This application is the US national phase of PCT application PCT/DE2005/001166, filed 2 Jul. 2005, published 26 Jan. 2006 as WO2006/007811, and claiming the priority of German patent application 102004035306.9 itself filed 21 Jul. 2004, whose entire disclosures are herewith incorporated by reference.
The invention relates to a fluid-powered impact device, especially a hydraulic hammer.
A typical such fluid-powered impact mechanism is provided with a hammer piston that can be moved back and forth by means of a controller, and a guide unit on which the impact mechanism is carried. Furthermore, the impact device is provided with a control valve, designed as pressure-limiting valve (PSOV) or shutoff valve automatically deactivating the impact mechanism if the working pressure caused by the inlet pressure exceeds a predetermined maximum value/peak value by either blocking the pressure line or stopping the controller in one of its end positions, that is either in the position of the working stroke or of the return stroke. Finally, the impact mechanism is provided with a hydraulic stop buffer for decelerating the hammer piston when a predetermined impact area is passed.
The above-described device is known from EP 0 934 804 A2 (U.S. Pat. No. 6,959,967).
Fluid-powered impact devices, particularly those serving for milling stones, concrete or other construction materials are mostly used as additional or attached devices for construction machines such as excavators, loader or other carrier units. The connection of a impact device to a boom of a hydraulic excavator and the supply of the impact device by means of a pressure line as well as a return line are already described in DE 40 36 918 A1 (U.S. Pat. No. 5,174,387). The guide unit carrying the impact mechanism can be designed as a housing (hammer box) or as a supporting frame. The impact device consists of a cylinder in which a hammer piston is guided, a cylinder cover and a lower part of the hammer in which the chisel or the insertion end is mounted by means of wear is bushings.
The hammer piston is designed as a differential piston, i.e. it is provided with two oppositely directed annular actuator faces of different sizes. The lower actuator face, by means of which the return stroke is triggered when a pressurization takes place, is continuously pressurized with a predetermined operating pressure. The upper actuator face, by means of which the advance stroke is initiated by pressurization, is pressurized with the operating pressure or relieved to the sump pressure depending on the position of the spool valve. The advance stroke can be realized, since the upper annular actuator face is larger than the other, thus, pressurization with the operating pressure results in a force acting in striking direction. During the so-called advance stroke, the moving piston displaces the oil displaced by the smaller annular actuator face toward a chamber above the larger upper annular surface, which is also pressurized with the oil coming from the pump. During the return stroke, the oil from the pump flows only in the direction of the actuator face with smaller dimensions, whereas the oil from the actuator face with larger dimension is discharged by means of a throttle or an orifice providing an equilibrated operation of the hammer.
In particular, the impact mechanisms mentioned here are provided with a gas buffer, namely a chamber under gas pressure, into which the upper end face of the piston engages. The gas pressure in the chamber acts as an additional force on the piston in direction of the advance stroke. The part of the piston positioned at the other end of the piston, including the end face there or the striking surface reaches into a so-called striking chamber that is connected to the atmosphere.
Depending on the actuation position, the spool valve mentioned above which is preferably positioned in the cover either connects the actuator face with larger dimensions to the supply line such that the operating pressure is applied to it or during the return stroke depressurizes the surface by means of a line connecting the return line to the sump.
In addition, the spool valve of the control valve can be provided with a piston with two actuator faces, one of the surfaces or partial surfaces being constantly pressurized with a supply line pressure and the other surface being optionally either pressurized with or relieved of the supply line pressure; in the latter event, a connection to the sump is opened. Thanks to the different sizes of the actuator faces, the spool valve can be moved into one of its end positions.
The pressure-limiting valve or pressure-relief valve described in EP 0 934 804 A2 is connected to the pressure line pressurized with the working pressure and automatically deactivates the impact mechanism if the working pressure exceeds a predetermined peak value created by the operating pressure, by blocking either the pressure line or the controller in one of its end positions, namely the full-forward or the full-rearward position. Thus, it is guaranteed that the impact device is not exposed to inadmissibly high forces.
If the chisel does not engage the material to be broke up or if the chisel penetrates deeply into the material when a stroke is carried out, the piston passes its predetermined (theoretical) stroke impact area in the direction of the advance stroke and after a certain overtravel penetrates with its lower actuator face or the lower large-diameter portion, into a hydraulic stop buffer decelerating the piston before it can hit the lower part. This way, the impact on the components is reduced and damages are avoided.
The theoretical impact area describes the area where the lower front surface of the piston touches the upper back face of the chisel when the chisel is positioned at the abutment, i.e. in the theoretical impact position. Passing the theoretical impact area means the piston is positioned such that the lower end face of the piston is positioned below or above (during the return stroke) (during the return stroke) the theoretical impact area.
