Not applicable
Not applicable
1. Field of the Invention
The present invention relates to oil well pumps and more particularly to an improved hydraulic oil well pump that is electronically controlled using limit or proximity switches to control a valving arrangement that eliminates shock or excess load from the pumping string or sucker rod during pumping, and especially when changing direction of the sucker rod at the bottom of a stroke.
2. General Background of the Invention
Several patents have issued that relate generally to the pumping of oil from an oil well. Examples of those patents are contained in the following table, wherein the order of listing has no significance other than chronological.
The present invention provides a hydraulic oil well pumping apparatus. The system of the present invention utilizes a hydraulic cylinder having a piston or rod that is movable between upper and lower piston positions. A pumping string or sucker rod extends downwardly from the piston, the pumping string or sucker rod being configured to extend into an oil well for pumping oil from the well.
A prime mover such as an engine is connected to a compensating type hydraulic pump.
A directional control valve moves between open flow and closed flow positions. A hydraulic flow line connects the pump and the hydraulic cylinder.
Electronic controls are provided that control movement of the piston as it moves between the upper and lower positions.
For a further understanding of the nature, objects, and advantages of the present invention, reference should be had to the following detailed description, read in conjunction with the following drawings, wherein like reference numerals denote like elements and wherein:
Oil well pump 10 provides a reservoir 11 for containing hydraulic fluid. A prime mover 12 such as an engine is provided for driving a compensating pump 13. The pump 13 is used to transmit hydraulic pressure, pressurized hydraulic fluid received from reservoir 11 via flow line 33 to a hydraulic cylinder or petroleum lift cylinder 14. Lift cylinder 14 can be a Parker (www.parker.com) model GG699076A0. The hydraulic lift cylinder 14 includes a cylinder body 15 having a hollow interior 16.
A cylinder rod 17 is mounted in sliding or telescoping fashion to the cylinder body 15 extending into the interior 16 of cylinder body 15. The cylinder rod 17 has an upper end portion 18 and a lower end portion 19. During use, the lower end portion 19 extends below cylinder body 15 as shown in
In
The lift cylinder 14 is mounted upon Christmas tree 22. The Christmas tree 22 is mounted at the well head of an oil well at the upper end portion of well pipe 23. A suitable structural frame 38 can be used for supporting hydraulic cylinder 14 and its cylinder rod 17 above Christmas tree 22 as shown in
Hydraulic fluid flow lines are provided for transmitting hydraulic fluid under pressure to hydraulic lift cylinder 14 via flow lines 27, 29. Directional valve 28 receives flow from flow line 29. Flow line 27 extends between directional valve 28 and cylinder 14. To initiate operation, pump 13 transmits fluid flow through the manually vented relief valve 37 thus removing pressure from the system prior to start up. When the engine or prime mover 12 is started, it activates the hydraulic pump 13, flow still initially traveling through the relief valve 37 and flow line 34 to reservoir 11.
The cycle of operation begins by vent closure of valve 37 so that oil flowing in flow line 29 now travels to directional valve 28. At about the same time, the directional valve 28 is energized so that oil under pressure is directed via flow line 27 to hydraulic lift cylinder 14 body 15 and its hollow interior 16. The cylinder rod 17 will then elevate, lifting the pumping string 21 or sucker rod 21 with it (see
Frame 38 carries the plurality of proximity or limit switches 24, 25, 26. When the cylinder rod 17 reaches the top of its stroke, the proximity switch 24 (which is an uppermost proximity switch) senses the position of coupling 20 and energizes the directional valve 28 so that it closes the flow line 29 and flows through proportional valve 31. Valve 31 is a manual proportional valve with flow check for restricted flow on return of hydraulic oil to the reservoir, thus allowing a restricted flow to control the rate of descent of cylinder rod 17. Because the pump 13 is a compensating pump, it continues to run but does not continue to pump fluid. It can be set to halt fluid flow at a certain pressure value (e.g. 3000 psi, or 210.92 kgf/cm2) which can be set by design depending upon the weight of sucker rod 21. In other words, pump 13 is volume compensating and pressure responsive. Such a compensating pump is manufactured by Parker such as their model no. P1100PS01SRM5AC00E1000000.
When the directional valve 28 is used to close flow line 29, the compensating pump 13 continues to rotate with the engine 12 but no longer pumps fluid in flow line 29. The directional valve 28 opens drain line 30 at about the same time that line 29 is closed. Fluid in hydraulic cylinder 14 now drains via flow lines 27 and 30 through proportioning valve 31 and cylinder rod 17 descends relative to cylinder body 15. The hydraulic fluid draining from cylinder body 15 interior 16 continues to flow via flow lines 27 and 30 through proportioning valve 31 and cooler 36 and then into flow line 32 which is a drain line to reservoir 11. The flow line 32 can be provided with oil cooler 36 (e.g. Thermal Transfer model BOL-8-1-9) and an oil filter (e.g. Parker model no. RF2210QUP35Y9991) if desired.
