN
205503089 Aug 2016 CN
105958098 Sep 2016 CN
205599180 Sep 2016 CN
205599180 Sep 2016 CN
106121577 Nov 2016 CN
205709587 Nov 2016 CN
104612928 Dec 2016 CN
106246120 Dec 2016 CN
205805471 Dec 2016 CN
106321045 Jan 2017 CN
205858306 Jan 2017 CN
106438310 Feb 2017 CN
205937833 Feb 2017 CN
104563994 Mar 2017 CN
206129196 Apr 2017 CN
104369687 May 2017 CN
106715165 May 2017 CN
106761561 May 2017 CN
105240064 Jun 2017 CN
206237147 Jun 2017 CN
206287832 Jun 2017 CN
206346711 Jul 2017 CN
104563995 Sep 2017 CN
107120822 Sep 2017 CN
107143298 Sep 2017 CN
107159046 Sep 2017 CN
107188018 Sep 2017 CN
206496016 Sep 2017 CN
104564033 Oct 2017 CN
107234358 Oct 2017 CN
107261975 Oct 2017 CN
206581929 Oct 2017 CN
104820372 Dec 2017 CN
105092401 Dec 2017 CN
107476769 Dec 2017 CN
107520526 Dec 2017 CN
206754664 Dec 2017 CN
107605427 Jan 2018 CN
106438310 Feb 2018 CN
107654196 Feb 2018 CN
107656499 Feb 2018 CN
107728657 Feb 2018 CN
206985503 Feb 2018 CN
207017968 Feb 2018 CN
107859053 Mar 2018 CN
207057867 Mar 2018 CN
207085817 Mar 2018 CN
105545207 Apr 2018 CN
107883091 Apr 2018 CN
107902427 Apr 2018 CN
107939290 Apr 2018 CN
107956708 Apr 2018 CN
207169595 Apr 2018 CN
207194873 Apr 2018 CN
207245674 Apr 2018 CN
108034466 May 2018 CN
108036071 May 2018 CN
108087050 May 2018 CN
207380566 May 2018 CN
108103483 Jun 2018 CN
108179046 Jun 2018 CN
108254276 Jul 2018 CN
108311535 Jul 2018 CN
207583576 Jul 2018 CN
207634064 Jul 2018 CN
207648054 Jul 2018 CN
207650621 Jul 2018 CN
108371894 Aug 2018 CN
207777153 Aug 2018 CN
108547601 Sep 2018 CN
108547766 Sep 2018 CN
108555826 Sep 2018 CN
108561098 Sep 2018 CN
108561750 Sep 2018 CN
108590617 Sep 2018 CN
207813495 Sep 2018 CN
207814698 Sep 2018 CN
207862275 Sep 2018 CN
108687954 Oct 2018 CN
207935270 Oct 2018 CN
207961582 Oct 2018 CN
207964530 Oct 2018 CN
108789848 Nov 2018 CN
108799473 Nov 2018 CN
108868675 Nov 2018 CN
208086829 Nov 2018 CN
208089263 Nov 2018 CN
208169068 Nov 2018 CN
108979569 Dec 2018 CN
109027662 Dec 2018 CN
109058092 Dec 2018 CN
208179454 Dec 2018 CN
208179502 Dec 2018 CN
208253147 Dec 2018 CN
208260574 Dec 2018 CN
109114418 Jan 2019 CN
109141990 Jan 2019 CN
208313120 Jan 2019 CN
208330319 Jan 2019 CN
208342730 Jan 2019 CN
208430982 Jan 2019 CN
208430986 Jan 2019 CN
109404274 Mar 2019 CN
109429610 Mar 2019 CN
109491318 Mar 2019 CN
109515177 Mar 2019 CN
109526523 Mar 2019 CN
109534737 Mar 2019 CN
208564504 Mar 2019 CN
208564516 Mar 2019 CN
208564525 Mar 2019 CN
208564918 Mar 2019 CN
208576026 Mar 2019 CN
208576042 Mar 2019 CN
208650818 Mar 2019 CN
208669244 Mar 2019 CN
109555484 Apr 2019 CN
109682881 Apr 2019 CN
208730959 Apr 2019 CN
