Not Applicable.
Not Applicable.
1. Field of the Invention
The present invention relates to electrically controlled hydraulic systems for operating machinery, and in particular to determining in which one of a plurality of hydraulic fluid metering modes the system should operate at any given time.
2. Description of the Related Art
A wide variety of machines have members which are moved by a hydraulic actuator, such as a cylinder and piston arrangement, that is controlled by a hydraulic valve. Traditionally the hydraulic valve was manually operated by the machine user. There is a present trend away from manually operated hydraulic valves toward electrical controls and the use of electrohydraulic valves, such as those driven by solenoids. This type of control simplifies the hydraulic plumbing as the control valves do not have to be located near an operator station, but can be located adjacent the actuator being controlled. This change in technology also facilitates sophisticated computerized control of the machine functions.
Application of pressurized hydraulic fluid from a pump to the actuator and fluid flow back from the actuator to a reservoir is governed by an assembly of proportional solenoid operated spool valves. To control a cylinder-piston type hydraulic actuator for example, four solenoid valves are connected in the legs of a Wheatstone bridge with the supply line from the pump and return line to the reservoir coupled to two opposite bridge corners and two cylinder chambers connected to the other two corners, as described in U.S. Pat. No. 6,880,332. By selectively operating different pairs of the valves, fluid is conveyed to and drained from the cylinder chambers to extend and retract the piston rod. The amount that each valve opens is directly related to the magnitude of electric current applied to the solenoid coil, thereby enabling proportional control of the hydraulic fluid flow.
When an operator desires to move a member on the machine a joystick is operated to produce an electrical signal indicative of the direction and desired rate at which the corresponding hydraulic actuator is to move. The faster the actuator is desired to move the farther the joystick is moved from its neutral position. A control circuit receives a joystick signal and responds by producing a signal to open the pair of valves associated with the direction of the desired motion.
The aforementioned U.S. patent describes a velocity based hydraulic control system having a plurality of different metering modes which are selected to drive the actuator in the intended direction. The metering modes utilize fluid from different sources in the system and consume various amounts of power to operate the pump. Therefore, some metering modes are more energy efficient than others. However, a particular metering mode may only be available under certain operating conditions, such as requiring specific pressure relationships among sections of the hydraulic system.
The fundamental metering modes in which fluid from the pump supply line is supplied to one of the cylinder chambers and drained to the reservoir return line from the other chamber are referred to as “standard metering modes”, specifically a standard extension metering mode or a standard retraction metering mode. A hydraulic system also can employ regeneration metering modes in which fluid draining from one cylinder chamber is fed back through the valve assembly to supply the other cylinder chamber. In a regeneration metering mode, the fluid can flow between the chambers through either the corner of the valve bridge connected to the supply line, called “high side regeneration”, or through the valve bridge corner coupled to the reservoir return line in “low side regeneration”. In cross function regeneration metering modes, fluid exiting under pressure from one hydraulic actuator is routed, either through the supply line or the return line, to power another hydraulic actuator. The regeneration metering modes employ fluid being exhausted from a hydraulic actuator in place of fluid from the pump thereby saving energy than otherwise is required to drive the pump.
An electronic controller for the hydraulic system monitored the operating conditions that were used to determine the metering mode and automatically selected the most efficient mode that was functionally available. When the operating conditions changed so that it was advantageous to use another metering mode than that which was currently active, the system switched directly to the more efficient metering mode. This worked effectively in many situations, such as when a sharp load change occurred, for example upon the bucket of an excavator hitting the ground. However, abrupt metering mode transitions did not work well in other situations, such as when the excavator bucket was elevated in the air or when a telehandler boom was extending. In these latter situations, the abrupt metering mode transition often produced a jerk in the machine motion, which upset the machine operator who erroneously believed that the machine was malfunctioning. The prior solution involved restricting the occurrence of metering mode transitions to only when a sharp load changes took place. However, this dramatically limited the efficiency derived from having multiple metering modes.
A typical hydraulic system has a supply line that carries fluid from a pump, a return line which carries fluid back to a tank the feeds the pump, and a hydraulic actuator, such as a piston and cylinder arrangement coupled to the supply line and the return line by a plurality of valves which serves as a flow control mechanism. Each of the plurality of valves is selectively operated to control the flow of fluid to and from the hydraulic actuator in both standard and regeneration metering modes.