The pressure line can be blocked by the control valve or the controller can be stopped in one of its end positions as a preventative measure to avoid damage; for if the operating pressure is too high, the piston is accelerated too much and thus the level of stroke energy becomes too high. The above-described embodiment, however, has the following disadvantage: If the chisel does not contact the material to be destroyed or if the chisel penetrates (too) deeply into the material when advancing, the piston passes its theoretical impact area to a certain extent and penetrates into the hydraulic stop buffer with its lower actuator face or the large-diameter portion. In order to move the piston rearward out of the buffer, the hydraulic medium has to get into the chamber is below the actuator face with smaller surface by means of a supply line. Due to the piston passing the theoretical impact area, the hydraulic medium can only flow through a small gap between the lower large-diameter portion and the cylinder bore. The gap represents a comparatively high resistance in the sense of a throttle, by means of which the pressure in the pressure line connected to the annular chamber mentioned above is increased and thus reaches a level exceeding the level of operating pressure allowed, which again results in the pressure-limiting valve being actuated. This means that the hydraulic hammer is unintendedly switched off when the hammer piston is lifted.
It is the object of the present invention to eliminate this disadvantage.
For the solution of the objective, the fluid-powered impact device of the invention is characterized in that the control valve or the pressure-limiting valve remains deactivated until the hammer piston is moved out of the hydraulic stop buffer. Thanks the pressure in the signal line of the control valve being reduced to a level below the shut-off pressure set for the control valve, unintended deactivation is avoided so that, after penetrating into the buffer, the piston can be safely moved out of the buffer during the return stroke. Deactivation should only be carried out in extreme situations, for example not if the hammer operates on hard material and the hammer piston does not significantly pass its theoretical impact area. In such cases the pressure-limiting valve is required to remain active for protecting the hammer. Several solutions are possible for reducing pressure.
Thus, the pressure in the signal line may be reduced by providing a connection of the signal line with the return line, where, at the same time, the connection to the supply line is throttled or disconnected.
Preferably, the pressure-limiting valve is to be deactivated when the theoretical impact area is passed to a concrete degree in the forward impact direction. This may be detected by a bore positioned in a working cylinder at a suitable position, the closing or opening of the bore by the hammer piston being provoked by appropriate regulation (pressure reduction in the signal line).
Only when the operation condition has changed such that it may be assumed that the pressure was reduced to a normal level with correct input quantity and the values in the signal line are such that they do not result in the actuation of the pressure-limiting valve, the pressure is no longer reduced and the pressure-limiting valve for the protection of the impact device is reactivated. The signal for stopping reduction of the pressure may be triggered by moving the large-diameter portion out of the hydraulic buffer or by passing the theoretical impact area to a certain extent in the reverse return direction. The present invention also relates to such fluid-powered impact devices that are equipped with an automatic stroke-length reversal allowing for the hammer piston to carry out strokes of different length and thus allowing for a variation of the strike energy per strike. In addition to the transverse bore acting as a control line, which is called the long-stroke bore in impact devices, a second, lower transverse bore, namely the short-stroke bore, is provided. If the chisel does not directly contact the material to be destroyed or if the chisel penetrates deeply into the material when a stroke is carried out, the piston passes its theoretical impact area to a certain extent, and after covering a certain distance it establishes a connection with a transverse bore, the stroke-length reversal bore. By means of the pressure relief of the stroke-length reversal bore, a connection between the long-stroke bore and the short-stroke bore is established, so that the short-stroke bore also becomes active. Thus, during the return stroke, the spool valve is already put into advance stroke position when the large-diameter portion uncovers the lower short-stroke bore and connects it to the operating pressure acting on the lower actuator face of the piston. According to the invention, the control line of the pressure-limiting valve is no longer connected to the supply line but to the stroke-length reversal line. As soon as the piston passes the theoretical impact area in forward direction to a certain extent and penetrates into the hydraulic stop buffer, the line connected to the stroke-length reversal bore; and thus the signal line of the power shut-off valve is relieved toward the supply line by the existing turning motion of the piston. Thus, the power shut-off valve is deactivated.
If the lower large-diameter portion during the return stroke covers the stroke-length reversal bore and thus disconnects the connection to the return line, the stroke-length reversal line, according to one embodiment of the invention, is connected to the control line by means of a holding bore in the stroke-length reversal valve, which control line is connected to the return line when the spool valve is in return stroke position.
If, after the deactivation of the shut-off valve, the control switches to the advance stroke, the operating pressure acting in the control line is conducted into the stroke-length reversal bore by means of the holding bore in the stroke-length reversal valve, subsequent to which process the stroke-length reversal valve switches into the long-stroke position, in which position the holding bore connects the stroke-length reversal line with the pressure line. With the bore in the stroke-length reversal valve a certain pressure level in the stroke-length reversal bore is also maintained when the stroke-length reversal bore is closed by the piston and that the holding valve is reset from the short-stroke position into the long-stroke position. If the piston reaches a certain position above the top short-stroke dead point, the piston clears the stroke-length reversal bore and connects the bore with the lower supply groove connected to the supply line.
In case of bigger hammers, the long or short-stroke bores are not directly connected to the spool valve but a shutoff valve is provided that connects the control line to the spool valve, depending on the pressure level in the long-stroke bore. The pressure-limiting valve in the control line is either positioned is between the holding valve and the spool valve or between the shutoff valve and the long-stroke bore.