208735264 Apr 2019 CN
208746733 Apr 2019 CN
208749529 Apr 2019 CN
208750405 Apr 2019 CN
208764658 Apr 2019 CN
109736740 May 2019 CN
109751007 May 2019 CN
208868428 May 2019 CN
208870761 May 2019 CN
109869294 Jun 2019 CN
109882144 Jun 2019 CN
109882372 Jun 2019 CN
209012047 Jun 2019 CN
209100025 Jul 2019 CN
110080707 Aug 2019 CN
110118127 Aug 2019 CN
110124574 Aug 2019 CN
110145277 Aug 2019 CN
110145399 Aug 2019 CN
110152552 Aug 2019 CN
110155193 Aug 2019 CN
110159225 Aug 2019 CN
110159432 Aug 2019 CN
110159432 Aug 2019 CN
110159433 Aug 2019 CN
110208100 Sep 2019 CN
110252191 Sep 2019 CN
110284854 Sep 2019 CN
110284972 Sep 2019 CN
209387358 Sep 2019 CN
110374745 Oct 2019 CN
209534736 Oct 2019 CN
110425105 Nov 2019 CN
110439779 Nov 2019 CN
110454285 Nov 2019 CN
110454352 Nov 2019 CN
110467298 Nov 2019 CN
110469312 Nov 2019 CN
110469314 Nov 2019 CN
110469405 Nov 2019 CN
110469654 Nov 2019 CN
110485982 Nov 2019 CN
110485983 Nov 2019 CN
110485984 Nov 2019 CN
110486249 Nov 2019 CN
110500255 Nov 2019 CN
110510771 Nov 2019 CN
110513097 Nov 2019 CN
209650738 Nov 2019 CN
209653968 Nov 2019 CN
209654004 Nov 2019 CN
209654022 Nov 2019 CN
209654128 Nov 2019 CN
209656622 Nov 2019 CN
107849130 Dec 2019 CN
108087050 Dec 2019 CN
110566173 Dec 2019 CN
110608030 Dec 2019 CN
110617187 Dec 2019 CN
110617188 Dec 2019 CN
110617318 Dec 2019 CN
209740823 Dec 2019 CN
209780827 Dec 2019 CN
209798631 Dec 2019 CN
209799942 Dec 2019 CN
209800178 Dec 2019 CN
209855723 Dec 2019 CN
209855742 Dec 2019 CN
209875063 Dec 2019 CN
110656919 Jan 2020 CN
107520526 Feb 2020 CN
110787667 Feb 2020 CN
110821464 Feb 2020 CN
110833665 Feb 2020 CN
110848028 Feb 2020 CN
210049880 Feb 2020 CN
210049882 Feb 2020 CN
210097596 Feb 2020 CN
210105817 Feb 2020 CN
210105818 Feb 2020 CN
210105993 Feb 2020 CN
110873093 Mar 2020 CN
210139911 Mar 2020 CN
110947681 Apr 2020 CN
111058810 Apr 2020 CN
111075391 Apr 2020 CN
210289931 Apr 2020 CN
210289932 Apr 2020 CN
210289933 Apr 2020 CN
210303516 Apr 2020 CN
211412945 Apr 2020 CN
111089003 May 2020 CN
111151186 May 2020 CN
111167769 May 2020 CN
111169833 May 2020 CN
111173476 May 2020 CN
111185460 May 2020 CN
111185461 May 2020 CN
111188763 May 2020 CN
111206901 May 2020 CN
111206992 May 2020 CN
111206994 May 2020 CN
210449044 May 2020 CN
210460875 May 2020 CN
210522432 May 2020 CN
210598943 May 2020 CN
210598945 May 2020 CN
210598946 May 2020 CN
210599194 May 2020 CN
210599303 May 2020 CN
210600110 May 2020 CN
111219326 Jun 2020 CN
111350595 Jun 2020 CN
210660319 Jun 2020 CN
210714569 Jun 2020 CN
210769168 Jun 2020 CN
210769169 Jun 2020 CN
210769170 Jun 2020 CN