The process for selecting which metering mode to use at any point in time involves determining a parameter, referred to herein as the hydraulic load, which denotes an amount of force acting on the actuator. The magnitude of the hydraulic load is used to choose a particular metering mode from the plurality of available modes. The hydraulic system has a first state in which only a standard metering mode is active to control the actuator, and has a second state in which only a regeneration metering mode is active. In a third state, a combination of the standard and regeneration metering modes is utilized, which provides a state that smoothes a transition between the first and second states. While the third state is operational, two metering modes are used in proportion to a proportional relationship of the hydraulic load to the first and second thresholds.
Preferably, the change between the two metering modes occur at different levels of the hydraulic load depending upon the direction of that transition, thereby producing a transition function that has hysteresis. For example, a transition occurs from the first state to the third state when the magnitude of the hydraulic load traverses a first threshold and another transition occurs from the third state to the second state when the magnitude of the hydraulic load traverses a second threshold. Inversely, when the hydraulic load traverses a third threshold while in the second state, a transition takes place from the second state to a fourth state in which a second combination of the standard and regeneration metering modes is employed. Thereafter, upon the magnitude of the hydraulic load traversing a fourth threshold, a transition from the fourth state to the first state.
The supply line 14 and the tank return line 18 are connected to a plurality of hydraulic functions on the machine on which the hydraulic system 10 is located. One of those functions 20 is illustrated in detail and other functions 11 have similar components. A distributed type hydraulic system 10 is illustrated where the valves for each function and control circuitry for operating those valves are located adjacent to the actuator for that function. For example, those components for controlling movement of the arm with respect to the boom of an excavator are located at or near the arm's hydraulic cylinder.
In the given hydraulic function 20, the supply line 14 is connected to node “s” of a valve assembly 25, which has a node “t” that is connected to the tank return line 18. The valve assembly 25 includes a node “a” that is connected by a first hydraulic conduit 30 to the head chamber 26 of the cylinder 16, and has another node “b” which is coupled by a second conduit 32 to the rod chamber 27 of cylinder 16. Four electrohydraulic proportional (EHP) valves 21, 22, 23, and 24 control the flow of hydraulic fluid between the nodes of the valve assembly 25 and thus control fluid flow to and from the cylinder 16. The first EHP valve 21 is connected between nodes “s” and “a” and controls the flow of fluid between the supply line 14 and the head chamber 26 of the cylinder 16. The second EHP valve 22 is connected between nodes “s” and “b” to control fluid flow between the supply line 14 and the cylinder rod chamber 27. The third EHP valve 23 is connected between node “a” and node “t” and governs fluid flow between the head chamber 26 and the return line 18. The EHP valve 24, which is between nodes “b” and “t”, controls the flow from the rod chamber 27 to the return line 18.
The components for the given hydraulic function 20 also include two pressure sensors 36 and 38 which detect the pressures Pa and Pb within the head and rod chambers 26 and 27, respectively, of cylinder 16. Another pressure sensor 40 measures the pump supply pressure Ps at node “s”, while pressure sensor 42 detects the tank return pressure Pr at node “t” of the hydraulic function 20. It should be understood that the various pressures measured by these sensors may be slightly different from the actual pressures at these points in the hydraulic system due to line losses between the sensor and those points. However the sensed pressures relate to and are representative of the actual pressures and accommodation can be made in the control methodology for such differences. Further, all the pressure sensors may not be present for all functions 11.
The pressure sensors 36, 38, 40 and 42 for the hydraulic function 20 provide input signals to a function controller 44 which operates the four electrohydraulic proportional valves 21-24. The function controller 44 is a microcomputer based circuit which receives other input signals from a system controller 46, as will be described. A software program executed by the function controller 44 responds to those input signals by producing output signals that selectively open the four electrohydraulic proportional valves 21-24 by specific amounts to operate the cylinder 16 in a desired manner.
