The present disclosure is directed to a hydraulic hammer and, more particularly, to a hydraulic hammer having an impact system subassembly.
Hydraulic hammers can be attached to various machines such as excavators, backhoes, tool carriers, or other like machines for the purpose of milling stone, concrete, and other construction materials. The hydraulic hammer is mounted to a boom of the machine and connected to a hydraulic system. High pressure fluid is then supplied to the hammer to drive a reciprocating piston and a work tool in contact with the piston. The piston is surrounded and protected by an outer housing. Traditionally, a valve directs fluid within the hammer from an accumulator to the piston. The accumulator provides a reservoir for the fluid.
U.S. Pat. No. 3,853,036 (the '036 patent) that issued to Eskridge et al. on Dec. 10, 1974, discloses an exemplary hydraulic hammer having many individuals components including a piston reciprocally located within an outer housing. An intake fluid reservoir and an outlet fluid reservoir are disposed around a valve at an axial end of the piston, wherein the fluid reservoirs form an accumulator. Each of the individual components is assembled into the outer housing separately.
The many individual components of the '036 patent (e.g. the piston, valve, and fluid reservoirs) may make servicing of the hydraulic hammer difficult. In particular, a user may be required to completely disassemble the hydraulic hammer to repair just one component. This complete disassembly may be expensive and increase a downtime of the associated machine. An increase in downtime can result in lost productivity.
The disclosed system is directed to overcoming one or more of the problems set forth above and/or other problems of the prior art.
In one aspect, the present disclosure is directed to an impact system for a hydraulic hammer. The impact system may include a piston and a sleeve disposed co-axial with the piston. A first seal may be located at an end of the sleeve and configured to connect the sleeve to the piston. An accumulator membrane may be disposed external to the sleeve and may have an extension configured to engage a recess in the sleeve.
In another aspect, the present disclosure is directed to a method of servicing a hydraulic hammer. The method may include removing a head from a frame, and removing an impact system as a single integral unit from the frame. The impact system may include at least a piston, a sleeve, an accumulator membrane, and a seal carrier. Additionally, the method may include placing a new impact system into the frame, and re-assembling the head to the frame.
In the disclosed embodiment, one or more hydraulic cylinders 15 may raise, lower, and/or swing boom 12 and stick 16 to correspondingly raise, lower, and/or swing hammer 20. The hydraulic cylinders 15 may be connected to a hydraulic supply system (not shown) within machine 10. Specifically, machine 10 may include a pump (not shown) connected to hydraulic cylinders 15 and to hammer 20 through one or more hydraulic supply lines (not shown). The hydraulic supply system may introduce pressurized fluid, for example oil, from the pump and into the hydraulic cylinders 15 of hammer 20. Operator controls for movement of hydraulic cylinders 15 and/or hammer 20 may be located within a cabin 11 of machine 10.
As shown in
As shown in
Bushing 35 may be disposed within a tool end of subhousing 31 and may be configured to connect work tool 25 to impact system 70. A pin 37 may connect bushing 35 to work tool 25. When displaced by hammer 20, work tool 25 may be configured to move a predetermined axial distance within bushing 35.
Impact system 70 may be disposed within an actuator end of subhousing 31 and be configured to move work tool 25 when supplied with pressurized fluid. As shown by the dotted lines in
Piston 80 may be configured to reciprocate within frame 40 and contact an end of work tool 25. In the disclosed embodiment, piston 80 is a metal cylindrical rod (e.g., a steel rod) approximately 20.0 inches in length. Piston 80 may comprise varying diameters along its length, for example one or more narrow diameter sections disposed axially between wider diameter sections. In the disclosed embodiment, piston 80 includes three narrow diameter sections 83, 84, 85, separated by two wide diameter sections 81, 82. Narrow diameter sections 83, 84, 85 may cooperate with sleeve 100 to selectively open and close fluid pathways within sleeve 100.
Narrow diameter sections 83, 84, 85, may comprise axial lengths sufficient to facilitate fluid communication with accumulator membrane 90. In one embodiment, narrow diameter sections 83, 84, 85 may comprise lengths of approximately 6.3 inches, 2.2 inches, and 5.5 inches, respectively. Additionally, narrow diameter sections 83, 84, 85 may each comprise a diameter suitable to selectively open and close the fluid pathways in sleeve 100, for example diameters of approximately 2.7 inches. Wide diameter sections 81, 82, in one embodiment, may each comprise a diameter of approximately 3.0 inches and configured to slideably engage an inner surface of sleeve 100. However, in other embodiments, any desired dimensions may be used.
Piston 80 may further include an impact end 86 having a smaller diameter than any of narrow diameter sections 83, 84, 85. Impact end 86 may be configured to contact work tool 25 within bushing 35. In one embodiment, impact end 86 may comprise an axial length of approximately 1.5 inches. However, in other embodiments, any desired dimensions may be used.
