The present invention relates generally to hydraulic systems, and more particularly to hydraulic hybrid drive systems.
An excavator is an example of a construction machine that uses multiple hydraulic actuators to accomplish a variety of tasks. These actuators are fluidly connected to a pump that provides pressurized fluid to chambers within the actuators. This pressurized fluid force acting on the actuator surface causes movement of actuators and connected work tools. Once the hydraulic energy is utilized, pressurized fluid is drained from the chambers to return to a low pressure reservoir. Usually the fluid being drained is at a higher pressure than the pressure in the reservoir and hence this remaining energy is wasted once it enters the reservoir. This wasted energy reduces the efficiency of the entire hydraulic system over a course of machine duty cycle.
A prime example of energy loss in an excavator is its swing drive where the fluid emptying to the low pressure reservoir is throttled over a valve during the retardation portion of its motion to effect braking of swing motion. It is estimated that total duration of swing use in an excavator is about 50%-70% of an entire life cycle and it consumes 25%-40% of the energy that engine provides. Another undesirable effect of fluid throttling is heating of the hydraulic fluid which results in increased cooling requirement and cost.
Therefore, exemplary hydraulic hybrid swing drive systems (referred to herein as HSD for brevity) may provide a number of advantages over conventional hydraulic excavators and conventional electric hybrid excavators (EHEs):
According to one aspect of the invention, a hybrid swing drive system of a hydraulic machine includes a variable displacement hydraulic swing pump operable by a prime mover; a hydraulic swing motor for performing a swing function of the machine; an accumulator; a controller; a swing control valve assembly disposed in a first hydraulic path extending from the swing pump to the swing motor, the swing control valve assembly having a first position fluidly connecting the swing pump to a first side of the swing motor and a second position fluidly connecting the swing pump to a second side of the swing motor; and an accumulator control valve having an open position fluidly connecting the accumulator to the first hydraulic path at an accumulator control valve connection point and a closed position fluidly isolating the accumulator from the first hydraulic path.
Optionally, the swing control valve assembly includes an open-center spool valve.
Optionally, the swing control valve assembly includes an closed-center spool valve.
Optionally, the swing control valve assembly includes a first pilot-operated check valve disposed between the swing pump and a first side of the swing motor and facing the pump, and a second pilot-operated check valve disposed between the swing pump and a second side of the swing motor and facing the pump, and wherein the hybrid swing drive system further includes a third pilot-operated check valve disposed between the first side of the swing motor and a reservoir and facing the swing motor, and a fourth pilot-operated check valve disposed between the second side of the swing motor and the reservoir and facing the motor.
Optionally, flow from the swing motor to the swing pump is not metered.
Optionally, flow from the swing motor to the accumulator is not metered.
Optionally, the hybrid swing drive system includes a metering dump valve configured to selectively fluidly connect the first hydraulic path to a reservoir port.
Optionally, the hybrid swing drive system includes an isolation valve disposed in the fluid pathway between the accumulator control valve connection point and the swing control valve, the isolation valve having an open position fluidly connecting the swing pump to the swing motor, and a closed position fluidly isolating the accumulator and the swing pump from the swing motor.
Optionally, the controller is configured to open the accumulator control valve and to disengage the swing pump.
Optionally, the controller is configured to close the accumulator control valve, meter flow through the dump valve, and engage the swing pump for use as a motor.
Optionally, the controller is configured to close the accumulator control valve and engage the swing pump for use as a motor, and wherein a system relief valve is configured to allow excess flow to go to tank.
Optionally, the controller is configured to open the accumulator control valve, and engage the swing pump for use as a motor.
Optionally, the controller is configured to close the dump valve.
Optionally, the controller is configured to open the accumulator control valve, close the isolation valve, meter flow through the dump valve, and engage the swing pump for use as a pump.
Optionally, the controller is configured to open the accumulator control valve, close the isolation valve, and engage the swing pump for use as a pump, and wherein a system relief valve is configured to allow excess flow to go to tank.
Optionally, the controller is configured to open the accumulator control valve, close the isolation valve, meter flow through the dump valve, and engage the swing pump for use as a motor.