210770133 Jun 2020 CN
210825844 Jun 2020 CN
210888904 Jun 2020 CN
210888905 Jun 2020 CN
210889242 Jun 2020 CN
111397474 Jul 2020 CN
111412064 Jul 2020 CN
111441923 Jul 2020 CN
111441925 Jul 2020 CN
111503517 Aug 2020 CN
111515898 Aug 2020 CN
111594059 Aug 2020 CN
111594062 Aug 2020 CN
111594144 Aug 2020 CN
211201919 Aug 2020 CN
211201920 Aug 2020 CN
211202218 Aug 2020 CN
111608965 Sep 2020 CN
111664087 Sep 2020 CN
111677476 Sep 2020 CN
111677647 Sep 2020 CN
111692064 Sep 2020 CN
111692065 Sep 2020 CN
211384571 Sep 2020 CN
211397553 Sep 2020 CN
211397677 Sep 2020 CN
211500955 Sep 2020 CN
211524765 Sep 2020 CN
4004854 Aug 1991 DE
4241614 Jun 1994 DE
102009022859 Dec 2010 DE
102012018825 Mar 2014 DE
102013111655 Dec 2014 DE
102015103872 Oct 2015 DE
102013114335 Dec 2020 DE
0835983 Apr 1998 EP
1378683 Jan 2004 EP
2143916 Jan 2010 EP
2613023 Jul 2013 EP
3095989 Nov 2016 EP
3211766 Aug 2017 EP
3049642 Apr 2018 EP
3354866 Aug 2018 EP
3075946 May 2019 EP
2795774 Jun 1999 FR
474072 Oct 1937 GB
1438172 Jun 1976 GB
S57135212 Feb 1984 JP
20020026398 Apr 2002 KR
13562 Apr 2000 RU
1993020328 Oct 1993 WO
2006025886 Mar 2006 WO
2009023042 Feb 2009 WO
20110133821 Oct 2011 WO
2012139380 Oct 2012 WO
2013158822 Oct 2013 WO
PCTCN2012074945 Nov 2013 WO
2013185399 Dec 2013 WO
2015158020 Oct 2015 WO
2016014476 Jan 2016 WO
2016033983 Mar 2016 WO
2016078181 May 2016 WO
2016101374 Jun 2016 WO
2016112590 Jul 2016 WO
2017123656 Jul 2017 WO
2017146279 Aug 2017 WO
2017213848 Dec 2017 WO
2018031029 Feb 2018 WO
2018038710 Mar 2018 WO
2018044293 Mar 2018 WO
2018044307 Mar 2018 WO
2018071738 Apr 2018 WO
2018101909 Jun 2018 WO
2018101912 Jun 2018 WO
2018106210 Jun 2018 WO
2018106225 Jun 2018 WO
2018106252 Jun 2018 WO
2018132106 Jul 2018 WO
2018156131 Aug 2018 WO
2018075034 Oct 2018 WO
2018187346 Oct 2018 WO
2018031031 Feb 2019 WO
2019045691 Mar 2019 WO
2019046680 Mar 2019 WO
2019060922 Mar 2019 WO
2019117862 Jun 2019 WO
2019126742 Jun 2019 WO
2019147601 Aug 2019 WO
2019169366 Sep 2019 WO
2019195651 Oct 2019 WO
2019200510 Oct 2019 WO
2019210417 Nov 2019 WO
2020018068 Jan 2020 WO
2020046866 Mar 2020 WO
2020072076 Apr 2020 WO
2020076569 Apr 2020 WO
2020097060 May 2020 WO
2020104088 May 2020 WO
2020131085 Jun 2020 WO
2020211083 Oct 2020 WO
2020211086 Oct 2020 WO
2021038604 Mar 2021 WO
2021038604 Mar 2021 WO
2021041783 Mar 2021 WO
Non-Patent Literature Citations (114)
Entry
US 11,459,865 B2, 10/2022, Cui et al. (withdrawn)
De Gevigney et al., “Analysis of No. load dependent power losses in a planetary gear train by using thermal network method”, International Gear Conference 2014: Aug. 26-28, 2014, Lyon, pp. 615-624.
