This invention relates to a system for preventing a string of casing from being accidentally dropped from a drill rig into a wellbore when employing a power spider and a casing gripper mounted to a top drive.
In one type of running casing into a well or drilling with casing, the string of casing being made up is suspended in the well by a spider at the rig floor. The spider has hydraulically actuated slips. A pipe gripper mounts to the top drive, the pipe gripper having hydraulically actuated gripping members that grip an additional joint of casing to be made up to the string of casing. The operator rotates the top drive, which rotates the gripping members to make up the additional joint of casing with the string of casing. The operator then lifts the top drive, which raises the entire string of casing. The operator releases the spider slips and lowers the entire string of casing until the upper end of the newly added joint of casing is near the rig floor. The operator releases the gripper and picks up a new joint of casing to repeat the process.
A string of casing often contains hundreds of casing joints. Occasionally, an operator will inadvertently direct release fluid pressure to the spider slips when the gripper is in a released position. The weight of the string of casing may be adequate to prevent the release fluid pressure to release the slips; the slips normally have to move upward in order to release, and the casing string weight might prevent the slips from moving upward even if hydraulic fluid pressure is being applied. If the weight is not at that level, the slips will release and the entire string of casing will slide downward in the well. Depending on how far the casing slides, the results could be disastrous. Similarly, an operator might inadvertently direct release fluid pressure to the gripper when the spider slips are released.
The system has a hydraulic safety circuit that monitors apply hydraulic fluid pressure at the gripper and prevents hydraulic fluid pressure from being directed to move the slips to the released position if apply hydraulic fluid pressure is not already being directed to hold the gripping members in the gripping position. The safety circuit also monitors apply hydraulic fluid pressure at the spider and prevents release hydraulic fluid pressure from being directed to move the gripping members to the released position if apply hydraulic fluid pressure is not already being directed to hold the slips in the gripping position.
Spider hydraulic apply and release lines extend between the spider control valve and the spider. Gripper hydraulic apply and release lines extend between the gripper control valve and the gripper. The safety circuit prevents hydraulic fluid pressure from being directed through the spider release line to the spider unless hydraulic fluid pressure is being directed through the gripper apply line to the gripper. The safety circuit prevents hydraulic fluid pressure from being directed through the gripper release line to the spider unless hydraulic fluid pressure is being directed through the spider apply line to the spider.
In a preferred embodiment, a gripper safety valve is connected into the release line between the spider control valve and the release port on the spider. A spider safety valve is connected into the release line between the gripper control valve and the release port on the gripper. The gripper safety valve blocks hydraulic fluid pressure being directed to the release port on the spider if the hydraulic fluid pressure at the apply port on the gripper is zero. The spider safety valve blocks hydraulic fluid pressure being directed to the release port on the gripper if the hydraulic fluid pressure at the apply port on the spider is zero.
The safety valves may be pilot operated check valves. A spider pilot line extends from the gripper apply line to the spider check valve to deliver hydraulic fluid pressure from the gripper apply line to the spider check valve to move the spider check valve to an open position. A gripper pilot line extends from the spider apply line to the gripper check valve to deliver hydraulic fluid pressure from the spider apply line to the gripper check valve to move the gripper check valve to an open position.
In one embodiment, a spider pilot bleed off line extends from the spider pilot line and is in continuous fluid communication with the reservoir. A gripper pilot bleed off line extends from the gripper pilot line and is in continuous fluid communication with the reservoir. The bleed off lines have flow areas sufficiently small so as to allow adequate hydraulic fluid pressure in the spider and gripper apply lines to actuate the spider and the gripper respectively. The flow is large enough, however, to allow the spider and gripper pilot lines to bleed off to the reservoir when fluid pressure does not exist in the spider and gripper apply lines.