Optionally, the controller is configured to open the accumulator control valve, close the isolation valve, and engage the swing pump for use as a motor, and wherein a system relief valve is configured to allow excess flow to go to tank.
Optionally, the controller is configured to open the accumulator control valve, close the isolation valve, and engage the swing pump for use as a motor.
Optionally, the controller is configured to open the accumulator control valve, close the isolation valve, and engage the swing pump for use as a pump.
Optionally, the prime mover is an internal combustion engine and the controller is configured to monitor engine speed and torque, compare engine speed and torque with efficiency data, and adjust engine speed and adjust displacement of the hydraulic pump, and thereby engine torque, based on the comparison.
Optionally, the controller is configured to turn off the engine during operation of the drive system.
Optionally, the controller is configured to direct flow from the hydraulic motor to the hydraulic pump.
Optionally, the controller is configured to direct flow from the hydraulic motor to the accumulator.
Optionally, the controller is configured to direct flow from the accumulator to the hydraulic motor.
Optionally, the controller is configured to direct flow from the accumulator to the hydraulic pump.
Optionally, the controller is configured to direct flow from the hydraulic pump to the accumulator.
Optionally, the swing motor is a fixed displacement motor.
Optionally, a low pressure accumulator is disposed between the reservoir and the swing motor and configured to prevent cavitation in the system.
The foregoing and other features of the invention are hereinafter described in greater detail with reference to the accompanying drawings.
Exemplary hydraulic hybrid swing drive systems (referred to herein as HSD) may be used on construction equipment, especially hydraulic excavators. A goal of exemplary HSDs is to capture energy during the braking of a swing function of an excavator and store it in a hydraulic accumulator and/or allowing the swing pump/motor to provide additional torque to assist the engine for powering working hydraulics actuation functions and auxiliary equipment. A second goal is to achieve the same or better performance, operability, and controllability as the conventional hydraulic excavator, while using less fuel and reducing emissions, through the use of electronically controlled components.
Exemplary HSDs may be utilized, for example, in excavators with a fixed displacement swing motor having an upper structure, undercarriage, swing, boom, arm and bucket. As schematically shown in
In a conventional machine without HSD, flow returning to the low pressure reservoir during swing braking is throttled over a valve to control the deceleration and thereby dissipate energy. Exemplary HSD hydraulic circuits may be arranged such that in a retarding mode, the hydraulic swing motor 16 acts as a pump and provides a resistive torque to the swing machinery.
The swing control valve 15 directs the high pressure flow to the hydraulic accumulator 10, the swing pump 3, and/or the dump valve 14. In this mode, the swing pump 3 could thereby act as a motor by converting hydraulic flow into mechanical movement.
The isolation valve 13 may be used to separate the swing pump/motor 3 and the hydraulic accumulator 10 from the rest of the system for safety reasons and/or to allow use of the swing pump 3 and accumulator 10 simultaneously with braking the swing motor 16 via the dump valve 14.
The accumulator control valve 12, in braking modes, may be used to ensure a nearly equal pressure drop from the high pressure flow to both the swing pump/motor 3 and the hydraulic accumulator 10.
Similarly, the accumulator control valve 12 may be used to control the pressure of the fluid directed to the swing motor 16 when accelerating.
Recovered energy can be stored in the hydraulic accumulator 10 as pressure for later use and/or transferred back to the engine shaft through the swing pump 3 to supplement the engine power going to accessories or other work functions.
If the hydraulic accumulator 10 is full or if the pressure in the accumulator 10 is greater than or equal to the pressure needed to retard the swing machinery, then the dump valve 14 can be used to set the pressure instead of the accumulator 10 and accumulator valve 12; the balance of the energy that cannot be recovered by the engine shaft or the accumulator would be dissipated by the dump valve in an operation similar to that of conventional systems. The built up pressure in the hydraulic accumulator 10 can then be used to propel the swing upon the next operator command.
In this configuration, the swing pump 3 and the swing control valve 15, with possible additional flow from the hydraulic accumulator 10, are used to control the propulsion of the swing function. When powering the swing movement, the swing control valve 15 may shift to connect the high pressure flow of the swing pump/motor 3 and possibly the hydraulic accumulator 10 to the appropriate side of the swing motor 16 to turn the swing machinery 1.