Special-Purpose Couplings for Petroleum, Chemical, and Gas Industry Services, API Standard 671 (4th Edition) (2010.
The Application of Flexible Couplings for Turbomachinery, Jon R. Mancuso et al., Proceedings of the Eighteenthturbomachinery Symposium (1989).
Pump Control With Variable Frequency Drives, Kevin Tory, Pumps & Systems: Advances in Motors and Drives, Reprint from Jun. 2008.
Fracture Design and Stimulation, Mike Eberhard, P.E., Wellconstruction & Operations Technical Workshop Insupport of the EPA Hydraulic Fracturing Study, Mar. 10-11, 2011.
General Purpose vs. Special Purpose Couplings, Jon Mancuso, Proceedings of the Twenty-Third Turbomachinerysymposium (1994).
Overview of Industry Guidance/Best Practices on Hydraulic Fracturing (HF), American Petroleum Institute, © 2012.
API Member Companies, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20130424080625/http://api.org/globalitems/globalheaderpages/membership/api-member-companies, accessed Jan. 4, 2021.
API's Global Industry Services, American Petroleum Institute, © Aug. 2020.
About API, American Petroleum Institute, https://www.api.org /about, accessed Dec. 30, 2021.
About API, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110422104346 /http://api.org/aboutapi/, captured Apr. 22, 2011.
Publications, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110427043936 /http://www.api.org:80/Publications/, captured Apr. 27, 2011.
Procedures for Standards Development, American Petroleum Institute, Third Edition (2006).
NorldCat Library Collections Database Records for API Standard 671 and API Standard 674, https://www.worldcat.org/title/positive-displacement-pumps-reciprocating/oclc/ 858692269&referer=brief_results, accessed Dec. 30, 2021; and https://www.worldcat.org/title/special-purpose-couplings-for-petroleum-chemical-and-gas-industry-services/ocIc/871254217&referer=brief_results, accessed Dec. 22, 2021.
2011 Publications and Services, American Petroleum Institute (2011).
Standards, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110207195046/http:/www.api.org/Standards/, captured Feb. 7, 2011; and https://web.archive.org/web/20110204112554/http://global.ihs.com/?RID=API1, captured Feb. 4, 2011.
IHS Markit Standards Store, https://global.ihs.com/doc_ detail.cfm?document_name=API%20STD%20674&item_s_key=00010672#doc-detail-history-anchor, accessed Dec. 30, 2021; and https://global.ihs.com/doc_detail.cfm?&input_doc _number=671&input_doc_title=&document_name=API%20STD%20671&item_s_key=00010669&item_key_date=890331&origin=DSSC, accessed Dec. 30, 2021.
AFGlobal Corporation, Durastim Hydraulic Fracturing Pump, A Revolutionary Design for Continuous Duty Hydraulic Fracturing, 2018.
SPM® QEM 5000 E-Frac Pump Specification Sheet, Weir Group (2019) (“Weir 5000”).
Green Field Energy Services Natural Gas Driven Turbine Frac Pumps HHP Summit Presentation, Yumpu (Sep. 2012), https://www.yumpu.com/en/document/read/49685291/turbine-frac-pump-assembly-hhp (“Green Field”).
Dowell B908 “Turbo-Jet” Operator's Manual.
Jereh Debut's Super power Turbine Fracturing Pump, Leading the Industrial Revolution, Jereh Oilfield Services Group (Mar. 19, 2014), https://www.prnewswire.com/news-releases/jereh-debuts-super-power-turbine-fracturing-pump-leading-the-industrial-revolution-250992111.html.
Jereh Apollo 4500 Turbine Frac Pumper Finishes Successful Field Operation in China, Jereh Group (Feb. 13, 2015), as available on Apr. 20, 2015, https://web.archive.org/web/20150420220625/https://www. prnewswire.com/news-releases/jereh-apollo-4500-turbine-frac-pumper-finishes-successful-field-operation-in-china-300035829.html.
35% Economy Increase, Dual-fuel System Highlighting Jereh Apollo Frac Pumper, Jereh Group (Apr. 13, 2015), https://www.jereh.com/en/news/press-release/news-detail-7345.htm.