The safety circuit may also include a sensing mechanism that physically senses whether the gripping members are in the gripping position, and which blocks any hydraulic fluid pressure at the spider release port if the gripping members are not in the gripping position, even if hydraulic fluid pressure at the apply port of the gripper is above zero. This function may be accomplished with a limit switch valve connected in the spider pilot line and having open and closed positions. In one embodiment, a cam is mounted to a first component of the gripper and a cam follower is mounted to a second component of the gripper. The first and second components move relative to each other when the gripping members move to the gripping position. The cam and cam follower are positioned so as to place the limit switch valve in the open position only when the gripping members are in a true gripping position.
Referring to
The drilling rig has a top drive 25 in this embodiment. Top drive 25 is a power unit that is capable of upward and downward movement along a track secured in the derrick (not shown). Top drive 25 has a quill or drive stem 27 that it rotates. A second tool or casing gripper 29 is suspended from quill 27. Casing gripper 29 has an actuator 31 that is typically hydraulic and comprises a piston 32 and typically a spring that biases the piston toward a gripping position. A mandrel 33 extends through actuator 31 and is rotatable relative to actuator 31. Mandrel 33 secures to the lower end of quill 27 for rotational and axial movement therewith.
Actuator 31 has an anti-rotation key 35 that prevents actuator 31 from rotating with quill 27 and mandrel 33. In this example, actuator key 35 engages an anti-rotation bracket 37 that is rigidly secured to and extends downward from top drive 25. As shown in
Gripper 29 could be either a type that grips an inner diameter of a tubular member or an outer diameter. The gripper illustrated is a type that grips an inner diameter of a tubular member. A plurality of ramps or cam surfaces 39 are formed on a lower portion of mandrel 33. Cam surfaces 39 comprise generally saw tooth-shaped grooves in this example. A plurality of links 41 extend downward from actuator 31, each having a slip or gripping member 42 on its lower end. Links 41 are spaced circumferentially apart from each other around mandrel 33. Links 41 are coupled to the piston within actuator 31 for axial movement therewith. Links 41 are rotatable relative to actuator 31 as they rotate in unison with mandrel 33. Bearings (not shown) are employed between the piston and the links 41 to accommodate this movement. When supplied with hydraulic fluid pressure to release, actuator 31 will stroke links 41 downward relative to mandrel cam surfaces 39 from the released position shown in
In the position of
The hydraulic system for spider 11 includes a spider control valve 49 that is manually actuable by an operator on rig floor 13. Spider control valve 49 can be of different types for supplying hydraulic fluid pressure to spider 11. In this embodiment, spider control valve 49 is a three-position valve having a gripping position 49a for directing apply pressure to spider cylinders 21 to cause slips 17 to grip casing string 23. Spider control valve 49 also has a release position 49b that directs release hydraulic fluid pressure to the opposite sides of hydraulic cylinders 21, causing slips 17 to move to the released position of
A hydraulic fluid pump 51 will supply hydraulic fluid pressure to spider control valve 49 as illustrated. Hydraulic pump 51 draws and returns fluid to a reservoir 53. Both pump 51 and reservoir 53 are connected to spider control valve 49. A spider apply line 55 leads from spider control valve 49 to apply ports 50 on hydraulic cylinders 21. A spider release line 57 leads from spider control valve 49 to release ports 52 on opposite sides of the pistons in hydraulic cylinders 21.
A hydraulic safety circuit includes a spider safety valve, which may be a pilot actuated check valve 59 mounted in spider release line 57. Spider check valve 59 will block the flow of hydraulic fluid pressure through spider release line 57 to hydraulic cylinders 21 even if spider control valve 49 is in release position 49b, unless actuated by pilot fluid pressure, as will be explained subsequently. Spider check valve 59 is biased to a closed position for flow to release ports 52 and will open only when receiving a hydraulic pilot signal. Spider check valve 59 will not block any flow from release ports 52 back to spider control valve 49 and reservoir 53 when spider control valve 49 is in apply position 49a. Spider check valve could alternately be a valve that selectively blocks flow in both directions if provisions are made for allow return flow through release line 57 when fluid pressure is applied to apply ports 50.
