The present disclosure relates to the field of hydraulic hammers. In particular, the present disclosure relates to assembly of hydraulic hammers.
Hydraulic hammers are used in work sites to break up large hard objects before such objects can be moved away. Hydraulic hammers can be attached to various machines such as excavators, backhoes, tool carriers, or other like machines for the purpose of milling stone, concrete, and other construction materials. The hydraulic hammer is mounted to a boom of the machine and connected to a hydraulic system. High pressure fluid is then supplied to the hammer to drive a reciprocating piston and a work tool in contact with the piston.
Typically, the hammer assembly is powered by either a hydraulic or pneumatic pressure source. During a work or power stroke, high fluid pressure is applied to a first shoulder of a piston, thereby driving the piston in a forward direction. The piston then strikes a work tool, which is driven in the forward direction thereby causing a work tip of the tool to strike the rock, concrete, asphalt or other hard object to be broken up. During a return stroke, fluid pressure is applied to a second shoulder of the piston in order to return the piston to its original position.
A hydraulic hammer assembly, among other components, typically includes a housing and a head. The housing includes a work tool and a piston that reciprocates in the housing to strike the work tool. The housing may also contain necessary hydraulic circuit to drive the piston in the housing. The head includes, among other components, an accumulator for augmenting the strike power of the piston on the work tool. The accumulators provide for a biasing force to the piston towards the work tool. Generally, such accumulators have a pressurized gas, for example nitrogen, that is contained in a chamber of the head.
U.S. patent publication number US20120152581 discloses a demolition hammer with a head and a housing. In '581, external tie rods are used to tie the front head to the valve body. The tie rods increase the overall diameter of the hammer assembly and add to the complexity of the structure. Tie rods typically have to be replaced at regular service intervals, since they are subject to fatigue and failure. A failure of a tie rod can cause irreparable damage to the entire hammer assembly. Moreover, tie rods in a hammer also increase the overall time required for assembly or disassembly of the hammer. In addition, the disassembly of a hammer with tie rods may require special tools.
A hydraulic hammer assembly is provided. The hydraulic hammer assembly includes a housing and a piston is arranged for reciprocating movement along a longitudinal axis within the housing. A head disposed along the longitudinal axis on an end of the housing and defines a chamber for holding a pressurized gas. The hydraulic hammer assembly further includes a locking mechanism to lock the head on the housing. The locking mechanism includes at least one first flange extending radially from the end of the housing and at least one second flange extending radially from the head, wherein the head is retained on the housing by blocking axial movement of the second flange against the first flange when in a locked position.
In another aspect, a hydraulic hammer assembly including a housing is provided. The housing is configured for a reciprocating movement of a piston along a longitudinal axis within the housing. The housing has at least one first flange extending radially inwards from an end of the housing. The housing defines an opening adjacent to the first flange relative to the longitudinal axis. A head is positioned on the end of the housing along the longitudinal axis of the housing and the head defines a chamber for holding a pressurized gas. The head has at least one second flange extending radially outwards from the head and the first flange is configured to be received in the end of the housing through the opening, wherein the head is retained on the housing by positioning the second flange axially adjacent to the first flange for blocking movement of the head away from the housing when in a locked position.
In another aspect, a method of assembling a hydraulic hammer is provided. The hydraulic hammer includes a housing configured for reciprocating movement of a piston along a longitudinal axis of the housing and a head is disposed on an end of the housing along the longitudinal axis. The head defines a chamber for holding a pressurized gas and at least one first flange extend radially from the end of the housing. The first flange is positioned at an angle relative to the longitudinal axis. At least one opening is defined on the end of the housing and is positioned at an adjacent angle to the angle relative to the longitudinal axis to receive at least one second flange extending radially from the head. The method includes placing the head on the end of the housing such that the second flange is received in the end of the housing through the opening. The method further includes locking the head on the housing by rotating the head to position the second flange axially adjacent to the first flange.
In the disclosed embodiment, one or more hydraulic cylinders 110 may raise, lower, and/or swing the boom 104, the arm 106 and the pivoting bracket 108 to correspondingly raise, lower, and/or swing the hammer 102. The hydraulic cylinders 110 may be connected to a hydraulic supply system (not shown) within the work machine 100. Specifically, the work machine 100 may include a hydraulic pump (not shown) connected to the hydraulic cylinders 110 and to the hammer 102 through one or more hydraulic supply lines (not shown). The hydraulic supply system may introduce pressurized fluid, for example oil, from the pump and into the hydraulic cylinders 110. Operator controls for movement of the hydraulic cylinders 110 and/or the hammer 102 may be located within a cabin 112 of the work machine 100.