Hydraulic Fracturing: Gas turbine proves successful in shale gasfield operations, Vericor (2017), https://www.vericor.com/wp-content/ uploads/2020/02/7.-Fracing-4500hp-Pump-China-En.pdf (“Vericor Case Study”).
Jereh Apollo Turbine Fracturing Pumper Featured on China Central Television, Jereh Group (Mar. 9, 2018), https://www.jereh.com/en/ news/press-release/news-detail-7267.htm.
Jereh Unveiled New Electric Fracturing Solution at OTC 2019, Jereh Group (May 7, 2019), as available on May 28, 2019, https://web.archive.org/web/20190528183906/https://www.pmewswire .com/news-releases/jereh-unveiled-new-electric-fracturing-solution-at-otc-2019-300845028.html.
Jereh Group, Jereh Fracturing Unit, Fracturing Spread, YouTube (Mar. 30, 2015), https://www.youtube.com/watch?v=PIkDbU5dE0o.
Transcript of Jereh Group, Jereh Fracturing Unit, Fracturing Spread, YouTube (Mar. 30, 2015).
Jereh Group, Jereh Fracturing Equipment. YouTube (Jun. 8, 2015), https://www.youtube.com/watch?v=m0vMiq84P4Q.
Transcript of Jereh Group, Jereh Fracturing Equipment, YouTube (Jun. 8, 2015), https://www.youtube.com/watch?v=m0vMiq84P4Q.
Ferdinand P. Beer et al., Mechanics of Materials (6th ed. 2012).
Weir Oil & Gas Introduces Industry's First Continuous Duty 5000-Horsepower Pump, Weir Group (Jul. 25, 2019), https://www.global. weir/newsroom/news-articles/weir-oil-and-gas-introduces-industrys-first-continuous-duty-5000-horsepower-pump/.
2012 High Horsepower Summit Agenda, Natural Gas for High Horsepower Applications (Sep. 5, 2012).
Review of HHP Summit 2012, Gladstein, Neandross & Associates https://www.gladstein.org/gna-conferences/high-horsepower-summit-2012/.
Green Field Energy Services Deploys Third New Hydraulic Fracturing System, Green Field Energy Services, Inc. (Jul. 11, 2012), https://www.prnewswire.com/news-releases/green-field-energy-services-deploys-third-new-hydraulic-fracturing-spread-162113425.
Karen Boman, Turbine Technology Powers Green Field Multi-Fuel Frack Pump, Rigzone (Mar. 7, 2015), as available on Mar. 14, 2015, https://web.archive.org/web/20150314203227/https://www.rigzone.co m/news/oil-gas/a/124883/Turbine_Technology_Powers_Green_Field_ MultiFuel_Frack_Pump.
“Turbine Frac Units,” WMD Squared (2012), https://wmdsquared.com/ work/gfes-turbine-frac-units/.
Leslie Turj, Green Field asset sale called ‘largest disposition industry has seen,’ The INDsider Media (Mar. 19, 2014), http://theind.com/ article-16497-green-field-asset-sale-called-%E2%80%98largest-disposition-industry-has-seen%60.html.
“Honghua developing new-generation shale-drilling rig, plans testing of frac pump”; Katherine Scott; Drilling Contractor; May 23, 2013; accessed at https://www.drillingcontractor.org/honghua-developing-new-generation-shale-drilling-rig-jlans-testing-of-frac-pump-23278.
Ziubak, Tadeusz, “Experimental Studies of Dust Suction Irregularity from Multi-Cyclone Dust Collector of Two-Stage Air Filter”, Energies 2021, 14, 3577, 28 pages.
Europump and Hydrualic Institute, Variable Speed Pumping: A Guide to Successful Applications, Elsevier Ltd, 2004.
Capstone Turbine Corporation, Capstone Receives Three Megawatt Order from Large Independent Oil & Gas Company in Eagle Ford Shale Play, Dec. 7, 2010.
Wikipedia, Westinghouse Combustion Turbine Systems Division, https://en.wikipedia.org/wiki/Westinghouse_Combustion_Turbine_Systems_Division, circa 1960.