The hydraulic system for actuator 31 includes a gripper control valve 61. In this example, gripper control valve 61 is of the same type as spider control valve 49, but it could differ. Gripper control valve 61 is also a three-position manually actuated valve, having an apply position 61a, a release position 61b, and a closed position 61c. In the apply position 61a, a gripper control line 63 will be supplied with hydraulic fluid pressure from pump 51. Gripper apply line 63 leads to an apply port 64 on the upper side of piston 32 within gripper actuator 31. While in the release position 61b, hydraulic fluid pressure will be supplied to a gripper release line 65 that extends from gripper control valve 61 to a release port 66 on the opposite side of piston 32 of gripper actuator 31.
The hydraulic safety circuit also includes a gripper safety valve, which may be a pilot actuated check valve 67 located within gripper release line 65. Gripper check valve 67 will block the flow of hydraulic fluid from pump 51 to the release side of the piston of actuator 31 even if control valve 61 is in position 61b. It will allow flow to release port 66 only if gripper control valve 61 is in release position 61b and pilot hydraulic fluid pressure is received by pilot check valve 67. Gripper check valve 67 is biased to a closed position to flow to release port 66 and will open to flow to release port 66 only if receiving a hydraulic fluid pressure pilot signal. Gripper check valve 67 will freely allow flow from release port 64 back to gripper control valve 61 and reservoir 53 when gripper control valve 61 is in apply position 61a. Gripper check valve 67 could alternately be a valve that closes flow in both directions if provisions are made for allow return flow through release line 65 to reservoir 53 when fluid pressure is applied to apply port 64.
The hydraulic pilot signal to spider check valve 59 is delivered by a spider pilot line 69 that extends to gripper apply line 63. A gripper pilot line 71 extends from gripper check valve 67 to spider apply line 55 to provide a hydraulic pilot signal. If hydraulic fluid pressure in gripper apply line 63 is zero, spider pilot line 69 will not be able to deliver hydraulic fluid pressure to spider check valve 59, and release hydraulic fluid pressure will not be supplied to release ports 52 on spider 11. This interlocking arrangement reduces the chance for an operator to inadvertently release spider 11 when gripper is released and vice-versa.
With some types of grippers, however, the gripping members might be supplied with apply fluid pressure at apply port 64 but not located within or around a casing joint. Apply port 64 would have hydraulic pressure above zero, thus a hydraulic pilot signal would be applied to spider check valve 59, which would allow the operator to inadvertently release spider 11. The operator might not be able to see that gripper 29 is spaced above the upper end of casing joint 43 rather than gripping casing joint 43 because gripper 29 will be about 40 feet above the operator. To prevent this occurrence, a device to physically sense whether gripper 29 is in true gripping engagement with casing joint 43 may be employed. This device may be a variety of types. In this example, the device includes a limit switch valve 73, which may be connected in spider pilot line 69. Limit switch valve 73 is moved between closed and open positions 73a and 73b by movement of a probe such as a cam follower 75, which is shown schematically. Limit switch valve 73 is biased to the closed position 73a. Cam follower 75 is positioned to engage a cam 77, which has upper and lower inclined surfaces that join at a straight central portion or crest. Cam follower 75 will move onto the central portion of cam 77 when gripper actuator 31 reaches a true gripping position, causing limit switch valve 73 to move from closed position 73 to open position 73b.