The hammer 102 includes a work tool 114 that is operated to break rocks and drill ground surfaces. It is contemplated that work tool 114 may include any known tool capable of use with hammer 102. In one embodiment, work tool 114 may include a chisel bit.
Referring to
As shown in
The hammer 102 may be powered by any suitable means, such as pneumatically-powered or hydraulically-powered. For example, a hydraulic or pneumatic circuit may provide pressurized fluid to drive the piston 126 towards the work tool 114 during a work stroke and to return the piston 126 during a return stroke.
Further, the head 124 may define a chamber 128 (shown in
As illustrated, the head 124 may have a first end 130 and a second end 132. The first end 130 of the head 124 may be configured to abut the housing 122 and cap-off a top end 134 of the housing 122. In the embodiment as illustrated, the first end 130 has first portion 136 extending from the first end 130 of the head 124. The first portion 136 may be received in a corresponding cavity 138 defined by the top end 134 of the housing 122. Further, the first portion 136 may have an annular groove 140 on an outer peripheral surface 142 for receiving a sealing member 144 to seal any clearance between the first portion 136 of the head 124 and the housing 122, and prevent any leakage of fluid through the clearance.
The hammer 102 may have a locking mechanism to lock the head 124 with the housing 122. Referring to
During assembly of the head 124 over the housing 122, the first end 130 of the head 124 is placed over the top end 134 of the housing 122 along the longitudinal axis 120 with the second flanges 148 axially aligned with the openings 150. The head 124 is then moved towards the housing 122 such that the second flanges 148 enter the top end 134 of the housing 122 through the openings 150 and move past the first flanges 146 in an axial direction. After the second flanges 148 move past the first flanges 146, the head 124 may be rotated by a certain angle about the longitudinal axis 120, to position the head 124 in a locked position. In the locked position, the second flange 148 is positioned axially adjacent to the first flange 146 such that a first axial surface 152 (shown in
To unlock the head 124 from the housing 122, the head 124 may be moved to an unlocked position by rotating the head 124 by an angle about the longitudinal axis 120. In the unlocked position, the second flange 148 is positioned axially adjacent to the openings 150 such that on moving the head 124 in an axial direction away from the housing 122, the head 124 can be unmounted from the housing 122. It may be understood that the angle of rotation required for moving the head 124 between the locked position and the unlocked position may depend on the angle of span of the first flange 146 and/or the second flange 148.
Further, it may be understood that the number of the first flanges 146, the second flanges 148 and the openings 150 may be chosen based on different design requirements. In the embodiment as illustrated, two first flanges 146 and two second flanges 148 are shown. In an alternate embodiment, a plurality of first flange 146 and second flanges 148 may be used based on different design requirement. Further, the first flange 146 and the second flange 148 are shown as integral to the housing 122 and the head 124, respectively. It may be understood that in an alternate embodiment the first flange 146 and the second flange 148 may be a separate components attached to the housing 122 and the head 124, respectively.
Further, in an embodiment, the locking mechanism may include a biasing member. The biasing member may be configured to bias the head 124 in a direction axially away from the housing 122. As illustrated in
In an embodiment, the locking mechanism may include a detent mechanism to retain the head 124 in the locked position. In the embodiment as illustrated in
In the present embodiment, the first flange 146 and the second flange 148 are shown extending radially along a plane perpendicular to the longitudinal axis 120. It may be understood that in an alternate embodiment, the first flange 146 and/or the second flange 148 may extend radially along a plane positioned at an angle relative to the longitudinal axis 120. Further, the first flange 146 is shown extending radially inwards from the housing 122 and the second flange 148 is shown extending radially outwards from the head 124. In an alternate embodiment, the first flange 146 may extend radially outwards from the housing 122 and the second flange 148 may extend radially inwards from the head 124. Further, it may be understood that the first flange 146 and the second flange 148 may have size and dimensions based on different design requirements of the hammer assembly.