Wikipedia,Union Pacific GTELs, https://en.wikipedia.org/wiki/Union_Pacific_GTELs, circa 1950.
HCI Jet Frac, Screenshots from YouTube, Dec. 11, 2010. https://www.youtube.com/watch?v=6HjXkdbFaFQ.
AFD Petroleum Ltd., Automated Hot Zone, Frac Refueling System, Dec. 2018.
Eygun, Christiane, et al., URTeC: 2687987, Mitigating Shale Gas Developments Carbon Footprint: Evaluating and Implementing Solutions in Argentina, Copyright 2017, Unconventional Resources Technology Conference.
Walzel, Brian, Hart Energy, Oil, Gas Industry Discovers Innovative Solutions to Environmental Concerns, Dec. 10, 2018.
Frac Shack, Bi-Fuel FracFueller brochure, 2011.
Pettigrew, Dana, et al., High Pressure Multi-Stage Centrifugal Pump for 10,000 psi Frac Pump—HPHPS Frac Pump, Copyright 2013, Society of Petroleum Engineers, SPE 166191.
Elle Seybold, et al., Evolution of Dual Fuel Pressure Pumping for Fracturing: Methods, Economics, Field Trial Results and Improvements in Availability of Fuel, Copyright 2013, Society of Petroleum Engineers, SPE 166443.
Wallace, E.M., Associated Shale Gas: From Flares to Rig Power, Copyright 2015, Society of Petroleum Engineers, SPE-173491-MS.
Williams, C.W. (Gulf Oil Corp. Odessa Texas), The Use of Gas-turbine Engines in an Automated High-Pressure Water-injection Stations; American Petroleum Institute; API-63-144 (Jan. 1, 1963).
Neal, J.C. (Gulf Oil Corp. Odessa Texas), Gas Turbine Driven Centrifugal Pumps for High Pressure Water Injection; American Institute of Mining, Metallurgical and Petroleum Engineers, Inc.; SPE-1888 (1967).
Porter, John A. (Solar Division International Harvester Co.), Modem Industrial Gas Turbines for the Oil Field; American Petroleum Institute; Drilling and Production Practice; API-67-243 (Jan. 1, 1967).
Cooper et al., Jet Frac Porta-Skid—A New Concept in Oil Field Service Pump Equipments[sic]; Halliburton Services; SPE-2706 (1969).
Ibragimov, É.S., Use of gas-turbine engines in oil field pumping units; Chem Petrol Eng; (1994) 30: 530. https://doi.org/10.1007/BF01154919. (Translated from Khimicheskaya i Neftyanoe Mashinostroenie, No. 11, pp. 24-26, Nov. 1994.).
Kas'yanov et al., Application of gas-turbine engines in pumping units complexes of hydraulic fracturing of oil and gas reservoirs; Exposition Oil & Gas; (Oct. 2012) (published in Russian).
American Petroleum Institute. API 674: Positive Displacement Pumps—Reciprocating. 3rd ed. Washington, DC: API Publishing Services, 2010.
American Petroleum Institute. API 616: Gas Turbines for the Petroleum, Chemical, and Gas Industry Services. 5th ed. Washington, DC: API Publishing Services, 2011.
Karassik, Igor, Joseph Messina, Paul Cooper, and Charles Heald. Pump Handbook. 4th ed. New York: McGraw-Hill Education, 2008.
Weir SPM. Weir SPM General Catalog: Well Service Pumps, Flow Control Products, Manifold Trailers, Safety Products, Post Sale Services. Ft. Worth, TX: Weir Oil & Gas. May 28, 2016. https://www.pumpfundamentals.com/pumpdatabase2/weir-spm-general.pdf.
The Weir Group, Inc. WeirSPM Pump Product Catalog. Ft. Worth, TX: S.P.M. Flow Control, Inc. Oct. 30, 2017. https://manage.global.weir/assets/files/product%20brochures/SPM_2P140706_Pump_Product_Catalogue_View.pdf.
Shandong Saigao Group Corporation. Q4 (5W115) Quintuplex Plunger Pump. Jinan City, Shandong Province, China: Saigao. Oct. 20, 2014. https://www.saigaogroup.com/product/q400-5w115-quintuplex-plunger-pump.html.