The system controller 46 supervises the overall operation of the hydraulic system exchanging signals with the function controllers 44 and a pressure controller 48. The signals are exchanged among the three controllers 44, 46 and 48 over a communication network 55 using a conventional message protocol. The pressure controller 48 receives signals from a supply line pressure sensor 49 at the outlet of the pump, a return line pressure sensor 51, and a tank pressure sensor 53. In response to those pressure signals and commands from the system controller 46 the pressure controller 48 operates the tank control valve 19 and the unloader valve 17. However, if a variable displacement pump is used, the pressure controller 48 controls the pump, instead of the unloader valve 17.
With reference to
In an ideal situation the desired velocity is used to control the hydraulic valves associated with that hydraulic function. However, in many instances, the desired velocity may not be achievable in view of the simultaneous demands placed on the hydraulic system by other functions 11 of the machine. For example, the total quantity of hydraulic fluid flow demanded by all of the functions may exceed the maximum output of the pump 12, in which case, the control system must apportion the available quantity among the hydraulic functions demanding hydraulic fluid, and a given function may not be able to operate at the full desired velocity. Although that apportionment may not achieve the desired velocity of each hydraulic function, it still maintains the velocity relationship among the actuators as indicated by the machine operator.
In order to determine whether sufficient flows exist from all sources to produce the desired function velocities, the flow sharing routine 52 receives indications as to the metering mode of all active hydraulic functions. The flow sharing routine then compares the total amount of fluid available to the total flow volume than would be required if every hydraulic function operated at the desired velocity. The result of this processing is a set of velocity commands for the presently active hydraulic functions. Each such command designates the velocity at which the associated hydraulic function is to operate and the designated velocity may be less than the velocity desired by the machine operator, when there is insufficient supply flow. The flow sharing algorithm also may assign different priorities to the hydraulic functions. Therefore, when there is an insufficient fluid supply to power all the active functions at their desired velocities, a greater proportion of the available fluid is sent to higher priority hydraulic functions which thereby will operate closer to their desired velocities than will the lower priority hydraulic functions which receive disproportionately less fluid.
Each resultant velocity command is sent to the function controller 44 for the associated hydraulic function 11 or 20. The function controller 44 determines how to operate the electrohydraulic proportional valves 21-24 in order to drive the respective hydraulic actuator at the commanded velocity. As a first step in that determination, the hydraulic function controller 44 periodically executes a metering mode selection routine 54 which identifies the optimum metering mode which is available for the hydraulic function at that particular point in time.
Although the present metering mode selection method can be used to control different types of hydraulic actuators, for ease of explanation, consider metering modes for hydraulic functions that operate a hydraulic cylinder and piston arrangement, such as cylinder 16 and piston 28 in
The fundamental metering modes in which fluid from the pump is supplied to one of the cylinder chambers 26 or 27 and drained to the return line from the other chamber are referred to as “standard metering modes”, specifically the “standard extend metering mode” and the “standard retract metering mode”. The exemplary hydraulic system 10 also uses regeneration metering modes in which fluid being drained from one cylinder chamber 26 or 27 is fed back through the valve assembly 25 to supply the other cylinder chamber. In a regeneration metering mode, the fluid can flow between the cylinder chambers through either the supply line node “s”, referred to as “high side regeneration” or through the return line node “t” in “low side regeneration”. It should be understood that in a regeneration retraction mode, when fluid is being forced from the head chamber 26 into the rod chamber 27, a greater volume of fluid is draining from the head chamber than is required in the smaller rod chamber. The excess fluid is fed into the return line 18 during the low side regeneration metering mode and into the supply line 14 while high side regeneration is occurring. Regeneration also can occur when the piston rod 45 is being extended from the cylinder 16, in which case an insufficient volume of fluid is exhausting from the smaller rod chamber 27 than is required to fill the head chamber 26. During extension in the low side regeneration metering mode, additional fluid is received from the tank return line 18, and from the supply line 14 during high side regeneration. On a typical excavator, a given hydraulic function is configured to extend with the standard metering mode and either the low side or high side regeneration metering mode, thus have two metering modes from which to select. During retraction, usually only the standard and low side regeneration are available. However, all three types of metering modes may be available for functions on excavators or other kinds of equipment.