For robustness, a relief valve 11 for the hydraulic accumulator 10 may be included. Optionally, a relief valve 17 on either side of the swing motor 16 in optional combination with anti-cavitation check valves 18 may be provided. In exemplary systems, the anti-cavitation check valves 18 direct flow back to the swing motor 16 from both the make-up port (connected to the drain line) and the flow dissipated through the swing relief valves 17.
However, in other exemplary embodiments there may not be sufficient flow available for the swing anti-cavitation check valves 18 to prevent cavitation, and therefore a low pressure accumulator 39 can be connected to the tank port on the swing control valve 11. The low pressure accumulator 39 is charged when the swing motor 16 is being powered by either the accumulator 10 or the swing pump/motor 3. The low pressure accumulator check valve 40 prevents flow to the hydraulic reservoir 7 until its cracking pressure has been achieved in the low pressure accumulator 39.
In exemplary embodiments, the swing brake 19 may be actuated via a hydraulic pilot signal from the swing control (e.g., a joystick or the like), resulting in it being released when the swing control is displaced from the zero position and it is applied when the swing control is in the neutral position. Optionally, the swing brake valve on exemplary machines may have a built-in delay function that delays the application of the swing brake 19. This delay may be implemented mechanically, electrically, or via software. Exemplary systems may use a solenoid operated swing brake valve 21 which is actuated via a signal from a controller. In addition, the delay function may be implemented by adding swing brake delay valve 24, an adjustable orifice, to the line that connects the rod side of the swing brake actuator 23 and the hydraulic reservoir 7. This feature allows the release and application of the swing brake 19 at will as opposed to being reliant on the position of the swing control. When the swing brake valve 21 is in the position shown in
In the configuration described above in reference to
A second mode of propulsion uses solely the hydraulic accumulator 10 and is illustrated in
The swing control valve 15 is energized to connect the high pressure flow to the appropriate side of the swing motor 16 and the swing pump/motor 3 is brought to 0% displacement.
The isolation valve 13 remains in the open position and the dump valve 14 is energized to be in the closed position. The opening of the accumulator control valve 12 is determined based on the desired angular speed of the swing machinery 1, the measured angular speed of the swing machinery 1 reported by the swing speed sensor 34, and the torque required to accelerate the swing drive.
The final configuration used to propel the swing drive is illustrated in
When the swing drive is being accelerated, the swing pump/motor 3 and/or the accumulator 10 will be used. However, when rotating at a constant speed, it is preferable to use the swing pump/motor 3 as the pressure across the swing motor 16 will be minimal. If the accumulator 10 were used when rotating at a constant speed a large portion of the energy in the flow from the accumulator 10 would be dissipated across the accumulator control valve leading to a relatively inefficient use of energy.
A benefit of decoupling the swing function from the main pumps 5 is that the metering losses through the main swing valve 35 will be reduced. For example, a typical system may have the swing function on the same pump as the boom and arm functions. Unfortunately, the required pressure for each of those functions is not always the same, and therefore the flow from the single pump powering those functions must be metered down to each function's required pressure. By decoupling the swing function from the main pump the amount of flow that must be metered is reduced, and there is also one less function which can set the operating pressure for the pump. Finally, on exemplary swing circuits, the metering losses from the swing pump/motor 3 may be negligible when accelerating the swing machinery 1 because the path from the swing pump/motor 3 to the swing motor 16 may be controlled with on-off valves which direct the flow without metering it. In other words, there are no flow restrictions in the path from the swing pump/motor 3 to the swing motor 16.
Referring now to
One instance where the accumulator control valve 12 would not be necessary would be if the accumulator 10 was large enough and the pre charge high enough where the accumulator 10 pressure was always “close enough” to the required braking pressure. This would entail an accumulator 10 that could absorb one or more swing cycles where the pressure would not change dramatically while filling with fluid. To more easily and more economically achieve this goal the accumulator 10 could be realized by either using multiple accumulators 10 or an accumulator 10 composed of a traditional accumulator 10 connected to a gas bottle. Having multiple accumulators 10 would increase the amount of energy that can be stored. An accumulator 10 with a gas bottle would allow for a very large volume of gas, at a high pre-charge, where stored energy, or a reduction in gas volume, would not lead to a huge increase in pressure.
