The disclosure relates to combustion engines with hydraulic lash adjusters.
A hydraulic lash adjuster (HLA) eliminates clearance (lash) between a valve and its rocker lever while permitting thermal expansion and preventing or attenuating noise generated by movement due to the clearance. As diesel engines are improved to reduce their noise, vibration and harshness (NVH) signatures, valve train noise is becoming more apparent.
However, as the space between valves and fuel injectors decreases, it becomes increasingly more difficult to mount the HLAs without interference with the fuel injectors. There is a need, therefore, for an improved combustion engine with a reduced NVH signature.
An eccentric hydraulic lash adjuster, a combustion engine comprising the eccentric hydraulic lash adjuster, and a method of assembling the combustion engine, are provided. The eccentric hydraulic lash adjuster has an offset dimensioned to prevent interference between the nose of a rocker lever and the fuel injector.
In some embodiments, an eccentric hydraulic lash adjuster (80) comprises a housing (82) having a pivot point (85) and a longitudinal axis (67) offset from a line parallel to the longitudinal axis and passing through the pivot point (85), wherein the offset is greater than 0.0 millimeters (mm).
In some embodiments, a valve train assembly (10) comprises an eccentric hydraulic lash adjuster (80) that comprises a housing (82) having a pivot point (85) and a longitudinal axis (67) offset from a line parallel to the longitudinal axis and passing through the pivot point (85), wherein the offset is greater than 0.0 millimeters (mm), and further comprises two valves (40, 42); a rocker lever shaft (20); a rocker lever (12, 14) structured to pivot about the rocket lever shaft (20) and having a nose (30, 32) at a distal end thereof; and a bridge bar (54, 56) extending between the two valves (40, 42), the rocker lever (12, 14) configured to apply pressure on the bridge bar (54, 56) to actuate the two valves (40, 42), the eccentric hydraulic lash adjuster (80) positioned in the nose (30, 32) of the rocker lever (12, 14).
In some embodiments, a combustion engine comprises a valve train assembly (10) comprising an eccentric hydraulic lash adjuster (80) that comprises a housing (82) having a pivot point (85) and a longitudinal axis (67) offset from a line parallel to the longitudinal axis and passing through the pivot point (85), wherein the offset is greater than 0.0 millimeters (mm), the valve train assembly (10) further comprising two valves (40, 42); a rocker lever shaft (20); a rocker lever (12, 14) structured to pivot about the rocket lever shaft (20) and having a nose (30, 32) at a distal end thereof; and a bridge bar (54, 56) extending between the two valves (40, 42), the rocker lever (12, 14) configured to apply pressure on the bridge bar (54, 56) to actuate the two valves (40, 42), the eccentric hydraulic lash adjuster (80) positioned in the nose (30, 32) of the rocker lever (12, 14), and the combustion engine further comprises a fuel injector (44) adjacent to the nose (30, 32) of the rocker lever (12, 14) and the bridge bar (54, 56), wherein the offset is positioned and dimensioned to prevent interference between the nose (30, 32) and the fuel injector (44) during operation of the combustion engine. An embodiment of a method of making the combustion engine comprises mounting the two valves (40, 42) adjacent the fuel injector (44); mounting the rocker lever (12, 14) on the rocker lever shaft (20), which is structured to enable the rocker lever (12, 14) to pivot about the rocket lever shaft (20); inserting the eccentric hydraulic lash adjuster (80) in the nose (30, 32); placing the bridge bar (54, 56) over the two valves (40, 42); and positioning the rocker lever (12, 14) with the nose (30, 32) over the bridge bar (54, 56) adjacent the fuel injector (44).
In some embodiments, a method of making a combustion engine comprises mounting two valves (40, 42) adjacent a fuel injector (44); mounting a rocker lever (12, 14) on a rocker lever shaft (20) structured to enable the rocker lever (12, 14) to pivot about the rocket lever shaft (20), the rocker lever (12, 14) having a nose (30, 32) at a distal end thereof; inserting an eccentric hydraulic lash adjuster (80) in the nose (30, 32), the eccentric hydraulic lash adjuster (80) including a pivot point (85) offset from a longitudinal axis (67) of the eccentric hydraulic lash adjuster (80); placing a bridge bar (54, 56) over the two valves (40, 42); and positioning the rocker lever (12, 14) with the nose (30, 32) over the bridge bar (54, 56) adjacent the fuel injector (44), wherein the offset is dimensioned to prevent interference between the nose (30, 32) and the fuel injector (44) during operation of the combustion engine, whereby without the offset the nose (30, 32) would interfere with the fuel injector (44) during operation of the combustion engine.
The above-mentioned and other disclosed features, the manner of attaining them, and the advantages thereof will become more apparent and will be better understood by reference to the following description of disclosed embodiments taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. Although the drawings represent embodiments of various features and components according to the present invention, the drawings are not necessarily to scale and certain features may be exaggerated in order to better illustrate and explain the present invention. The exemplification set out herein illustrates embodiments of the invention, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings, which are described below. The embodiments disclosed below are not intended to be exhaustive or limit the invention to the precise form disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art may utilize their teachings. It will be understood that no limitation of the scope of the invention is thereby intended. The invention includes any alterations and further modifications in the illustrated devices and described methods and further applications of the principles of the invention which would normally occur to one skilled in the art to which the invention relates.