Selection of the most desirable metering mode to employ at a given time is performed by the selection routine 54 which designates the different metering modes by a numerical variable that has a value of zero to designate the low side regeneration metering mode, a value of one for the standard metering mode, and a value of two for designates the high side regeneration metering mode. The choice of the metering mode is based on the sensed pressures Pa and Pb in the cylinder chambers of the hydraulic function. From those cylinder chamber pressures, a value for a hydraulic load, designated ΔP
ΔP
where R is the ratio of the hydraulic cross sectional areas of the head and rod cylinder chambers 26 and 27, respectively. It should be noted that the hydraulic load varies not only with changes in the external force Fx exerted on the piston rod 45, but also with conduit flow losses and cylinder friction changes. Alternatively, an approximation (L) of the hydraulic load can be used wherein that value is derived by measuring the force Fx (e.g. by a load cell 43 on the piston rod) and using the expression: L=Fx/Ab. However, this approximation ignores conduit line losses and cylinder friction, which is acceptable for some hydraulic systems. With that alternative in mind, the present method will be described in the context of using the hydraulic load ΔP
Standard and Low Side Regeneration Extend
provided that if C
When the hydraulic function is extending in the actuator in the low side regeneration metering mode and the hydraulic load ΔP
provided that if D
The extension metering mode selection for a hydraulic actuator that can be operated in standard and low side regeneration, i.e. according to the graph of
When the operator designates extension of a hydraulic actuator, the system controller 46 sends the appropriate velocity command to the associated function controller 44 where the command is processed by the metering mode selection routine 54.
However if while in State 0, the value of ΔP
While the state machine is in State 1, if the hydraulic load ΔP
In State 2, the hydraulic load is compared to the four thresholds to determine whether a transition to another state should occur. Specifically, if the value of the hydraulic load ΔP
As noted previously, a transition can also occur from State 1 to State 3 at which the previously determined value for the metering mode variable is held constant. If while in this latter state, the hydraulic load ΔP
In State 4 where the metering mode is a blend of the standard metering mode and the low side regeneration as determined by RATIO1, transitions can occur to any of the other four states under certain conditions. A transition occurs to State 0 when the hydraulic load becomes equal to or less than the second threshold A
The metering mode selection routine 54 continues the state machine operation depicted in
Standard and High Side Regeneration Extension
Alternatively, if the piston-cylinder extension can employ standard extend or high side regeneration metering modes, the selection of which mode to use is graphically depicted by
Upon becoming solely active, the standard extend metering mode continues until the hydraulic load ΔP
The selection between standard extend and high side regeneration to operate the piston-cylinder arrangement is performed by the function controller 44 implementing the state machine depicted by the state diagram of
However if while in State 0, the value of ΔP
While the state machine is in State 1, if the hydraulic load ΔP
While the standard extend metering mode is active in State 2, if the value of the hydraulic load ΔP
As noted previously, a transition can also occur from State 1 to State 3 at which the value of the metering mode variable remains unchanged. If while in this latter state, the hydraulic load ΔP
In State 4 where the metering mode is a blend of the standard node and high side regeneration as determined by RATIO1, transitions can occur to any of the other four states under certain conditions. A transition is made to State 0 when the hydraulic load becomes equal to or less than the second threshold A
The metering mode selection routine 54 continues the state machine operation depicted in
Standard and Low Side Regeneration Retraction
When the machine operator operates the joystick 47 to retract the piston rod into the cylinder, the system controller 46 produces a velocity command designating that motion. The respective function controller 44 receives that command which is used by its metering mode selection routine 54 to select the standard retract metering mode, the low side regeneration retraction mode or a combination of those modes.