Since pressure no longer forces cylinder rod 17 upwardly, it begins to drop (see
The proportioning valve 31 is a manual proportioning valve with flow check for restricted flow on return of hydraulic oil to the reservoir. When the coupling 20 reaches the proximity or limit switch 25, the directional valve switches to direct the flow to lift the cylinder 14. The choking action that takes place in the proportioning valve 31 has the effect of gradually slowing the speed of the cylinder rod 17 and its connected sucker rod 21. The use of Parker No. FMDDDSM Manapac manual sandwich valve located between directional valve and the solenoid controls dampens the transition of the directional valve from the upstroke or downstroke to allow bumpless transfer of fluid to the cylinder 14 and balances pressures. This choking of flow by the proportioning valve 31 also slows action of cylinder rod 17, preventing undue stress from being transmitted to the sucker rod 21 as the bottom of the downstroke of cylinder rod 17 is approached, then reached.
Directional valve 28 can be a Parker® valve model number D61VW001B4NKCG. Proportioning valve 31 can be a Parker® valve model number DFZ01C600012.
In
Valves 46, 47, 48 can be controlled with a programmable logic controller or “PLC” controller 39. Fluid transfer block 45 can be provided with a gauge port 54 that can be used to monitor pressure within the fluid transfer block 45.
Instrumentation lines 69, 70, 71, 72 are provided that enable controller 39 to communicate with and control the valves 46, 47, 48 and 49. Instrumentation line 69 enables PLC 39 to control bypass valve 49. The valve 49 is a bypass valve that can be used to transfer fluid from pump 43 through line 62 to fluid transfer block 45 and then to reservoir 41 via flow lines 65, 66. The flow line 66 can be provided with a filter 56 for filtering any foreign matter from the hydraulic fluid contained in the system 40.
Pump 43 receives hydraulic fluid from reservoir 41 via flow line 60 and its valve 61. Instrumentation line 70 enables PLC 39 to control proportional valve 47. Instrumentation line 71 enables PLC 39 to control directional valve 46.
The manifold 44 eliminates friction and maintenance of hoses or the like. The bypass valve 49 of the alternate embodiment is a feature that enables the prime mover 42, pump 43 and hydraulic fluid being pumped from reservoir 41 to warm up for a period of time (e.g. 2-30 minutes) before beginning to operate lift cylinder 14. Otherwise, the lift cylinder 14 can be operated with three switches 24, 25, 26 of the preferred embodiment of
Block 44 is provided with channels (phantom lines
In
In
In
In
Manifold 76 provides a fluid transfer block 77. Attached to the fluid transfer block 77 as shown in
In
When the hydraulic lift cylinder 14 reaches an uppermost position, coupling 20 trips the uppermost limit switch 24. The limit switch 24 activates the programmable logic controller to begin closing valve 85 and opening valve 81. The valve 81 is a proportional throttle valve that opens a desired percentage of opening as controlled by the programmable logic controller. In
When the falling pumping string/sucker rod 21 is lowered so that coupling 20 reaches the second lowest limit switch 25, valve 81 can begin to throttle or close so that the rate of descent of the pumping string/sucker rod 21 is slowed. When the coupling 20 reaches the lowest proximity or limit switch 26, the valve 81 is closed and the valve 85 is opened so that the cycle repeats.
Valve 85 provides a conically shaped or tapered valving member 100. Thus, fluid traveling from the pump 13, flow line 87 and inlet fitting 88 reaches block 77 and then travels via flow line 89 to inlet 98. The outlet 99 enables fluid to travel through valve 85 to flow line 91. The tapered shape of valving member 100 eliminates any surge as the gradually tapering valving member 100 moves in relation to inlet 98 as it is opened.
Relief valve 82 can be used to protect the system from overpressure. Valve 84 can be used to control the cooling from motor. Shuttle valve 86 can be used to control flow of instrumentation fluid to directional valve 79 (see
The poppet valve 85 can be for example a Parker Hannifin valve (part number D1VW020HNKCG). The proportional throttle valve can be a Parker Hannifin valve (part number TDA025EW09B2NLW).
In
All control is achieved by the proper positioning of the swash plate 110. This is achieved by servo piston 119 acting on one end of the swash plate 110 working against the combined effect of the off-setting forces of the pistons 120 and a centering spring on the other end. The control spool 123 acts as a metering valve which varies the pressure behind the servo piston 119.
The amount of flow produced by pump 103 is dependent upon the length of stroke of the pumping pistons 120. This length of stroke, in turn, is determined by the position of the swash plate 110. Maximum flow is achieved at an angle of about 17 degrees.