Turning to
The pressure drop across the swing motor 16 may be controlled by varying the swash angle of the swing pump/motor 3 (which, in this case, is depicted as a hydraulically controlled variable displacement pump, but may be any suitable type including, for example, an electronically controlled displacement pump) and the opening of the dump valve 14. The amount of flow directed over the dump valve 14 is controlled by the swash angle of the swing pump/motor 3 and the pressure drop is controlled by the dump valve. The pressure drop across the dump valve 14 and the pressure drop across the swing pump/motor 3 are the same because they are in parallel. The flow to the dump valve 14 is wasted energy, but this can be minimal, as only a small amount of flow may be directed there. The distribution of flow between the swing pump/motor 3 and the dump 14 will be dictated by the amount of power the engine shaft can absorb as reported by the engine control unit. The power recovered by the engine shaft is directly proportional to the swing pump/motor 3 pressure drop, rotational speed, and displacement; the pump displacement being the most readily available variable to change. Once the displacement of the pump is known, the flow to the swing pump/motor can be calculated using the engine 2 speed. Because the total flow from the swing motor 16 is known, due to the swing speed sensor 34, the flow through the dump valve 14 can be determined. The isolation valve 13 remains in the open position, and the accumulator control valve 12 remains in the closed position.
In an alternate scenario the pump/motor 3 can be used recover energy back to the mains pumps 5, but instead of using the dump valve 14 to set the pressure, the swing relief valves 17 can instead be used to set the pressure. In this case the pump/motor would be set to a swash angle where the pressure, as measured by the pump pressure sensor 29, is equal to the relief valve setting. As in the previous scenario the maximum (negative) swing pump/motor 3 angle would be dictated by the amount of energy the main pumps 5 can recover, as reported by the engine control module. In this case some flow would be wasted, but through the swing relief valves 17 as opposed to the dump valve 14. This mode of operation offers a benefit: the dump valve 14 may not need to be included in the system, resulting in lower cost and more robust control as it requires one fewer component to control in tandem with other components.
When the swing movement decelerates to a very low speed, the available kinetic energy to capture is minimal. Thus, it may be deemed more valuable to perform other operations with the pressure in the hydraulic accumulator 10, or to fill the accumulator to a full charge.
The case in
In
In
There are two final modes of operation illustrated: ones in which the swing motor 16 is already stopped. One, shown in
As discussed above, the accumulator 10 can be used to supplement the engine 2 when the main pumps 5 are driving other functions such as the boom, arm, or bucket. This will reduce the amount of power from the engine and allow for more intelligent power control by operating at a more efficient operating point. Further, when the engine power is at a peak demand the accumulator 10 can be used to shave the power peaks, or load level, so there are not sudden increases in engine power demand. Further, the engine can be managed in a more intelligent way by varying the engine speed to operate at a more efficient point for the current operation. For example, when the power demand is lower the speed of the engine can be decreased while operating at a higher torque which often leads to greater engine efficiency.
Turning now to
The variable displacement pump has been illustrated more explicitly as a hydraulically controlled variable displacement pump (however, this is merely used as an example). The pump displacement control valves 104 may include a pressure compensator to limit pressure buildup in the system. This function may alternatively be accomplished with a pressure relief valve on the main hydraulic line.
Turning now to
The two selection valves 226, 227 are used to direct flow to/from the swing motor 216 to connect to the main pump/motor 205, swing pump/motor 203, and/or the hydraulic accumulator 210.