The selection of which mode to use is graphically depicted in
Once solely in low side regeneration, that retract mode remains active until the hydraulic load ΔP
The choice between standard and low side regeneration retraction modes is made by the function controller 44 executing the state machine depicted by the state diagram of
However if while in State 0, the value of ΔP
While the state machine is in State 1, if the hydraulic load ΔP
In State 2, the hydraulic load is compared to the four thresholds, depicted in
In State 3, if the hydraulic load ΔP
During retraction in State 4, where the metering mode is a blend of the standard metering mode and the high side regeneration as defined by RATIO1, a change to State 0 happens when the hydraulic load ΔP
The metering mode selection routine 54 continues the state machine operation depicted in
Gradually changing between two metering modes by varying a blend of those modes, as described previously herein, has particular application to machines in which the force acting on the hydraulic actuator varies as the actuator operates. For example, the load force applied by the boom and arm assembly of a backhoe or excavator to the hydraulic actuator changes as that assembly extends and retracts with respect to the tractor. For other machines, such as telehandlers, the load force acting on the hydraulic actuator does not change as the boom extends and retracts and using the value of the metering mode variable (EXT MM or RET MM) produced by the previously described state machines may still produce a relatively abrupt transition between the metering modes. For these latter machines, the signal denoting the value of the metering mode variable is additionally rate limited and filtered to further smooth transitions of that signal to a different metering mode.
Valve Opening Routine
With reference to
When only the standard or a regeneration mode is active, only two of the valves 21-24 in assembly 25 of
As previously described, several of the machine states set the respective metering mode variable (EXT MM or RET MM) to a non-integer value designating a blended transition between standard and regeneration metering modes. That is rather than an abrupt switch from one metering mode to another, both metering modes are active for an interval to provide a gradual changeover. For example, when the extension metering mode variable (EXT MM) has a value of 0.25, an apportioned combination of standard and low side regeneration extension metering modes is used. The valve opening routine 56 computes the amounts that the respective valves would be opened if only the low side regeneration extension metering mode is to be used and then multiples those amounts by 0.25. Then the valve opening routine 56 computes the amounts that the respective valves would be opened if only the standard extension metering mode is to be used and then multiples those amounts by a 0.75 (i.e. 1.00−0.25). These calculations determine the apportionment of the two metering modes that is to be used. Then the calculations result for each valve are added to establish the actual amount that the valves are to open. Other values of the extension metering mode variable produce similar apportionment of the various metering modes. For example, a value of that variable between one and two produces a blending of the standard extension and high side regeneration extension modes. A similar computation is performed to blend the metering modes during retraction of the piston rod.
Supply and Return Line Pressure Control
The chosen metering modes for the hydraulic functions also are employed by the system and pressure controllers 46 and 48 to control the pressure Ps in the supply line 14 and the pressure Pr in the return line 18. In order for a smooth transition to occur between metering modes, it is desirable that any fluid received from either the supply or return line 14 and 18 be at the proper pressure level at the time of the transition. Previous systems that abruptly switched between metering modes, also abruptly changed the pressure levels in the supply and return lines based on the selected metering mode. A gradual pressure change is preferred. Therefore, the present system, in which metering mode transitions involve a proportional blending, also blends the supply and return line pressure levels to further smooth the effects of such transitions.
Determination of the desired supply line pressure Ps and return line pressure Pr is performed by the Ps/Pr setpoint routine 62 in the system controller 46. That routine 62 calculates the required setpoints for the supply and return line pressures for each hydraulic function and then selects the highest of those setpoints for each line to use in controlling the respective pressure. For a given hydraulic function, the sensed pressures and the metering mode variable are used to determine the pressure requirements from the supply and return lines. When the metering mode variable indicates a combination of metering modes, the pressure requirements for each of those metering modes is first determined as though only that mode was active. Then, the respective pressure requirements for the supply line 14 are combined in proportion to the value of the metering mode variable and the result is that function's required pressure setpoint for the supply line. A similar calculation is performed for the function's required return line pressure setpoint.
The required supply line setpoints for all the hydraulic functions then are compared and the greatest one is selected as the PS setpoint for use by the pressure control routine 64 in regulating the pressure in the supply line 14. The greatest of the required return line setpoints from all the hydraulic functions is similarly used by the control routine 64 in regulating the pressure in the return line 18.
The foregoing description was primarily directed to a preferred embodiment of the invention. Although some attention was given to various alternatives within the scope of the invention, it is anticipated that one skilled in the art will likely realize additional alternatives that are now apparent from disclosure of embodiments of the invention. Accordingly, the scope of the invention should be determined from the following claims and not limited by the above disclosure.