Accumulator membrane 90 may form a cylindrical tube configured to hold a sufficient amount of pressurized fluid for hammer 20 to drive piston 80 through at least one stroke. In one embodiment, accumulator membrane 90 may extend approximately one-half an axial length of piston 80. As shown in
Sleeve 100 may form a cylindrical tube having an axial length longer than an axial length of accumulator membrane 90. Sleeve 100 may include a first end 101, located near work tool 25, and a second end 102, located further from work tool 25. A recess 109 may be formed in sleeve 100 at first end 101. In one embodiment, sleeve 100 may have a length of approximately 13 inches. However, in other embodiments, any desired length may be used. One or more fluid passages may be formed within sleeve 100 that extend between piston 80 and accumulator membrane 90. Movement of piston 80 (i.e., of narrow diameter sections 83, 84, 85 and wide diameter sections 81, 82) may selectively open or close these passages. During assembly, sleeve 100 may be configured to slide over a bottom portion of narrow diameter section 83 of piston 80 and sealingly engage wide diameter section 82.
Valve 120 may include a tubular member located external to and at an axial end of accumulator membrane 90. Valve 120 may be disposed around piston 80 at narrow diameter section 85, and radially inward of sleeve 100, between sleeve 100 and piston 80. As shown in
As shown in
A first seal 137 and a second seal 139 may additionally secure the sub-assembly so that it remains assembled when removed from frame 40. First seal 137 may include one or more U-cup seals or O-rings disposed between sleeve 100 and piston 80. As shown in
Sleeve 100 and seal carrier 130 may additionally be secured together with a coupling including a slip fit, interference, or any other coupling known in the art. For example, seal carrier 130 may include a female connector 105 received by a male connector 135 on sleeve 100. The female and male connectors 105,135, of the coupling, may secure seal carrier 130 with sleeve 100 and thereby also secure valve 120 against piston 80.
Accumulator membrane 90 may be connected with sleeve 100 through an interference coupling. Specifically, an extension 97 of accumulator membrane 90 may be received within recess 109 of sleeve 100 to couple accumulator membrane 90 with sleeve 100. This connection may further hold impact system 70 together when impact system 70 is removed from frame 40.
As also shown in
One or more first longitudinal recesses 150 may fluidly connect inlet 140 with an annular groove 160 formed at an internal surface of sleeve 100. Annular groove 160 may be formed as a concentrically arranged passage around piston 80 With this configuration, fluid may flow from inlet 140, through first longitudinal recesses 150, into annular groove 160, and into contact with a shoulder A at wide diameter section 81 of piston 80.
Inlet 140 may additionally communicate with an annular space 170 that exists between accumulator membrane 90 and sleeve liner 110. Pressurized gas selectively introduced into pocket 180 via gas inlet 181 may apply inward pressure to accumulator membrane 90 and affect the size of annular space 170. That is, as shown in
A plurality of radial passages 190 may be concentrically formed within an annular wall of sleeve 100 and connect to a first annular ring 195, formed as a concentrically arranged passage around piston 80. First annular ring 195 may fluidly connect radial passages 190 with recesses 150, 155, 157, 159 for movement of fluid to and from recesses 150, 155, 157, 159. Additionally, radial passages 190 may be disposed below valve 120, for example between seal carrier 130 and annular groove 160.
At least one of the first longitudinal recesses 150 may fluidly connect to at least one of the plurality of radial passages 190, such that first longitudinal recesses 150 may fluidly connect radial passages 190 with accumulator membrane 90. This connection may be an indirect connection, around an end of sleeve liner 110. Additionally, first longitudinal recesses 150 may fluidly connect annular groove 160 with accumulator membrane 90 via radial passages 190. Radial passages 190 may be disposed above annular groove 160 such that annular groove 160 is disposed between impact end 86 of piston 80 and radial passages 190.
Each of the plurality of radial passages 190 may further connect first longitudinal recesses 150 to valve 120 via second longitudinal recess 155. As shown in
Fluid chamber 200 may be formed within head 50 and located axially adjacent to a base end of valve 120. Therefore, valve 120 may be located between fluid chamber 200 and radial passages 190. Additionally, fluid chamber 200 may be formed at least partially within seal carrier 130 and co-axial to piston 80. Third longitudinal recess 157 may selectively connect inlet 140 with fluid chamber 200 and be disposed between valve 120 and piston 80.
A plurality of outlet apertures 210 may be formed within seal carrier 130 and fluidly connected with fluid chamber 200. Therefore, outlet apertures 210 may be fluidly connected with radial passages 190 via recesses 150, 157 and fluid chamber 200. Fluid may be selectively released from fluid chamber 200 through outlet apertures 210. As shown in
Movement of narrow diameter section 84 of piston 80 may selectively connect radial passages 190 with an outlet passage 230 via a second annular ring 240. Outlet passage 230 may be disposed external to valve 120. As shown in
The disclosed hydraulic hammer may have an impact system that can be assembled and removed from the hammer as a single integral unit. The impact system, being an integral subassembly, may not require placement of individual components and fastening during assembly. Instead, the subassembly as a whole may be a drop-in replacement assembly, which can help reduce service and downtime of the machine. Assembly of the impact system and servicing of machine 10 will now be described in detail.