The swing control valves 228 are a configuration of four two way, two position proportional valves for independent metering of the pressure to or from the pump/motors 205, 203, 216 and/or accumulator 210 as seen in
Referring now to
In
Referring now to
Referring now to
In
As an alternative to the varying depictions of the swing control valve 215, a bank of pilot operated check valves, as depicted in
In particular, a P-A pilot-operated check valve (CV) 436 is disposed between the swing pump and a first side of the swing motor. The P-A CV 436 faces the pump (as used herein, a check valve is said to face the direction in which pressurized fluid is allowed to pass without a pilot signal). A P-B CV 439 is disposed between the swing pump and a second side of the swing motor. The P-B CV 439 faces the pump. An A-T CV 438 is disposed between the first side of the swing motor and a reservoir and faces the swing motor. A B-T CV 435 is disposed between the second side of the swing motor and the reservoir and faces the swing motor. A P-A pilot valve 434 is controllable to supply a pilot signal to the P-A CV 436 and the B-T CV 435 from the pump when energized. Similarly, a P-B pilot valve 437 is controllable to supply a pilot signal to the A-T CV 438 and the P-B CV 439 when energized.
Referring now to
To brake, the pilot 34 that was previously actuated may simply be de-energized and the natural tendency of the check valves will direct the flow and lead to braking. Although the P-B pilot can be actuated at this time, preferred embodiments allow the CV to act naturally to direct the flow. To use the either the accumulator and/or the swing pump/motor, the isolation valve is opened, whereas to brake using the swing relief valves the isolation valve is closed. To swing in the opposite direction the P-B CV 437 actuator is instead used to shift the A-T check valve 38 and the P-B check valve 439.
Although not shown in
Further, as mentioned previously, an internal combustion engine (ICE) may drive the electronically or mechanically controlled hydraulic pump which is used to power hydraulic components. Conventionally, the engine speed is set manually by the operator or controller programmer. The engine controller uses speed feedback control in order to maintain the engine at a predefined target speed. The engine speed regulator of the injection pump is set by a lever which is pivoted by a piston-cylinder unit. The engine controller controls the opening of the fuel throttle valve to determine the output torque. The torque may be adjusted by the displacement of the pump according to the power demand of the hydraulic system.
Referring now to
The sequence of the engine speed control and torque regulation may be described as follows:
Because the hydraulic energy can be stored, when the working machine is idling or very small power consumption is needed, the engine can be automatically brought to idle state and can even be turned off automatically to save energy. In order to achieve these energy savings through ICE shut-down (which is done in a manner as to not take away from the usability of the machine), the system is designed so that the hydraulic pump-motor can be used to rapidly restart the ICE. This pump-motor is much more durable than a standard starter on a typical ICE, providing lower maintenance costs in the long run.
Exemplary methodologies or portions thereof may be implemented as processor executable instructions or operations provided on a computer-readable medium (the ECM 244, e.g.). Thus, in one example, a computer-readable medium may store processor executable instructions operable to perform a method that includes one or more of the steps described above.
“Computer-readable medium,” as used herein, refers to a medium that participates in directly or indirectly providing signals, instructions or data. A computer-readable medium may take forms, including, but not limited to, non-volatile media, volatile media, and transmission media. Non-volatile media may include, for example, optical or magnetic disks, and so on. Volatile media may include, for example, optical or magnetic disks, dynamic memory and the like. Transmission media may include coaxial cables, copper wire, fiber optic cables, and the like. Transmission media can also take the form of electromagnetic radiation, like that generated during radio-wave and infra-red data communications, or take the form of one or more groups of signals. Common forms of a computer-readable medium include, but are not limited to, a floppy disk, a flexible disk, a hard disk, a magnetic tape, other magnetic media, a CD-ROM, other optical media, punch cards, paper tape, other physical media with patterns of holes, a RAM, a ROM, an EPROM, a FLASH-EPROM, or other memory chip or card, a memory stick, a carrier wave/pulse, and other media from which a computer, a processor or other electronic device can read. Signals used to propagate instructions or other software over a network, like the Internet, can be considered a “computer-readable medium.”