A combustion engine comprises a head removably mounted on a block. The block includes combustion cylinders and pistons moving longitudinally therein. A valve train assembly comprises valves and components configured to actuate the valves, to enable gases to flow into and out of the combustion cylinders synchronized by a crankshaft of the combustion engine. A valve train assembly will be described with reference to
An HLA comprises a cylinder encasing a piston that is held at the outer limit of its travel by a spring. The HLA is supported by the rocker lever. The cylinder fills with oil when the rocker lever in a neutral position. A check-valve prevents drainage of the oil as the rocker lever pivots during the lift phase of the camshaft's travel, maintaining the piston in position. The load is then reduced as the camshaft rotates, and the internal spring returns the piston to its neutral state so that any oil leaked out of the cylinder is replaced. The small range of travel of the piston is enough to eliminate the lash adjustment.
The HLA is traditionally supported by the rocker lever between its distal end and the shaft upon which the rocker lever pivots, which is generally a low inertia portion of the lever arm. In small engines or engines with a large number of fuel injectors and valves, there may not be enough space to add HLAs in the traditional location. The HLA could be mounted at the distal end, or nose, of the rocker lever, over the valve. But over-valve mounting requires a rocker lever for each valve, which requires additional space and increases costs, and which undesirably increases the inertia of the rocker assembly.
A bridge bar can be placed over two valves such that one rocker lever can actuate both valves. The HLA can then be positioned over the bridge bar, and one rocker lever can thus actuate two valves. But the nose of the rocker lever, which holds the HLA, can interfere with the fuel injector, which is positioned between the valves. For example, the minimum distance between the bridge bar and the fuel injector will be defined by the width of the nose of the bridge bar. If the bridge bar is positioned closer to the fuel injector than said minimum distance, the nose will interfere with the fuel injector. The inventors developed an HLA with an offset pivot point, referred to as an eccentric HLA or EHLA. The offset permits the EHLA to apply force at the center of the bridge bar, thus preventing lateral tilting of the bridge bar, and at the same time enables placement of the bridge bar (and the valves) closer to the fuel injector than is possible without the offset, thereby permitting addition of EHLAs to engines where use of HLAs is otherwise not possible without other means that require more parts and increase cost.
As shown in
Referring to
As shown in
Referring now to
In some embodiments, HLA offset 62 is not perpendicular to axis 65 or parallel with line 144. For example, HLA offset 62 may be disposed at an angle greater than 0 degrees and up to and including 15 degrees. Accordingly, pivot point 85 remains on axis 65 but axis 67 does not traverse line 144. A line passing through axis 85 and axis 67 is therefore at an angle, referred to as the HLA offset angle, of not more than 15 degrees to line 144. This arrangement may be desirable to enable use of rocker levers of various shapes.
In, some embodiments pivot point 85 does not traverse axis 65 and is instead translated from axis 65. The amount of translation should be limited to prevent destabilizing bridge bar 54, 56 or creating timing or torque differences in relation to the valves operably coupled to bridge bar 54, 56, which negatively affect operation of valve train assembly 10. The translation may be along the length of bridge bar 54, 56 or along its width, or along both. In other words, pivot point 85 may be offset in any direction from the center 68 of bridge bar 54, 56. The amount of offset in relation to the center of bridge bar 54, 56 may be based on various factors including dimensions of the various components.
Referring to
As used herein, the transitional term “comprising”, which is synonymous with “including,” or “containing,” is inclusive or open-ended and does not exclude additional, unspecified elements or method steps. By contrast, the transitional term “consisting” is a closed term which does not permit addition of unspecified terms.
While this disclosure has been described as having exemplary designs, the present disclosure can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the disclosure using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this disclosure pertains and which fall within the limits of the appended claims.
This is a § 371 application of International Patent Application No. PCT/US2017/22329, filed Mar. 14, 2017, which claims the benefit of U.S. Patent Application No. 62/310,213 titled “HYDRAULIC LASH ADJUSTER”, filed Mar. 18, 2016, the disclosures of both applications incorporated herein in their entirety by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/022329 | 3/14/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/160859 | 9/21/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6148780 | O'Neill | Nov 2000 | A |
6718946 | Hokazono | Apr 2004 | B2 |
RE39258 | Cosma | Sep 2006 | E |
8667939 | Barnes | Mar 2014 | B2 |
8789502 | Barnes | Jul 2014 | B2 |
9200541 | Roberts | Dec 2015 | B2 |
20020069846 | Kunz | Jun 2002 | A1 |
20090159028 | Douse | Jun 2009 | A1 |
20110056447 | Astner | Mar 2011 | A1 |
20150122220 | Cecur | May 2015 | A1 |
20150159520 | Cecur | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
102012200754 | Jul 2013 | DE |
Entry |
---|
International Search Report and Written Opinion issued by the International Searching Authority, dated Jun. 8, 2017, for International Application No. PCT/US2017/22329; 7 pgs. |
Number | Date | Country | |
---|---|---|---|
20180119579 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
62310213 | Mar 2016 | US |