This invention relates to hydraulic fracturing of ground formations. It has particular, but not exclusive application to hydraulic fracturing of ore bodies mined by caving, especially block caving and panel caving.
Caving is a mining technique in which an ore body or rock mass is undercut under a sufficient area that material caves into the undercut area from which it can be progressively withdrawn, for example, through drawbells into extraction tunnels beneath the undercut. The rate at which caving action progresses is dependent on the rate at which the broken material is extracted.
In ore bodies that are marginally caveable it is possible that instead of continuously caving a stable arch can form if the rock mass is strong enough and it then becomes difficult to promote further caving. U.S. Pat. No. 6,123,394 discloses a method for overcoming problems associated with caving stronger rock by utilising the technique of hydraulic fracturing. By that technique an ore body can be conditioned to promote caving by drilling bore holes into the ore body and initiating fractures at locations within the bore holes by the installation of inflatable packers and pumping hydraulic fluid into spaces between the packers. The ore body may be hydraulically fractured before caving is initiated or after caving has been initiated if necessary to maintain or promote further caving.
Various inflatable straddle tools have been developed for placement within bore holes to initiate hydraulic fracturing. These tools generally have separate spaced packers held apart by rigid steel straddles with hydraulic fluid passages for the supply of hydraulic fracturing fluid to firstly inflate the two separate packers and then to direct fluid to the space between the packers to initiate hydraulic fracturing. Some tools have valving to control and divert the flow of hydraulic fluid between the packers and the space for fracturing. Alternatively, some tools have an external inflation line that is used to inflate the packers separately from the injection fluid. The present invention enables construction of a tool which is of simpler construction and which can be more rapidly deployed and retrieved than conventional straddle packet tools. The invention may also enable initiation of fractures at closer spacing along a bore hole than is possible with conventional straddle packer tools.
In one embodiment of the invention, a tool for use in initiating a hydraulic fracture in a bore hole may comprise:
an elongate cylindrical bore hole packer structure having an inner longitudinal passage, a mid-portion provided with one or more ports extending outwardly from said passage to the exterior periphery of the packer structure and expandable circumferential wall portions surrounding the inner longitudinal passage to each side of the mid-portion whereby in use of the tool the circumferential wall portions can be expanded by injection of hydraulic fracturing fluid into said passage and exit of the injected fluid through the port or ports to produce a pressure difference between the inside of the packer structure and the outside of the packer structure as the fluid passes through the port or ports such that the fluid exiting the packer structure can initiate a fracture.
The packer structure may be disposed between a pair of tool end pieces one of which provides a fluid inlet for injection of hydraulic fluid into one end of said passage and the other of which closes the other end of the passage against outflow of hydraulic fluid therefrom.
The end pieces may be made of steel and the fluid inlet may be screw threaded.
The circumferential expandable wall portions of the packer structure may be comprised of rubber reinforced with circumferentially spaced longitudinal reinforcement elements.
Each outlet port may be provided by a metal or ceramic or tungsten carbide insert set into the mid-portion of the packer structure.
In an alternative construction each outlet port may provide a flow aperture which expands and contracts in response of pressure within the inner passage.
The expandable wall portions may be portions of a single expandable circumferential wall extending through the mid-portion of the packer structure. In that case, the inner passage may be lined at the mid-portion of the packer structure with a tubular metal liner formed in segments to allow outward expansion thereof with the expandable wall in the vicinity of the port or ports.
In a modified construction, the mid-portion of the packer structure may be comprised of a rigid metal element and the expandable wall portions may be formed by separate components fitted to that element.
In another embodiment of the invention, a method of initiating a hydraulic fracture at a location along a bore hole may comprise positioning at said location a tool as described above and injecting hydraulic fracturing fluid into the inner passage of the tool to cause expansion of the expandable wall of the tool into sealing engagement with the bore hole and outflow of fluid from the passage through the port or ports of the tool to initiate a hydraulic fracture at said location.
There may also be provided a method of initiating a series of hydraulic fractures at spaced locations along a bore hole, comprising moving a tool as described above along the bore hole so as to position the tool successively at each of said locations and injecting hydraulic fracturing fluid into the inner passage of the tool when the tool is so located at each location to cause expansion of the expandable wall of the tool into sealing engagement with the bore hole at each of said locations and outflow of hydraulic fracturing fluid through the port or ports of the tool to initiate a fracture at each of said locations along the bore hole.
In order that the invention may be more fully explained, one particular fracturing packer tool and its method of operation will be described in detail with reference to the accompanying drawings in which:
The fracturing packer tool illustrated in
In use of the tool, fracturing fluid is injected into the internal passage 12 of the packer structure through one of the tool end pieces 16 and the other tool end piece 16 is closed against outflow of hydraulic fluid so that the fluid must exit the packer structure through the ports 14. The pressure drop across the ports then serves to inflate the packer structure by expansion of the expandable wall 15. Specifically, the two expandable wall portions 15A to each side of the mid-portion 13 containing the ports 14 are expanded to prevent fluid from leaking past the inflatable packer structure on either side of the ports so that a fracture is formed at the ports and extended into a surrounding rock.
The expandable wall 15 of packer structure 11 is formed from an internal rubber sealing tube 21, wire and rubber reinforcement layers 22 and outer rubber layers 23. The ports are formed by removable metal inserts 24 which can be constructed from various materials to suit the fluid system being injected. The expandable wall 15 is fitted in the vicinity of ports 14 with an internal liner sleeve 25 and an outer port sleeve 26. Sleeves 25 and 26 may be segmented to allow outward expansion thereof with the expandable wall 15 about the ports 14.
The tool illustrated in
The end piece 16 of the tool which is not used as the inlet for injection of hydraulic fluid may be closed off against both outflow and inflow of fluid but in some applications where high pressure fluid from previous fracturing operations may be encountered in the bore hole, that end piece may be fitted with an inlet bleed or check valve to relieve pressure from the bore hole back into the tool but seal when a higher pressure is applied inside the packer.
In the tool construction assembled in the manner shown in
Instead of being provided with fixed diameter circular orifice ports, straddle tools constructed in accordance with the invention may be provided with ports that open and close as pressure increases and decreases within the inner passage. The ports then act as pressure regulating ports helping to maintain a more constant pressure inside the packer tool and allowing the packers to inflate and seal over a wide range of injection rates. In particular the packer can inflate and seal the straddle zone at a lower rate and will maintain the seal without developing too high an internal pressure up to injection rates of more than 600 L/min.
One method of achieving pressure regulating ports is illustrated in
Number | Date | Country | Kind |
---|---|---|---|
2010902329 | May 2010 | AU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AU2011/000624 | 5/26/2011 | WO | 00 | 1/16/2013 |