Marine Turbine. Turbine Powered Frac Units. Franklin, Louisiana: Marine Turbine Technologies, 2020.
Rotating Right. Quintuplex Power Pump Model Q700. Edmonton, Alberta, Canada: Weatherford International Ltd. https://www.rotatingright.com/pdf/weatherford/RR%2026-Weatherford%20Model%20Q700.pdf, 2021.
CanDyne Pump Services, Inc. Weatherford Q700 Pump. Calgary, Alberta, Canada: CanDyne Pump Services. Aug. 15, 2015. http://candyne.com/wp-content/uploads/2014/10/181905-94921.q700-quintuplex-pump.pdf.
Arop, Julius Bankong. Geomechanical review of hydraulic fracturing technology. Thesis (M. Eng.). Cambridge, MA: Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering. Oct. 29, 2013. https://dspace.mit.edu/handle/1721.1/82176.
Researchgate, Answer by Byron Woolridge, found at https://www.researchgate.net/post/How_can_we_improve_the_efficiency_of_the_gas_turbine_cycles, Jan. 1, 2013.
Filipović, Ivan, Preliminary Selection of Basic Parameters of Different Torsional Vibration Dampers Intended for use in Medium-Speed Diesel Engines, Transactions of Famena XXXVI-3 (2012).
Marine Turbine Technologies, 1 MW Power Generation Package, http://marineturbine.com/power-generation, 2017.
Business Week: Fiber-optic cables help fracking, cablinginstall.com. Jul. 12, 2013. https://www.cablinginstall.com/cable/article/16474208/businessweek-fiberoptic-cables-help-fracking.
Fracking companies switch to electric motors to power pumps, iadd-intl.org. Jun. 27, 2019. https://www.iadd-intl.org/articles/fracking-companies-switch-to-electric-motors-to-power-pumps/.
The Leader in Frac Fueling, suncoastresources.com. Jun. 29, 2015. https://web.archive.org/web/20150629220609/https://www.suncoastresources.com/oilfield/fueling-services/.
Mobile Fuel Delivery, atlasoil.com. Mar. 6, 2019. https://www.atlasoil.com/nationwide-fueling/onsite-and-mobile-fueling.
Frac Tank Hose (Frac), 4starhose.com. Accessed: Nov. 10, 2019. http://www.4starhose.com/product/frac_tank_hose_frac.aspx.
PLOS ONE, Dynamic Behavior of Reciprocating Plunger Pump Discharge Valve Based on Fluid Structure Interaction and Experimental Analysis. Oct. 21, 2015.
FMC Technologies, Operation and Maintenance Manual, L06 Through L16 Triplex Pumps Doc No. OMM50000903 Rev: E p. 1 of 66. Aug. 27, 2009.
Gardner Denver Hydraulic Fracturing Pumps GD 3000 https://www.gardnerdenver.com/en-us/pumps/triplex-fracking-pump-gd-3000.
Lekontsev, Yu M., et al. “Two-side sealer operation.” Journal of Mining Science 49.5 (2013): 757-762.
Tom Hausfeld, GE Power & Water, and Eldon Schelske, Evolution Well Services, TM2500+ Power for Hydraulic Fracturing.
FTS International's Dual Fuel Hydraulic Fracturing Equipment Increases Operational Efficiencies, Provides Cost Benefits, Jan. 3, 2018.
CNG Delivery, Fracturing with natural gas, dual-fuel drilling with CNG, Aug. 22, 2019.
PbNG, Natural Gas Fuel for Drilling and Hydraulic Fracturing, Diesel Displacement / Dual Fuel & Bi-Fuel, May 2014.
Integrated Flow, Skid-mounted Modular Process Systems, Jul. 15, 2017, https://ifsolutions.com/why-modular/.
Dameron, A Schlumberger Company, Frac Manifold Systems, 2016.
ZSi-Foster, Energy | Solar | Fracking | Oil and Gas, Aug. 2020, https://www.zsi-foster.com/energy-solar-fracking-oil-and-gas.html.