In the control line between the working cylinder central compartment and the spool valve, in which the signal for changing the setting of the spool valve depending of the position of the piston is applied, a shutoff valve is preferably provided connecting the line section on the side of the spool valve to the supply line or the return line, depending on the pressure in the line section on the side of the working cylinder central compartment. In this connection, the pressure-limiting valve is either provided between the shutoff valve and the spool valve or between the central compartment of the working cylinder and the shutoff valve.
According to a further embodiment of the invention it is provided that the piston uncovers a throttled connection between a line connected to the supply line and a line connected to the return line once the hammer piston has passed its top or bottom dead end (or the impact position) to a certain extent.
Preferably, the control valve has a control area that after being deactivated is connected to a pressure level such that an additional operation force is acting in deactivated position. Thus even after the reduction of the supply line pressure or the signal line pressure to a certain reset pressure, which is lower than the deactivation pressure set at the valve, the control valve is maintained deactivated.
Further possible embodiments as well as advantages are described in the drawings. They show:
a schematically shows a carrier device designed as hydraulic excavator on which a fluid-powered impact device is adjustably mounted,
b schematically shows the impact device shown in
The hydraulic excavator 1 shown in
The impact device 5 has a support frame 7 that is pivoted on the boom arm 6b as a guide unit and in which a fluid-powered impact mechanism 8 is carried according to one of the embodiments of
For controlling the reversal of movement of the hammer piston 13 there is a control valve 15, the smaller slide area S1 of which is continuously pressurized with the working pressure p provided by the pump 17 by means of a line 16. The line 3 supplies the working pressure p to the front compartment 12b, so that the annular piston face A2 is pressurized with the pressure p.
A larger valve area S2 of the spool valve 15 is connected to the central compartment 13c of the working cylinder by a control line 18. The line 18 is connected to a bore LH opening into the central compartment 13c of the working cylinder 12, which, according to the illustration, is above the front portion 13b of the hammer piston 13. The control line 18 has a pressure-limiting valve 19 having a throttle line 20 connected to the return line 4, which again is connected to the sump 21. The throttle line 20 has a throttle or orifice 22, and a signal line 23 leads to the line 20 between the orifice 22 and the pressure-limiting valve 19, which signal line 23 is connected to a signal bore of the working cylinder 13.
The pressure-limiting valve 19 forms an overload or overpressure protector, automatically deactivating the impact mechanism if the input pressure exceeds a predetermined peak value or overpressure. As long as the chisel 9, however, does not directly contact the material to be destroyed or penetrates deeply into the material, operation conditions may be observed in which the piston can pass its theoretical impact area TAE to a certain extent; in this case the lower large-diameter portion 13b penetrates into the lower hydraulic stop buffer. In order to move the piston out of the buffer in the direction of the return stroke, oil flowing through the line 3 or the bore 3a has to flow through an annular gap between the lower large-diameter portion 13b and the cylinder bore into the hydraulic stop buffer in order to apply pressure to the lower piston actuator face A2. Thus, the gap throttles oil flow, which results in the pressure in the pressure line increasing. If the control line of the pressure-limiting valve 19 is connected to the pressure line 3, such as in the case of the embodiment according to EP 0 934 804 A2, this would result in an unintended deactivation of the hammer. If the piston does not pass the theoretical impact area TAE to a significant degree, the bore connected to the signal line 23 is permanently pressurized with the pressure applied in the front part of cylinder rear compartment 12a connected to the pressure line 3 by means of an axial groove in the large-diameter front portion 13b. If the hammer piston passes the theoretical impact area TAE to a certain extent, the large-diameter front portion 13b closes the bore connected to the signal line 23. Pressure in the signal line 23 is relieved into the return line by the line 20 and the throttle 22. Thus, actuation of the valve 19 is prevented, even if the pressure in the pressure line 3 rises to a level well above the shut-off pressure of the valve 19. This is prevented by the throttle line 20 by means of the throttle 22, which, when the hammer piston 13 is moved out of the hydraulic stop buffer, prevents the pressure in the signal line 23 from increasing and thus also prevents the pressure-limiting valve from being actuated.
The embodiment according to
In the embodiment according to
In the embodiment according to
In the embodiment according to
In the embodiment according to
In the embodiment shown in
The embodiments illustrated in
Thus, the embodiment according to
In the embodiment shown in
In the embodiment according to
The embodiment according to
In the embodiment according to
In the embodiment according to
The blocking valves according to
In the embodiment according to
Number | Date | Country | Kind |
---|---|---|---|
10 2004 035 306 | Jul 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE2005/001166 | 7/2/2005 | WO | 00 | 1/19/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/007811 | 1/26/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4899836 | Vernot | Feb 1990 | A |
4967553 | Barthomeuf | Nov 1990 | A |
5174387 | Arndt | Dec 1992 | A |
5667022 | Gude | Sep 1997 | A |
5860481 | Prokop et al. | Jan 1999 | A |
5893419 | Hodges | Apr 1999 | A |
6334495 | Deimel et al. | Jan 2002 | B2 |
6491114 | Webel | Dec 2002 | B1 |
6959967 | Prokop | Nov 2005 | B1 |
Number | Date | Country | |
---|---|---|---|
20080296035 A1 | Dec 2008 | US |