The outer surface 164 at the second end 132 of the head 124 may be configured for gripping the head 124 manually with a hand for mounting or unmounting the head 124 from the housing 122. In the embodiment as illustrated, the second end 132 of the head 124 has a non-circular cross section and has recessed portions 166 on the outer surface 164. The non-circular cross section along with the recessed portions may provide for a sufficient grip for manually mounting or unmounting the head 124 using a hand. It may be understood that alternate configurations on the head 124 may be utilized for providing an effective hand-grip of the head 124 such that the head 124 may be mounted or unmounted with need of any special tool or fixture. For example, in an embodiment the head 124 may have a ribbed outer surface 164 for providing effective hand-grip on the head 124.
The present disclosure provides for a hammer assembly that is easy to assemble or disassemble. The head 124 of the hammer 102 in accordance with the present disclosure may be disassemble manually with use of hands, and thus eliminating requirement of any special tools or fixtures.
Further, the present disclosure provides for a simplified construction of the hammer 102. The conventionally used tie rods increase the overall diameter of the hammer 102 and add to the complexity of the structure. In addition, the tie rods typically have to be replaced at regular service intervals, since they are subject to fatigue and failure. The hammer 102 of the present disclosure eliminates need of tie rods to mount the head 124 on the housing 122, and thus provides for a compact hammer assembly with improved serviceability. The hammer 102 in accordance with the present disclosure may also reduce the downtime associated with the hammer 102 by decreasing overall time required for servicing or repairing of the hammer 102.
The present disclosure further provides for a method 200 of assembly of a hammer 102. Referring to
Further, the method 200 may include a step 204 of locking the head 124 on the housing 122 by rotating the head 124 to position the second flange 148 axially adjacent to the first flange 146. After the second flange 148 moves past the first flange 146, the head 124 may be rotated about the longitudinal axis 120 such that the second flange 148 is positioned axially adjacent to the first flange 146. In the locked position the first axial surface 152 may abut the first axial surface 152 such that the first flange 146 blocks any movement of the second flange 148 in an axial direction.
Further, the method 200 may include locking the head 124 on the housing 122 by a detent 162 on one of the first flange 146 and the second flange 148 and a projection 160 for engaging the detent 162 on the other of the first flange 146 and the second flange 148. In the embodiment as illustrated in FIGS. 3-6, the detent 162 is provided on the first axial surface 152 and the projection 160 is provided on the first axial surface 152. The detent 162 and the projection 160 are positioned such that when the head 124 moves in the locked position, the projection 160 is received in the detent 162 to retain the head 124 in the locked position.
The method 200 may further include unlocking the head 124 from the housing 122 by rotating the head 124 to position the second flange 148 axially adjacent to the opening 150. To unlock the head 124 from the housing 122, for example while a service or a repair, the head 124 may be rotated to position the head 124 in the unlocked position. In the unlocked position, the first flange 146 is positioned axially adjacent to the opening 150 such that the second flange 148 may move through the opening 150 and allowing the head 124 to move in an axial direction away from the housing 122.
The present disclosure provides for a simplified construction of the components of the hammer 102. The conventional hammer assemblies with tie rods may require aligned bores in the head 124 and the housing 122 to receive the tie rods, and thus may increase over all time and cost in machining during manufacturing such components. The hammer 102 in accordance with the present disclosure requires a first flange 146 and a second flange 148 which may be built integrally with the housing 122 eliminating need for drilling any aligned bores in the head 124 or the housing 122 for assembling the head 124 and the housing 122. Thus, the hammer 102 in accordance with the present disclosure may be time saving and cost effective.
Number | Name | Date | Kind |
---|---|---|---|
3792740 | Cooley | Feb 1974 | A |
4484638 | West | Nov 1984 | A |
4846287 | Ericsson | Jul 1989 | A |
6095257 | Lee | Aug 2000 | A |
6112952 | Hess, III et al. | Sep 2000 | A |
8672052 | Nickels et al. | Mar 2014 | B2 |
20020134562 | Paul | Sep 2002 | A1 |
20120152581 | Pillers, II et al. | Jun 2012 | A1 |
20120247839 | Kosovich | Oct 2012 | A1 |
20140034159 | Myrhum, Jr. | Feb 2014 | A1 |
20140102740 | Jagdale | Apr 2014 | A1 |
20140208575 | Jagdale et al. | Jul 2014 | A1 |
20140332246 | Moore | Nov 2014 | A1 |
20170282343 | Moore | Oct 2017 | A1 |
20180147708 | Grzybowski | May 2018 | A1 |
Number | Date | Country |
---|---|---|
2559331 | Jul 1977 | DE |
9702385 | Jan 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20170291290 A1 | Oct 2017 | US |