Assembly of impact system 70, as shown in
The arrangement of piston 80, sleeve 100, and seal carrier 130 may form cavity 123. Valve 120 may be trapped within cavity 123. Additionally, the arrangement of sleeve 100 and accumulator membrane 90 may trap sleeve liner 110 between sleeve 100 and accumulator membrane 90.
Impact system 70 may be removed from hammer 20 as one integral unit to facilitate faster service and low downtime of machine 10. For example, upon failure of first seal 137, instead of breaking down hammer 20 piece-by-piece until first seal 137 is exposed, impact system 70 may be removed as one integral unit to repair first seal 137. Specifically, hammer 20 may be removed from a linkage of machine 10, and actuator assembly 32 may be removed from outer shell 30. Therefore, head 50, frame 40, and impact system 70 may be removed from outer shell 30. Head 50 may then be removed from frame 40 to expose impact system 70. Hammer 20 may be removed from the linkage before head 50 is removed from frame 40. A user may remove impact system 70, from frame 40, as a single integral unit and place a new impact system 70 into frame 40. Head 50 may be reassembled with frame 40, and then actuator assembly 32 may be re-installed into outer shell 30. Hammer 20 may be re-assembled to the linkage of machine 10 after head 50 has been re-assembled to frame 40.
The failed component, for example, first seal 137, may be serviced in a shop at a later time, after impact system 70 has been removed from frame 40 and the new impact system 70 placed into frame 40. Therefore, first seal 137 may be serviced at a slower pace without affecting the downtime of machine 10. Additionally or alternatively, servicing a failed component may include servicing of one or more seals 137,139, valve 120, or sleeve liner 110.
The present disclosure may provide a hydraulic hammer having an impact system formed as a sub-assembly that may be removed from the hammer as one integral unit. Therefore, a user may remove the impact system from the hammer when repairing a component of the impact system instead of dissembling the entire hammer. This may reduce cost and time to repair the hammer and may reduce downtime of the machine associated with the hammer.
It will be apparent to those skilled in the art that various modifications and variations can be made to the system of the present disclosure. Other embodiments of the system will be apparent to those skilled in the art from consideration of the specification and practice of the method and system disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope of the disclosure being indicated by the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
3739863 | Wohlwend | Jun 1973 | A |
3754396 | Erma | Aug 1973 | A |
3827507 | Lance | Aug 1974 | A |
3853036 | Eskridge et al. | Dec 1974 | A |
3991655 | Bouyoucos et al. | Nov 1976 | A |
4005637 | Bouyoucos | Feb 1977 | A |
4011795 | Barthe et al. | Mar 1977 | A |
4018135 | Lance | Apr 1977 | A |
4077304 | Bouyoucos | Mar 1978 | A |
4143585 | Selsam | Mar 1979 | A |
RE30109 | Bouyoucos | Oct 1979 | E |
4231434 | Justus | Nov 1980 | A |
4256187 | Barnard | Mar 1981 | A |
4261249 | Grantmyre | Apr 1981 | A |
4264107 | Janach et al. | Apr 1981 | A |
4745981 | Buske | May 1988 | A |
5174386 | Crover | Dec 1992 | A |
5222425 | Davies | Jun 1993 | A |
5944120 | Barden | Aug 1999 | A |
6073706 | Niemi | Jun 2000 | A |
6105686 | Niemi | Aug 2000 | A |
6119795 | Lee | Sep 2000 | A |
7156190 | Ottestad | Jan 2007 | B2 |
7328753 | Henriksson | Feb 2008 | B2 |
20030006052 | Campbell, Jr. | Jan 2003 | A1 |
20120138328 | Teipel et al. | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
2792723 | Jul 2006 | CN |
201015863 | Feb 2008 | CN |
105026111 | Nov 2015 | CN |
10003415 | Nov 2001 | DE |
0127885 | Dec 1984 | EP |
0 933 169 | Jan 1999 | EP |
1480903 | Apr 1973 | GB |
WO 2004020155 | Mar 2004 | WO |
03033504 | Mar 2006 | WO |
Entry |
---|
U.S. Patent Application of Cody Moore, entitled “Hydraulic Hammer Having Co-Axial Accumulator and Piston” filed Mar. 15, 2013. |
U.S. Patent Application of Cody Moore, entitled “Accumulator Membrane for a Hydraulic Hammer” filed Mar. 15, 2013. |
Number | Date | Country | |
---|---|---|---|
20140262407 A1 | Sep 2014 | US |