JBG Enterprises, Inc., WS-Series Blowout Prevention Safety Coupling—Quick Release Couplings, Sep. 11, 2015, http://www.jgbhose.com/products/WS-Series-Blowout-Prevention-Sarety-Coupling.asp.
Halliburton, Vessel-based Modular Solution (VMS), 2015.
Chun, M. K., H. K. Song, and R. Lallemand. “Heavy duty gas turbines in petrochemical plants: Samsung's Daesan plant (Korea) beats fuel flexibility records with over 95% hydrogen in process gas.” Proceedings of PowerGen Asia Conference, Singapore. 1999.
Wolf, Jürgen J., and Marko A. Perkavec. “Safety Aspects and Environmental Considerations for a 10 MW Cogeneration Heavy Duty Gas Turbine Burning Coke Oven Gas with 60% Hydrogen Content.” ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers Digital Collection, 1992.
Ginter, Timothy, and Thomas Bouvay. “Uprate options for the MS7001 heavy duty gas turbine.” GE paper GER-3808C, Ge Energy 12 (2006).
Chaichan, Miqdam Tariq. “The impact of equivalence ratio on performance and emissions of a hydrogen-diesel dual fuel engine with cooled exhaust gas recirculation.” International Journal of Scientific & Engineering Research 6.6 (2015): 938-941.
Ecob, David J., et al. “Design and Development of a Landfill Gas Combustion System for the Typhoon Gas Turbine.” ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers Digital Collection, 1996.
II-VI Marlow Industries, Thermoelectric Technologies in Oil, Gas, and Mining Industries, blog.marlow.com (Jul. 24, 2019).
B.M. Mahlalela, et al., Electric Power Generation Potential Based on Waste Heat and Geothermal Resources in South Africa, pangea.stanford.edu (Feb. 11, 2019).
Department of Energy, United States of America, The Water-Energy Nexus: Challenges and Opportunities purenergypolicy.org (Jun. 2014).
Ankit Tiwari, Design of a Cooling System for a Hydraulic Fracturing Equipment, The Pennsylvania State University, The Graduate School, College of Engineering, 2015.
Jp Yadav et al., Power Enhancement of Gas Turbine Plant by Intake Air Fog Cooling, Jun. 2015.
Mee Industries: Inlet Air Fogging Systems for Oil, Gas and Petrochemical Processing, Verdict Media Limited Copyright 2020.
M. Ahmadzadehtalatapeh et al.Performance enhancement of gas turbine units by retrofitting with inlet air cooling technologies (IACTs): an hour-by-hour simulation study, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Mar. 2020.
Advances in Popular Torque-Link Solution Offer OEMs Greater Benefit, Jun. 21, 2018.
Emmanuel Akita et al., Mewbourne College of Earth & Energy, Society of Petroleum Engineers; Drilling Systems Automation Technical Section (DSATS); 2019.
PowerShelter Kit II, nooutage.com, Sep. 6, 2019.
EMPengineering.Com, HEMP Resistant Electrical Generators / Hardened Structures HEMP/GMD Shielded Generators, Virginia, Nov. 3, 2012.
Blago Minovski, Coupled Simulations of Cooling and Engine Systems for Unsteady Analysis of the Benefits of Thermal Engine Encapsulation, Department of Applied Mechanics, Chalmers University of Technology G--oteborg, Sweden 2015.
J. Porteiro et al., Feasibility of a new domestic CHP trigeneration with heat pump: II. Availability analysis. Design and development, Applied Thermal Engineering 24 (2004) 1421-1429.
ISM, What is Cracking Pressure, 2019.
Swagelok, The right valve for controlling flow direction? Check, 2016.
Technology.org, Check valves how do they work and what are the main type, 2018.
International Search Report and Written Opinion for PCT/US2022/030647, dated Oct. 7, 2022.
Rigmaster Machinery Ltd., Model: 2000 RMP-6-PLEX, brochure, downloaded at https://www.rigmastermachinery.com/_files/ugd/431e62_eaecd77c9fe54af8b13d08396072da67.pdf.
Related Publications (1)
Number Date Country
20220372857 A1 Nov 2022 US
Provisional Applications (1)
Number Date Country
63202031 May 2021 US