The rotating piston barrel 121, driven by the prime mover and drive 108, moves the pistons 120 in a circular path and piston slippers are supported hydrostatically against the face of the swash plate 110. When the swash plate 110 is in a vertical position (
The centerline of the pumping piston assembly is offset from the centerline of the swash plate 110 as shown in
In
An up-stroke cycle (see
The rod 17 will elevate or retract (see arrows 111,
The cylinder rod 17 will lower or extend at a desired velocity and until the coupling 20 reaches second proximity switch 25 positioned a selected distance (e.g. approximately one foot, or 0.30 meters) from the bottom travel of the rod 17. The current signal to the proportional valve 107 will then be decreased and it closes further, forcing the cylinder rod 17 and attached pumping string or sucker rod 21 to decelerate, until the coupling 20 lowers further and reaches third proximity switch 26. At that point, the current signal will be removed from the proportional valve 107, closing it and halting the flow of hydraulic fluid from cylinder 14 to reservoir 11 via flow lines 118, 319, with a voltage signal again sent to the directional valve 106, beginning the cycle again (see
It should be understood that the compensating pump 103 is a commercially available known pump such as Parker Model No. PAVC100B 2R422, described in a Parker publication entitled “Series PAVC Variable Displacement Piston Pumps”. The control and movement of swash plate 110 between a lower or minimum pressure position of
In the
Pump 103 can provide a control spool and sleeve 123 that shifts between different positions (
Swash plate 110 angle controls the output flow of the pump 103. Swash plate 110 angle is controlled by the force generated against the swash plate 110 by the pumping pistons 120 and by the force of the servo piston 119. The force of the servo piston 119 is greater than the force of the pumping pistons 120 when both are at the same pressure.
In
By means of internal porting (
When pressure reaches the setting of the pressure compensator control 138, the spool 123 leaves its seat causing the pressure in the spool chamber to be reduced. The spool 123 now moves downward causing pressure in the servo piston 119 cavity to vent via channel 139. The reduced pressure at the servo piston 119 allows the servo piston 119 to move to the right. This movement reduces the angle of the swash plate 110 and thereby reduces the pumps 103 output flow.
As pump pressure on the control spool 123 drops below pressure and spring force in the spool chamber, the control spool 123 moves upward to maintain an equilibrium on both sides of the spool 123. If pump pressure falls below compensator control setting, the control spool moves up, bringing the pump 103 to maximum displacement.
In
A cooling fan or other heat exchanger 134 can be used to cool the hydraulic fluid flowing in flow line 319. Flow line 135 and valve 136 can be used to provide flow to operate cooling fan 134. Flow line 145 supplies oil from line 114 to operate fan 134. Flow line 145 discharge from fan 134 and empties to reservoir 11.
With the oil well pump embodiment of
In
The following is a list of parts and materials suitable for use in the present invention.
All measurements disclosed herein are at standard temperature and pressure, at sea level on Earth, unless indicated otherwise.
The foregoing embodiments are presented by way of example only; the scope of the present invention is to be limited only by the following claims.
This is a continuation of U.S. patent application Ser. No. 11/670,239, filed 1 Feb. 2007 (issuing as U.S. Pat. No. 7,762,321 on 27 Jul. 2010), which claimed priority of U.S. Provisional Patent Application Ser. No. 60/764,481, filed 1 Feb. 2006, and U.S. Provisional Patent Application Ser. No. 60/824,123, filed 31 Aug. 2006, each of which are hereby incorporated herein by reference. International Application Number PCT/US07/61478, filed 1 Feb. 2007, is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3726093 | Malott | Apr 1973 | A |
4320799 | Gilbertson | Mar 1982 | A |
4430924 | Dunn et al. | Feb 1984 | A |
4480685 | Gilbertson | Nov 1984 | A |
4490097 | Gilbertson | Dec 1984 | A |
4503752 | Olson et al. | Mar 1985 | A |
4571939 | Dollison | Feb 1986 | A |
4631918 | Rosman | Dec 1986 | A |
4646517 | Wright | Mar 1987 | A |
4646518 | Hochsattel | Mar 1987 | A |
4691511 | Dollison | Sep 1987 | A |
4761120 | Mayer et al. | Aug 1988 | A |
5143153 | Bach et al. | Sep 1992 | A |
5390743 | Giannesini | Feb 1995 | A |
5996688 | Schultz et al. | Dec 1999 | A |
6017198 | Traylor et al. | Jan 2000 | A |
6394461 | Henderson | May 2002 | B1 |
6595280 | Traylor | Jul 2003 | B2 |
7762321 | Fesi et al. | Jul 2010 | B2 |
20030085036 | Curtis et al. | May 2003 | A1 |
20050155758 | Webb et al. | Jul 2005 | A1 |
20070261841 | Fesi et al. | Nov 2007 | A1 |
20080135259 | Brown | Jun 2008 | A1 |
20080314581 | Brown | Dec 2008 | A1 |
20090194291 | Fesi et al. | Aug 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20110014064 A1 | Jan 2011 | US |
Number | Date | Country | |
---|---|---|---|
60764481 | Feb 2006 | US | |
60824123 | Aug 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11670239 | Feb 2007 | US |
Child | 12842423 | US |