Gripper 11 has at least two components that move relative to each other when stroking from the released to the gripping position. In this embodiment, cam follower 75 and limit switch valve 73 are mounted to actuator 31, as illustrated in
When engaged by cam follower 75, cam 77 pushes cam follower 75 to the right, as shown in
Another safety measure may be applied to the safety circuit to avoid erroneous positive hydraulic signals. It is possible that apply pressure within spider pilot line 69 fails to bleed back to reservoir 53 when gripper control valve 61 is in a position other than gripping position 61a. Similarly, it is possible that apply pressure in gripper pilot line 71 fails to bleed back to reservoir 53 when spider control valve 49 is in a position other than apply position 49a. If so, the trapped pressure in pilot lines 69 or 71 could mistakenly open spider check valve 59 or gripper check valve 67. The opening of check valve 59 when apply pressure has not actually moved gripper 29 to the gripping position could result in both gripper 29 and spider 11 being simultaneously in the released positions. To reduce the chance of trapped pressure causing a false positive signal in spider check valve 59, a bleed off line 81 is tapped into spider pilot line 69. Bleed off line 81 is continuously open and extends to reservoir 63. Bleed off line 81 has a flow area small enough such that when apply fluid pressure is applied to gripper apply line 63, the leakage to reservoir 53 will not be so high to prevent gripper 29 from moving to the gripping position. In this example, the small flow area is provided by fluid restrictor or orifice 83 mounted in bleed off line 81. Orifice 83 has an inner diameter smaller than an inner diameter of bleed off line 81. For example, the inner diameter of orifice 83 may be 0.015 inch. The small inner diameter of orifice 83 still allows any trapped fluid pressure in spider pilot line 69 to bleed off to reservoir 53. Similarly, a bleed off line 85 leads from gripper pilot line 71 to reservoir 53. Bleed off line 85 also has an orifice or fluid restrictor 87. Alternately, both bleed off lines 81 and 85 could join each other and have a single fluid restrictor before reaching reservoir 53.
In operation, while lowering casing string 23 into a wellbore for either a cementing operation or a drilling operation, the operator will assemble a string of casing 23 and suspend it from spider 11 as shown in
When actuator 31 moved to the gripping position, it caused cam follower 75 to move onto the central portion of cam 77 as schematically illustrated in
The operator will then lower top drive 25 and casing string 23 down until single casing joint 43 is positioned with its upper end a short distance above spider 11. The operator then will direct apply pressure to spider apply line 55, causing slips 17 to move to the gripping position. The operator then repeats the sequence.
The operator can always apply fluid pressure to spider 17 and to gripper 29 to cause them to grip, regardless of the position of limit switch valve 73 or the status of check valves 59 and 67. Check valves 59, 57 and limit switch valve 73 serve to prevent the operator from inadvertently releasing spider 11 when casing gripper 41 is not properly supporting the weight of casing string 23 or vice versa. Hydraulic fluid pressure cannot flow through release line 57 of spider 11 unless spider check valve 59 is open. Check valve 59 is open only when hydraulic fluid pressure exists in gripper apply line 63 and cam follower 75 is properly engaging cam 77. For example, if cam follower 75 does not move far enough to center on cam 77, limit switch valve 73 would still be in the closed position 73a. If cam follower 75 has moved less than the required distance, it is likely that casing gripper 29 is not properly gripping the casing. A greater than required travel distance of cam follower 75 indicates that gripping members 42 are being actuated in air rather than in casing. Similarly, the operator will not be able to apply release pressure to gripper release line 65 unless its check valve 67 is open. Check valve 67 will be open only if hydraulic fluid pressure exists in apply line 55 of spider 11.
Preferably, the relative positions of cam follower 75 and cam 77 can be adjusted for different casing diameters. This may be accomplished by either moving cam follower 75 axially up and down relative to cam 77 or vice versa. A larger diameter casing requires more travel for gripping members 42 to grip the inner diameter of the casing than a smaller diameter.
While the invention has been described in only a few of its foams, it should be apparent to those skilled in the art that it is not so limited but is susceptible to various changes without departing from the scope of the invention. For example, the interlock arrangement shown may be used with tools having hydraulically actuated slips other than spiders and pipe grippers.
This application claims priority to provisional application 61/261,570 filed Nov. 16, 2009.
Number | Date | Country | |
---|---|---|---|
61261570 | Nov 2009 | US |