“Software,” as used herein, includes but is not limited to, one or more computer or processor instructions that can be read, interpreted, compiled, or executed and that cause a computer, processor, or other electronic device to perform functions, actions or behave in a desired manner. The instructions may be embodied in various forms like routines, algorithms, modules, methods, threads, or programs including separate applications or code from dynamically or statically linked libraries. Software may also be implemented in a variety of executable or loadable forms including, but not limited to, a stand-alone program, a function call (local or remote), a servelet, an applet, instructions stored in a memory, part of an operating system or other types of executable instructions. It will be appreciated by one of ordinary skill in the art that the form of software may depend, for example, on requirements of a desired application, the environment in which it runs, or the desires of a designer/programmer or the like. It will also be appreciated that computer-readable or executable instructions can be located in one logic or distributed between two or more communicating, co-operating, or parallel processing logics and thus can be loaded or executed in serial, parallel, massively parallel and other manners.
Suitable software for implementing the various components of the example systems and methods described herein may be produced using programming languages and tools like Java, Java Script, Java.NET, ASP.NET, VB.NET, Cocoa, Pascal, C#, C++, C, CGI, Perl, SQL, APIs, SDKs, assembly, firmware, microcode, or other languages and tools. Software, whether an entire system or a component of a system, may be embodied as an article of manufacture and maintained or provided as part of a computer-readable medium as defined previously. Other forms may also be used.
“Signal,” as used herein, includes but is not limited to one or more electrical or optical signals, analog or digital signals, data, one or more computer or processor instructions, messages, a bit or bit stream, or other means that can be received, transmitted or detected.
Exemplary HSDs may thus provide a number of advantages over conventional hydraulic excavators and conventional electric hybrid excavators (EHEs). First, HSDs may use existing fixed displacement swing motor with added hydraulic motor/pump, together with an energy storage device, to recover kinetic energy from the braking operation of machine upper structure and reduce the metering losses resulting in better fuel economy than conventional vehicles. Second, HSDs may increase the effective productivity of the vehicle by using stored energy to perform swing operations and thus allowing more of the engine power to be used for other functions. Third, HSDs provide a reliable and seamless transition of machine upper structure acceleration and braking operation. Fourth, HSDs may assist engine power by using stored brake energy to provide more smooth and efficient operation of hydraulic actuation functions. Fifth, HSDs may lower cooling requirements compared to conventional machines due to reduced heat generation from fluid throttling across a swing valve and valves of other functions. Sixth, HSDs may allow for optimized engine operation through engine management: the presence of an accumulator as an auxiliary energy source can be utilized to manage the engine more efficiently for a given power demand, and by using advanced control which actively controls the engine speed and torque independently through intelligent control of the pump displacement, the engine may be controlled to its most efficient points, thereby significantly improving fuel economy. Seventh, HSDs may reduce the engine size required for a given application by using accumulator or swing power to supplement engine power with hydraulic power to thereby level the peak load experienced by the engine.
Besides the benefits mentioned above exemplary HSDs are lower cost than systems in which the fixed displacement motor attached to the swing drive machinery is replaced with a variable unit. Further, using a directional control valve to control the direction of flow and the pressure drop across the motor is also a lower cost solution than a series of independent meter valves. Additionally, there will be less flow losses because the flow in exemplary systems is directed through fewer valves. There is also the option of controlling the swing brake 19, to override the activation, preventing unnecessary wear using the swing brake override valve 21.
It is noted that exemplary valve architectures, systems, and control methods can also be applied to other systems such as load sense and positive flow control, for example.
Although the invention has been shown and described with respect to a certain embodiment or embodiments, it is obvious that equivalent alterations and modifications will occur to others skilled in the art upon the reading and understanding of this specification and the annexed drawings. In particular regard to the various functions performed by the above described elements (components, assemblies, devices, compositions, etc.), the terms (including a reference to a “means”) used to describe such elements are intended to correspond, unless otherwise indicated, to any element which performs the specified function of the described element (i.e., that is functionally equivalent), even though not structurally equivalent to the disclosed structure which performs the function in the herein illustrated exemplary embodiment or embodiments of the invention. In addition, while a particular feature of the invention may have been described above with respect to only one or more of several illustrated embodiments, such feature may be combined with one or more other features of the other embodiments, as may be desired and advantageous for any given or particular application.
This application claims the benefit of U.S. Provisional Application No. 61/758,523 filed Jan. 30, 2013, which is hereby incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/013861 | 1/30/2014 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61758523 | Jan 2013 | US |